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Abstract: Human motion recognition based on wearable devices plays a vital role in pervasive
computing. Smartphones have built-in motion sensors that measure the motion of the device
with high precision. In this paper, we propose a human lower limb motion capture and recognition
approach based on a Smartphone. We design a motion logger to record five categories of limb activities
(standing up, sitting down, walking, going upstairs, and going downstairs) using two motion sensors
(tri-axial accelerometer, tri-axial gyroscope). We extract the motion features and select a subset of
features as a feature vector from the frequency domain of the sensing data using Fast Fourier
Transform (FFT). We classify and predict human lower limb motion using three supervised learning
algorithms: Naïve Bayes (NB), K-Nearest Neighbor (KNN), and Artificial Neural Networks (ANNs).
We use 670 lower limb motion samples to train and verify these classifiers using the 10-folder cross-
validation technique. Finally, we design and implement a live detection system to validate our motion
detection approach. The experimental results show that our low-cost approach can recognize human
lower limb activities with acceptable accuracy. On average, the recognition rate of NB, KNN, and
ANNs are 97.01%, 96.12%, and 98.21%, respectively.

Keywords: human motion recognition; motion sensor; smartphone; supervised learning algorithms

1. Introduction

Modern Smartphones have become increasingly popular in people’s daily life due to
their rich context-aware supporting applications beyond basic voice service capabilities [1–3].
Human motion recognition is one of these applications; it provides interpretations of the
sensed data of human activities for a good user experience.

Human motion recognition has been the target of extensive studies using either
external or wearable sensors [4]. External sensors like cameras at fixed locations focus on
human activity by capturing human motion. Wearable motion capture systems include
several inertial measurement units (IMUs) fixed on different parts of the user: head,
shoulders, chest, arms, wrists, palms, fingers, hip, upper legs, lower legs, and feet. The
IMUs measure the accelerations and angular velocities of different body parts in real
time. Where, with external sensors, motion outside the field-of-view is invisible and
requires multiple cameras for motion capturing in larger areas, wearable motion capturing
is obtrusive and inconvenient when one has to connect by wire several IMUs on different
parts of the body. In addition, both systems are not free of cost.

Fortunately, modern smartphones are equipped with a variety of sensors, such as an
accelerometer, gyroscope, magnetometer, and camera; it has become feasible to develop
human motion monitoring and recognition algorithms using one or more of these sensors
on smartphones without any inconvenience. Thus, we propose in this paper human
lower limb motion capturing and recognition using the IMU built into an Android-based
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Smartphone. The IMU measures unobtrusively the nine values of the tri-axial accelerometer,
gyroscope, and magnetometer at no extra cost. We investigate the features of sensing data
and recognize five daily activities of users using three supervised learning algorithms with
an acceptable accuracy. In this work, we aim to detect in real time subjects’ five daily
physical activities by training classifiers using sensing data received from motion sensors
of their own Smartphones. Our contributions mainly include four aspects:

1. We design a data logger to collect human lower limb motion data in real time using
the embedded accelerometer and gyroscope of an Android-based Smartphone;

2. In order to reduce the number of dimensions without degrading the recognition rate,
we conduct several experiments to find the optimal subset of features vector using the
K-folder cross-validation technique, because the large number of dimensions of the
feature vector may induce the complexity of the classifier model and increase need
for system resources, such as computing, storage, and energy;

3. With the trained models, one can recognize five human lower limb activities with
a high recognition rate. According to our experiments, we found sitting down is
easiest identified among the five human lower limb motions, whatever classifier one
applies. The Artificial Neural Network classifier has the best recognition performance,
whereas the Naïve Bayes classifier has the best recognition rate for going downstairs
and the worst recognition rate for the walking activity;

4. We implement an activity live detection program for Android-based Smartphones
using our proposed human lower limb motion capture and recognition method.

The organization of the rest of this paper is as follows: In Section 2, we analyze the
state-of-the-art from related works. Section 3 proposes our approach. In Section 4, we
present our experimental results and evaluate our motion capture and recognition approach.
Finally, this paper draws conclusions and outlines future work in Section 5.

