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Abstract: Dense multi-view image reconstruction has played an active role in research for a long time
and interest has recently increased. Multi-view images can solve many problems and enhance the
efficiency of many applications. This paper presents a more specific solution for reconstructing high-
density light field (LF) images. We present this solution for images captured by Lytro Illum cameras
to solve the implicit problem related to the discrepancy between angular and spatial resolution
resulting from poor sensor resolution. We introduce the residual channel attention light field (RCA-
LF) structure to solve different LF reconstruction tasks. In our approach, view images are grouped in
one stack where epipolar information is available. We use 2D convolution layers to process and extract
features from the stacked view images. Our method adopts the channel attention mechanism to learn
the relation between different views and give higher weight to the most important features, restoring
more texture details. Finally, experimental results indicate that the proposed model outperforms
earlier state-of-the-art methods for visual and numerical evaluation.

Keywords: light field reconstruction; based view synthesis; angular super-resolution; channel atten-
tion network

1. Introduction

Light fields (LF) record 3D scenes into uniform and dense image samples. These
images contain spatial and angular information about the 3D scenes. As a result, many
applications have developed and benefited greatly from this huge amount of information,
such as de-occlusion [1,2], depth-sensing [3–5], saliency detection [6], and salient object
detection [7]. In addition, LF could be promising to ease other applications such as the
fruit-picking robot, where a robot traverses a whole field and harvests on its own [8,9]. LF
images are caught using portable cameras or camera arrays in most situations. In order
to use array cameras, several cameras are required, which is an expensive and laborious
process [10]. A practical solution for capturing LF images with portable cameras can
be provided by inserting a microlens array in front of the image sensor [11,12]. Despite
the advantages of this solution, it comes with a major drawback: poor sensor resolution.
Therefore, obtaining LF images with high spatial and angular resolution is difficult.

Recently, several learning-based approaches that considerably enhance the perfor-
mance of LF reconstruction have been presented. The LF reconstruction challenge re-
constructs dense LF images from sparse input views. Previous approaches using the
convolutional neural network (CNN) without depth estimation [13,14] can only handle
LFs with a small baseline. They explore the connection between the angular and spatial
domains but fail to use the epipolar information fully.

Some approaches [15,16] estimate depth maps and warp views to investigate rela-
tionships between views. However, the wrongness of the calculated depth map greatly
affects how the LF reconstruction turns out. There is another approach to mitigate the effect
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of limited sensor resolution through LF super-resolution [17–19], but this is outside this
research’s interest.

This article presents a unique learning-based methodology for rapidly reconstructing
a densely sampled LF from a very sparsely sampled LF. Computationally efficient con-
volutions realize our end-to-end CNN model to understand spatial-angular relationships
deeply. We up-sample the sparsely input LF to the required angular size using the bicubic
interpolation in the preprocessing stage. The RCA-LF is then deployed to leverage the
inherent LF structure in the up-sampled LF images. Notably, our method does not need
disparity warping or intensive computations. In addition, it reconstructs a whole LF in a
single forward pass. Specifically, we introduce the residual channel attention light field
(RCA-LF) structure to solve different LF reconstruction tasks. In our approach, view images
are grouped in one stack where epipolar information is available. We use 2D convolution
layers to process and extract features from the stacked view images. Our method adopts
the channel attention mechanism to learn the relation between different views and give
higher weights to the most important features, restoring more texture details.

We propose a new way to process the multi-channel input, which comes from 2D
convolution instead of 3D convolution. Two-dimensional convolution takes a single slice
as an input and fails to leverage context from adjacent slices. Conversely, 3D convolution
overcomes this issue by leveraging the slice context with 3D convolutional kernels, resulting
in enhanced performance. However, 3D convolutions have a limited range depending
on the kernel size (3 × 3 × 3 kernels can leverage depth information using only three
consecutive slices).

In our proposed method, the input has a size of (B, H, W, 49) for the 3 × 3 to
7 × 7 reconstruction task where the 49 represents the number of input channels. For
2D convolution, the number of filters equals (filter_height × filter_width × in_channels
× out_channels). Consequently, every output channel is a function of all input channels
at each convolution. Adopting this method can fix the limited range issue of the 3D
convolution and provide better quality.

The number of input channels is 49 for the 3 × 3 to 7 × 7 reconstruction task. Still, we
extract more features on the subsequent convolution layers, meaning more interactions can
be identified between the extracted features of input images, restoring more information
and details. Because some of the extracted features might contain useless or redundant
information, the channel attention mechanism rescales (gives different weights) for these
extracted features depending on the information content.

We can summarize the contributions of this article as follows: (1) We adopt a channel
attention mechanism to reconstruct LF images. (2) Our method increases the interaction
between different LF images by processing LF images as input–output channels of 2D
convolutions. (3) We design the RCA-LF to increase the interactions between input–output
channels (parallel processing) and decrease the number of blocks (serial processing); hence,
it can reconstruct LF images accurately and fast.