2. Related Work

External and wearable sensors can capture human motion [5–7]. External sensors are
able to gather complex human activities. Nguyen et al. [8] placed motion capture suits
equipped with 17 IMUs positioned on each limb, trunk, and head segment of participants
to monitor full-body 3D movement, such as sitting down, standing up, reaching, walking,
and segmentation. Nguyen et al. employed nonlinear transform and adaptive thresholds to
detect peaks that correspond to different activities. Wang et al. [9] used cameras to record
human motion and studied first-person daily activity recognition from video streams utiliz-
ing object hypotheses and deep convolutional neural network–based detection frameworks.
Hamdi et al. [10] connected seven IMUs by wire and fixed them on the body’s waist and
lower limb segments. Each IMU was composed of a tri-axial gyroscope and a tri-axial
accelerometer able to measure the subject’s motion along three orthogonal axes. Chinimilli
et al. [11] placed one inertial measurement unit on a person’s thigh to capture the thigh
angular data while the subject was moving.

In recent years, one also finds research on motion capturing with Smartphone sensors.
Filios et al. [12] proposed a hybrid recognition model to detect four daily human activities
using only one tri-axial accelerometer sensor of a Smartphone. This approach has high
accuracy and is convenient as it does not disturb people’s daily life. Anjum et al. [13]
recognized human physical activities on a Smartphone in real time; their mobile application
monitored seven different human activities without space and time limitations. Belman
et al. [14] collected walking, upstairs, and downstairs motion data from 117 subjects
using both Samsung-S6 and HTC-One mobile phones. They shared their dataset as a
public dataset named Syracuse University and Assured Information Security-Behavioral
Biometrics Multi-Device and Multi-Activity Data (SU-AIS BB-MAS), which is hosted by the
IEEE-Dataport [15]. The dataset consists of 57.1 million data-points for both accelerometers
and gyroscopes and provides a better context for human activity recognition.

Apart from obtaining the sensing data of human motion, feature extraction and
classifier selection are also important steps in the process of human motion recognition.
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As for motion features, most literature, such as Refs. [10–12,16], extract features from
time series of sensing data. Others extract motion features from the frequency domain of
raw data [17,18]. As for classifiers, machine learning algorithms are widely used, such
as K-nearest neighbor, support vector machine, naïve Bayes, neural networks, Markov
models, and convolutional neural networks [9,11,13,19,20]. No matter which one uses, one
first needs the motion features to extract from the raw sensing data. The feature selection
directly affects the performance and energy consumption of the recognition system. We use
frequency, magnitude, and the phase as motion features extracted in the frequency domain
of sensing data for the FFT method.

Hamdi et al. [10] found that the motion features from one leg are sufficient for lower
limb motion recognition because both legs have the same profile. Therefore, in order to
obtain the human daily activities with high accuracy at low cost, we fixed one Smartphone
on the right upper leg and used the tri-axial accelerometer and tri-axial gyroscope to
collect back and forth motion data in the sagittal plane [12]. We extracted motion features
in the frequency domain of sensing data using FFT to detect lower limb motion offline
using three supervised learning algorithms on a high performance computer, as the data
processing requires hardware resources and costs battery energy. Although Gabor Wavelet
Transform is also an effective time-frequency analysis method, the Fast Fourier Transform
is suitable for processing long sequential stable signals like the human lower limb motion
in this study. The FFT is a computationally fast and efficient way to implement the Discrete
Fourier Transform (DFT), which is a linear transformation that extracts the frequency
content of a vector or a discrete signal [21]. It is formulated as follows:

X(k) =
N−1

∑
n=0

x(n)(cos
2πnk

N
− i sin

2πnk
N

), k = 0, 1, 2 . . . , N − 1, (1)

where N is the length of the signal/vector and X(k) is the content at the frequency of 2πk/N.

3. Method

In this work, we implement a low-cost motion recognition system using only the
accelerometer and gyroscope of a Smartphone widely used in daily life. By fusing the
sensing data of the two sensors, we achieve a more effective recognition than with only the
tri-axial accelerometer.

3.1. System Architecture

Figure 1 shows on the right the overall system architecture for human lower limb
motion capture and recognition. The three main building blocks are:

1. Motion Data Capturing: The Smartphone has an Inertial Measuring Unit (IMU) with
three built-in tri-axial sensors: accelerometer, gyroscope, and magnetometer. We
attach the Smartphone on the right thigh. We record on a SD Card for later upload
to a remote server and off-line processing of the three accelerations measured by the
accelerometer and the three angular velocities measured by the gyroscope.

2. Feature Extraction: FFT is a useful mathematical tool in signal processing, as it
transforms data from the time into the frequency domain. We use the frequencies,
magnitude, and phase within the frequency domain as motion features. Based on a
large number of experiments, we could reduce with little effect on the probability of
information loss the dimension of the features vector.

3. Classifier: We use three classifiers: NB, KNN, and ANN. We train and evaluate these
classifiers using the 10-fold cross-validation method, with 90% of data for training
and 10% for testing.
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Figure 1. Overview of the proposed system architecture.

3.2. Motion Data Collection

For the data collection, we fixed the Smartphone as mentioned on the end user’s right
thigh. The embedded motion sensor uses a right-hand spatial coordinate system calibrated
when the user stands upright (see Figure 1). In this position, the x-axis points straight
ahead, the y-axis points above against gravity, and the z-axis points right related to the
global X-Y-Z coordinate system.

The sensors in Android-based Smartphones provide four kinds of sampling rates fsample:
FASTEST (≥50 Hz, which depends on the user’s platform), GAME (50 Hz), UI (16 Hz), and
NORMAL (5 Hz) [12,13]. We set the sampling rate to NORMAL for two reasons:

1. Android systems typically use a smaller sampling rate, which is adequate for a
human’s normal activity in their daily life [13];

2. Smartphones use the least battery energy with this sampling rate because of a lower
load on the processor.

However, it is worth noting that we set the sampling rate to UI (16 instances per
second) in our live detection system for achieving more detailed motion sensing data,
because the human’s fast activities need a much higher sampling frequency based on the
Nyquist’s sampling theorem, which states that the signal rate should not be higher than
half the sampling rate.

To investigate the lower limb motion in the sagittal plane, we only collect three values
of the linear accelerometer (excluding gravity) and calibrated gyroscope: the acceleration
along the x-axis (Ax) and along the y-axis (Ay) as well as the angular velocity around the
z-axis (Gz).

Keeping the variety of motion and improving the reliability, we take under different
conditions 670 samples of five activities (sitting down, standing up, walking, going upstairs,
and going downstairs). We vary the stride length of walking, the step height of stairs, and
the height of chairs.

Figure 2 shows the time series of the three values of interest (Ax, Ay, and Gz) for each
gait cycle of the five activities. The acceleration in the sagittal plane (Asag) in Figure 2 results
from the accelerations Ax and Ay, as follows:

Asag =
√

Ax2 + Ay2. (2)
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Figure 2. Sensed accelerations and velocity of each gait cycle.

3.3. Feature Extraction

One needs to calibrate the raw data of sensors because of noise, gravity, and gyro-
drift. The Smartphone sensors provide raw sensing data from the accelerometer and
uncalibrated gyroscope. In this paper, we use calibrated sensing data according to the linear
accelerometer (excluding gravity) and gyroscope (including gyro-drift compensation). In
an Android-based Smartphones, Android platforms support several motion sensor types to
collect gait sensing data. Among them, the acceleration sensor (TYPE_ACCELEROMETER)
measures the acceleration force along each of the three axes including gravity, the linear
acceleration sensor (TYPE_LINEAR_ACCELERATION) collects a three-dimensional vector
indicating acceleration along each device axis, not including gravity, the gyroscope sensor
(TYPE_GYROSCOPE) measures the rate of rotation around the device’s X, Y and Z axis, and
the uncalibrated gyroscope sensor (TYPE_GYROSCOPE_UNCALIBRATED) provides the
rate of rotation around the device but no gyro-drift compensation is performed. Fortunately,
consumers can use gyro-drift bias values to calibrate the given sensor values. In this study,
we use TYPE_LINEAR_ACCELERATION and TYPE_GYROSCOPE to collect the calibrated
sensing data. Figure 3 shows the block diagram of the feature extraction. We use the Hann
function as a window function and pad with zero to extend the length of the signal to 2N

(N = 1, 2, 3, . . . ) for the FFT. We obtain four values: the magnitude of frequency domain
of Asag (Msag), the phase of frequency domain of Asag (Psag), the magnitude of frequency
domain of Gz (Mz), and the phase of frequency domain of Gz (Pz), as follows:

Msag = abs(FFT([hanning(Asag), zeros(1, 2N − length(Asag))])), (3)

Mz = abs(FFT([hanning(Gz), zeros(1, 2N − length(Gz))])), (4)

Psag = angle(FFT([hanning(Asag), zeros(1, 2N − length(Asag))])), (5)

Pz = angle(FFT([hanning(Gz), zeros(1, 2N − length(Gz))])). (6)

where abs, angle, FFT, and hanning are the magnitude, phase, Fast Fourier Transform,
and hanning window operation used in Matlab, respectively. In this paper, N is set to be
5. Finally, we obtain the feature vector X = {Msag, Psag, Mz, Pz}. The length of Msag, Psag,
Mz, and Pz is 2N−1 due to the symmetry. Therefore, the original integrated motion feature
vector includes 2N+1 elements.
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However, the large number of dimensions of the feature vector may induce the
complexity of the classifier model and increase the need for system resources (computing,
storage, and energy). To reduce the number of dimensions of the motion features vector,
we take the first n order features from each magnitude and phase vector to form a subset
of motion features as a new feature vector with 4 × n elements. The subset of the motion
feature vector is thus as follows:

X =
{

Msag(1 . . . n), Psag(1 . . . n), Mz(1 . . . n), Pz(1 . . . n)
}

, n = 1, 2, 3, . . . , 2N−1. (7)

3.4. Classifier

Human activity recognition is an active and challenging research area due to its
applications in different areas like healthcare and security. A large portion of works related
to this center around breaking down the execution of grouping calculations using different
machine learning algorithms like Naive Bayes, Multi-Layer Perceptron, and K-Nearest
Neighbors. The three classifiers’ characteristics are shown as follows. Naive Bayes classifier
treats all features as independent and is by far the simplest of the three classifiers. K-Nearest
Neighbors is a machine learning model, and this algorithm shows the characteristics of
instance-based learning. It is mostly used as a method of classification in which grouping
of examples is dependent on their coordinates and distance from others in the feature
space. The Artificial Neural Network classification method has a multi-layer architecture,
including input, hidden, and output layers. The nodes in adjacent layers fully connect
from a lower layer to a higher layer. These three algorithms have been used successfully in
activity recognition with a varying success rate.

We use three classification methods to recognize human lower limb motion, including
Naïve Bayes, K-Nearest Neighbors, and Artificial Neural Networks.

With the Naïve Bayes classifier, one can assume that features of classes are independent.
The Naïve Bayes classifier is

h(X) = argmax
i

m

∏
j=1

P(xj|C = i) · P(C = i). (8)

where X = {x1, x2, . . . , xm} is the feature vector, including m attributes of a given sample
x, and C ∈ {1, 2, . . . , numLabels} is the class label of the feature vector X. P(X = xj|C = i)
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is the conditional probability when class C equals i. P(C = i) is the prior probability of C
equaling i. The given example x belongs to class i with the maximum a posteriori probability
hypothesis h(x). In this paper, we filter all the features in which the variance of training
and testing dataset is not positive.

The K-Nearest Neighbors algorithm is based on the Euclidean distance between a test
sample and the specified training samples. The test sample x belongs to the majority class
label of its K nearest training samples. In this paper, we set K equal to 1. The class label
of sample x is the same as the class label of the nearest neighbor xtraini with the minimum
Euclidean distance d:

argmin
i

d(x, xtraini). (9)

Like the two learning algorithms mentioned above, the Artificial Neural Network
(ANN) classification method has a multi-layer architecture, including input, hidden, and
output layers. The nodes in adjacent layers fully connect from a lower layer to a higher
layer. In this paper, we use ANN based on the feed-forward backpropagation algorithm
and set the number of input nodes to be 4× n, which is equal to the size of the feature vector.
We select the optimal number of hidden nodes using a trial and error approach for the cross-
validation procedure. We set the number of output nodes to be numLabels = 5 because the
number of class labels is five, corresponding to five different lower limb activities.

In order to evaluate the three algorithms, we use a 10-fold cross-validation technique,
also used in [11,13]. We divide the samples equally into ten portions. We use one portion
as test dataset and the other nine portions as training datasets. The second time, we select
another unselected portion as the test set and the remaining nine portions as training sets.
We can obtain a recognition accuracy for each training and testing process. After ten steps,
the average accuracy is the recognition rate of the classifier.

3.5. Live Detection Algorithm

Our objective is to find an algorithm for mobile users in order to recognize the human
lower limb motion in real time such that the proposed motion recognition method may
be applied in a real scenario. In order to solve the problem, we suggest a live detection
algorithm for human lower limb motion based on our motion recognition method.

The summary of the flow of the live detection algorithm is shown as follows. At
first, we achieve the total number of sample points and the maximum number of sample
points for each motion cycle based on the sample frequency fsample and the length of time
serial tacc, tgyr (lines 1–2). Then, we find all the peak locations of time series from the start
location to the maximum position of an activity cycle (line 4). For each peak location, we
find the forward cross zero points as the end location and store them in an end location
vector (line 5). After that, we extract the features of human activity from the time series
fragment of accelerometer and gyroscope between start location and end location using
our FFT feature extraction method (lines 6–8). Finally, we use the ANN classifier with the
best recognition performance to predict the human activity (line 9). The activity is the
prediction with the maximum probability that is no less than the acceptable accuracy (lines
10–12). The Algorithm 1 takes O(M × logN) time for the feature extraction phase by FFT
time-frequency transform in step 8 and O(M × numHLN) time for the motion prediction
phase by ANN in step 9. The Algorithm 1 has a O(M × logN + M × numHLN) time
complexity for M sampling points, N sampling points of each motion cycle and numHLN
hidden layer nodes of ANN.
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Algorithm 1. Human Lower Limb Motion Live Detection Algorithm

INPUT: time series of accelerometer tacc; time series of gyroscope tgyr
OUTPUT: activities
1: numTotalSample← fsample × the length of time seriestacc, tgyr
2: numMaxCycleSample← fsample × periodMaxCycle
3: WHILE startLocation < numTotalSample DO
4: locs← findPeaks(startLocation: startLocation + numMaxCycleSample)
5: endLocation← searchEndLocation(tacc, tgyr, locs)
6: acc← tacc(startLocation: endLocation)
7: gyr← tgyr(startLocation: endLocation)
8: x← featureExtractionByFFT(acc, gyr)
9: prob, pred← ANN(x)
10: proboptimal ←maximum(prob)
11: IF proboptimal ≥ ACCEPTABLE_ACCURACY THEN
12: activities←maximum(pred)
13: startLocation← endLocation(proboptimal);
14: ELSE
15: numEndLoc← length of endLocation
16: startLocation← endLocation(numEndLoc-1)
17: END IF
18: END WHILE

4. Results
4.1. Preparation of Data Set

To reduce the degree of limitation, we only use two motion sensors: a linear accelerom-
eter (range: 19.61 m/s2, resolution: 5.98 × 10−4 m/s2, vendor: Google Inc. (Mountain
View, CA, USA) and a gyroscope (range: 8.72 rad/s, resolution: 2.66 × 10−4 rad/s, ven-
dor: InvenSense®). Android versions 2.3 and later support these two sensors. In our
experiments, we develop an Android application of data collection and deploy it on a
Samsung Galaxy Note III Smartphone fixed on the right thigh of the end user. We set the
accelerometer and gyroscope to work at a fixed sampling rate similar to the literature [22]
and collect sensing data for each gait cycle recorded on an external storage. The sensing
data consist of three time series of two motion sensors in the sagittal plane, represented
as {Ax, Ay, Gz}.

To increase the diversity of motion samples, we collected 670 examples under different
conditions from eight international students whose ages range from 23 to 37 and heights
range from 160 cm to 182 cm. Table 1 shows the variety of scenarios for five lower limb
motions with variations. The stride length was between 50 and 90 cm during walking
motion capturing. For going upstairs/downstairs, step heights were 17 and 20 cm. The
height of chairs used was 32, 42, and 48 cm for sitting and standing motions. Table 1
also shows the percentage of samples for each activity (walking, going upstairs, going
downstairs, standing up, and sitting down) is 23%, 18%, 17%, 21%, and 21%, respectively.

Table 1. The diversity of motion samples.

Human Lower Limb Motion Variety of Test Condition Number Percentage

Walking Stride length: 50~90 cm 156 23%
Going upstairs Step height: 17 cm, 20 cm 122 18%

Going downstairs Step height: 17 cm, 20 cm 113 17%
Standing up Seat height: 32 cm, 42 cm, 48 cm 139 21%
Sitting down Seat height: 32 cm, 42 cm, 48 cm 140 21%

4.2. Determining Feature Vector Subsets

To determine the size of the motion feature vector, we conducted 320 times 10-fold
cross-validation experiments for n first order feature set to 1 to 16 while the number of
hidden layer nodes (numHLN) varied between 1 and 20.
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Figure 4 shows the recognition accuracy, the number of hidden layer nodes, and the
first n order of features. We calculated the average accuracy of each order and observed that
we can trade off the number of motion features and recognition rate of lower limb motion
when n is set to 6. As a result, we form a subset of features vector with 4 × 6 = 24 elements
as a new feature vector for a better performance. These 24 features come from magnitude
and phase of frequency domain, which is mentioned in the feature extraction section.
Furthermore, we also tested different numbers for hidden layer nodes for ANN classifiers.
Figure 4a shows the convergence of the recognition accuracy for a specific value n when
numHLN is larger than 4. Figure 4b shows that the 10-fold cross-validation technique
produces the best experimental results when the number of hidden layer nodes numHLN
is set to 8 and the first order of features n is set to 6.
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Figure 4. The impact of numHLN and n on recognition accuracy. (a) Accuracy varies with numHLN,
(b) Accuracy varies with first order n.

4.3. Classification Results

To evaluate our recognition method, we use five performance metrics: recognition
accuracy, true positive rate (TPR), false positive rate (FPR), precision, and recall. Using the
10-fold cross-validation technique, we calculate these performance metrics. Table 2 shows
the five human lower limb activities’ recognition results of the three classifiers. The first
order of feature n for each classifier is set to be 6. That means we only use 24 features from
the frequency domain of the sensed data for KNN and ANNs and use 22 features for NB
because the within-class variance in two features of training is not positive.

Table 2. Human limb motion recognition results of three classifiers.

Classifier Accuracy Limb Motion TPR FPR Precision Recall

NB (n = 6) 97.01%

Standing up 97.75% 0.19% 99.23% 97.75%
Sitting down 100% 0% 100% 100%

Walking 93.00% 0.57% 97.91% 93.00%
Going upstairs 96.86% 1.29% 94.42% 96.86%

Going downstairs 98.44% 1.64% 92.85% 98.44%
Average 97.21% 0.74% 96.88% 97.21%

KNN (n = 6,
K = 1) 96.12%

Standing up 97.64% 0.19% 99.33% 97.64%
Sitting down 100% 0% 100% 100%

Walking 94.43% 1.77% 94.24% 94.43%
Going upstairs 93.79% 2.68% 87.67% 93.79%

Going downstairs 93.37% 0.16% 98.57% 93.37%
Average 95.85% 0.96% 95.96% 95.85%
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Table 2. Cont.

Classifier Accuracy Limb Motion TPR FPR Precision Recall

ANNs (n = 6,
numHLN = 8) 98.21%

Standing up 99.41% 0.21% 99.50% 99.41%
Sitting down 100% 0.19% 99.29% 100%

Walking 99.41% 0.98% 96.86% 99.41%
Going upstairs 97.98% 0.71% 96.42% 97.98%

Going downstairs 93.34% 0.18% 99.00% 93.34%
Average 98.03% 0.45% 98.21% 98.03%

From the experimental results, we can see that our human lower limb motion recogni-
tion method has high accuracy. ANNs with six hidden layer nodes have the best recognition
performance, better than NB and KNN. On average, NB, KNN, and ANNs have 97.01%,
96.12%, and 98.21% recognition rates, respectively. Standing up and sitting down are easier
to detect than the other three activities.

To sort errors of the three classifiers, we use the confusion matrix of Table 3. We use
the notations L1, L2, L3, L4, and L5 to denote standing up, sitting down, walking, going
upstairs, and going downstairs, respectively. Table 3 gives us three findings:

1. The Naïve Bayes classifier has the best recognition rate for going downstairs and the
worst recognition rate for the walking activity;

2. Sitting down is the most easily identified among the five human lower limb motions,
whatever classifier one applies. However, classification of walking, going downstairs,
and going upstairs is sometimes incorrect;

3. The Artificial Neural Network classifier has the best recognition performance, al-
though it has the most errors for going downstairs.

Table 3. Confusion matrix for five human activities.

Actual
NB Predicted Results KNN Predicted Results ANN Predicted Results

L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 L1 L2 L3 L4 L5

L1 136 0 0 1 2 136 0 1 2 0 138 0 0 1 0
L2 0 140 0 0 0 0 140 0 0 0 0 140 0 0 0
L3 0 0 145 4 7 0 0 147 9 0 0 0 155 0 1
L4 1 0 3 118 0 1 0 5 115 1 2 0 0 120 0
L5 0 0 0 2 111 0 0 3 4 106 0 0 5 3 105

Furthermore, we conduct an extensive experiment using the public dataset SU-AIS
BB-MAS to further demonstrate the effectiveness of our lower limb motion recognition
approach. SU-AIS BB-MAS includes accelerometer and gyroscope raw data collected by
inertial sensors built into smartphones. These activity-related raw data are logged on a
mobile device when 117 participants with a smartphone in their pocket perform twice the
following activities in sequence over five minutes: walking, going downstairs, walking,
turning around, walking, going upstairs, and walking.

First of all, we perform a comprehensive analysis of the raw data of each participant
using a time window of 1 s and find that the z-axis of a smartphone in a pocket does
not always point right, as shown in Figure 1. We select the raw gait data of 10 users
(participants 1, 6, 20, 40, 64, 66, 91, 101, 110, and 117) from SU-AIS BB-MAS and extract
754 samples. The reason why only 10 out of 117 users of SU-AIS BB-MAS are selected is
that the placed position of the 10 users’ smartphone in their pocket is approximately similar
to our approach, such that the x-axis of the smartphone points straight ahead, the y-axis
points above, and the z-axis points right, related to the global X-Y-Z coordinate system. The
percentage of samples for walking, going upstairs, and going downstairs is 53%, 25%, and
22%, respectively. We still use 10-folder cross-validation technique to calculate performance
metrics. Table 4 shows the three activities’ recognition results of the three classifiers.
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Table 4. Activity recognition results of three classifiers using SU-AIS BB-MAS.

Classifier Accuracy Limb Motion TPR FPR Precision Recall

NB (n = 6) 88.40%

Walking 100.00% 0.33% 99.78% 100.00%
Going upstairs 82.76% 9.87% 72.58% 82.28%

Going downstairs 67.57% 5.25% 81.51% 67.57%
Average 83.44% 5.15% 84.62% 83.44%

KNN (n = 6,
K = 1) 96.80%

Walking 100.00% 0.28% 99.75% 100.00%
Going upstairs 93.91% 2.27% 92.66% 93.91%

Going downstairs 92.43% 1.68% 93.46% 92.43%
Average 95.44% 1.41% 95.29% 95.44%

ANNs (n = 32,
numHLN = 64) 97.20%

Walking 100.00% 0.00% 100.00% 100.00%
Going upstairs 94.52% 1.76% 94.43% 94.52%

Going downstairs 93.75% 1.86% 93.24% 93.75%
Average 96.09% 1.21% 95.89% 96.09%

From the experimental results, we also can see that our human lower limb motion
recognition method has high accuracy. ANNs with 64 hidden layer nodes has the best
recognition performance, better than NB and KNN. All FPRs of ANNs are below 2%,
with all other rates ranging between 93% and 100%. On average, NB, KNN, and ANNs
have 88.40%, 96.80%, and 97.20% recognition rates, respectively. In the SU-AIS BB-MAS
dataset, it is easier to detect walking activity than the other two activities. We also find it is
harder to identify going downstairs than going upstairs. Compared to our own dataset
of eight users, the experimental results of SU-AIS BB-MAS show that the accuracy of the
three classifiers decreases slightly. Although ANNs provides the best recognition rate
among the three classifiers, the number of hidden layer nodes increases from 8 to 64. The
reason is that the gait data of our dataset are collected from a smartphone fixed on the user’
right thigh while the raw data of SU-AIS BB-MAS are obtained from a smartphone placed
in the participant’s pocket arbitrarily.

4.4. Live Detection

To validate the availability of our motion recognition approach, we design and im-
plement a human lower limb motion live detection program, which includes three main
modules: data capture, sample statistics, and live detection, as shown in Figure 5. We
develop this live detection program for Android-based Smartphones and run it on Sam-
sung Galaxy Note 3. This application is designed based on an offline training and online
prediction scheme. This means the ANNs model training and the obtaining of optimal
parameters are performed on a remote computer, whereas human motion recognition
is performed on a battery-driven smartphone in order to reduce the battery dissipation
and enhance the real-time response. The end user can capture the raw sensing data of
their five activities when the subject does the corresponding physical activity they select
in the data capture module. After finishing the data capture, the subject can obtain the
samples of each activity utilizing the sample statistics module and feed these samples
into the classifier to train the recognition model in the remote server for saving battery
energy. The subject’s five lower limb activities can then be recognized in real time using
the live detection module. In the live detection module, we use our proposed live detection
algorithm to recognize the mobile user’s lower limb motion in real time.
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Figure 5. Screenshots of Live Detection System.

The live detection system provides users a report of their daily lower limb physical
activity in real time. The activity category of each activity is displayed on the mobile device
as shown in Figure 5. The value of the application is that it can demonstrate that our
proposed approach can recognize human lower limb motion with a high accuracy, and it
also provides a chance to detect abnormal movement in the future work of this study, such
as automated fall detection.

We record the sensing data of the accelerometer and gyroscope while subjects do the
following serial activities, including 939 sample points as shown in Figure 6:

1. sitting in a chair for 2090 milliseconds;
2. standing up from a chair;
3. standing still for 3756 milliseconds;
4. walking forward seven steps;
5. climbing upstairs, and after six steps, turning around;
6. standing still for 2330 milliseconds;
7. walking downstairs;
8. walking toward to the chair six steps and then turning around;
9. sitting down on the seat;
10. sitting in a chair for 1850 milliseconds.

From Figure 6, we can see that our live detection algorithm can extract each human
activity cycle from the time serial accurately. After feeding each activity cycle into our
human lower limb motion recognition approach, we achieve a high recognition result.
Our approach recognizes 25 motions among 27 recognizable activities, except standing
still and turning around. However, we cannot identify the last step of climbing stairs and
improperly classify a walking activity as walking downstairs because we cannot separate
the turning around cycle properly.
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5. Conclusions

This paper proposes a human lower limb motion capturing and recognition method
using the sensors built into any Android-based Smartphone, respecting the benefits and
pitfalls of existing motion capture systems. By placing the Smartphone on the upper
leg, one avoids any expensive, e.g., wearable, or pervasive systems. We can reliably
recognize the following five lower limb motions: standing up, sitting down, walking, going
upstairs, and going downstairs. We use FFT extracting features in the frequency domain of
motion sensing data and reduce the feature vector size to decrease the complexity of the
recognition system. Furthermore, we use the 10-fold cross-validation technique to evaluate
the three classifiers. Finally, we designed and implemented a live detection application
using a real-time detection algorithm based on our motion approach to prove that our lower
limb motion recognition method can achieve very high accuracy. We did not consider the
abnormal movement detection problem in this paper. In the future, we plan to improve the
recognition rate for going upstairs and going downstairs and reconstruct the human lower
limb motion in real time using the public dataset SU-AIS BB-MAS. We also would like to
extend this application further to support more lower limb motion activities in order to
detect mobile users’ abnormal movement for some special groups, such as medical patients
and elderly people.
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