2. Related Work
2.1. LF Representation

A wealth of information about the surrounding 3D space is revealed by LF imaging,
contrary to traditional imaging methods. The Plenoptic function was initially described
using seven variables that determine the view from any possible angle, for all wavelengths
of light and at any time, as P = P

(
θ, ϕ, λ, t, Vx, Vy, Vz

)
[20]. It was then simplified to

a 4D description with the intersections of light rays with two planes L = L(u, v, x, y),
where (u, v) and (x, y) denote the points of intersection with the first and second planes,
respectively, as shown in Figure 1 [21].
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adopting patch-based methods for LF editing. This technique models the collected images 
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Vagharshakyan et al. [27] utilized the EPIs in the shearlet domain to reconstruct dense 
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method was limited by the need for depth maps. In contrast to the previous methods de-
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these views were then blended using a SAS CNN [30]. Because the quality of synthesized 
views is dependent on the accuracy of estimated depth maps, unwanted artifacts often 
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Figure 1. (a) The 4D LF representation with two planes’ intersections of light rays. (b) LF images.

2.2. LF Reconstruction

Many LF reconstruction approaches have been presented. These approaches are
classified into three types: traditional, deep learning depth-based, and deep learning
non-depth-based approaches.

2.2.1. Traditional Approaches

Wanner and Goldluecke improved the spatial and angular resolutions using the
Epipolar Plane Image (EPI) for depth map estimation [22]. However, this variational
framework has flaws since the input views only assess the disparity. Another approach
was proposed to utilize the Gaussian mixture model for LF denoising, super-resolution, and
refocusing [23]. In this approach, the patch prior was designed using the disparity pattern.
However, their approach is vulnerable to low-quality LF images. Pujades et al. [24] proposed a
novel cost function optimized by a Bayesian formulation to estimate the depth and reconstruct
novel views. Chaurasia et al. [25] proposed a novel image-based rendering using superpixels
to preserve depth discontinuities. The warped views are blended using a camera and depth
information. Zhang et al. [26] proposed an interactive system adopting patch-based methods
for LF editing. This technique models the collected images as overlapping layers with varying
depths and uses back-to-front layered synthesis. Vagharshakyan et al. [27] utilized the EPIs in
the shearlet domain to reconstruct dense images using large baseline-rectified images. Their
method provided good results for non-Lambertian scenes of semi-transparent objects.

2.2.2. Deep Learning Depth-Based Approaches

Kalantari et al. [15] suggested decomposing the reconstruction process into disparity
and color estimates independently evaluated by the relevant CNN network. Due to their
separate reconstruction, connections between novel LF images were overlooked. Another
approach was proposed to speed up Kalantari’s method using a predefined CNN [28]. In
addition, they proposed the estimation of two disparity maps to provide more accurate
results. Shi et al. [16] used two reconstruction modules: pixel reconstruction to handle the
occlusions explicitly, and feature reconstruction for high frequencies. However, this method
was limited by the need for depth maps. In contrast to the previous methods designed
for images with a small baseline, Jin et al. [29] designed a model for images with a large
baseline. A CNN was employed to estimate depth maps to wrap input views, and these
views were then blended using a SAS CNN [30]. Because the quality of synthesized views
is dependent on the accuracy of estimated depth maps, unwanted artifacts often emerge in
synthesized views.
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2.2.3. Deep Learning Non-Depth-Based Approaches

Most of these methods extract information from EPIs for the reconstruction process.
Wu et al. [31] divided the process into low-frequency restoration after a blur operation and
high-frequency restoration by inverting the blur operation. However, they did not use the
epipolar information efficiently, as they only extracted the EPIs in one direction. Using a
CNN, Wu et al. [32] applied a shearing operation to input EPIs to eliminate the effect of
significant disparities. Then, they employed a CNN to learn a fusion score. In this method,
the authors misused the angular information by using EPIs horizontally or vertically for
the reconstruction. In addition, they reconstructed rows and then columns hierarchically,
leading to reconstruction error accumulation. Meng et al. [33] proposed an HDDRNet for
LF spatial and angular super-resolution employing a high dimensional CNN. Although
they used the provided angular information efficiently, employing the 4D convolutions,
this was at the expense of model complexity. Mildenhall et al. [34] proposed reconstructing
multi-plane images from input views and then blending them to reconstruct novel views.
Wang et al. [35] used EPI and EPI stacking to create a pseudo-4D CNN. They used EPI
structure-preserving loss to increase reconstruction quality. They wasted angular data by
only using horizontal or vertical EPI stacks. Hu et al. [14] proposed LF reconstruction
with hierarchical feature fusion. SAS layers were employed to extract features from 4D
LF images, while the U-Net structure was adopted to generate both semantic and local
feature representation. They integrated these two structures and proposed a U-SAS module
to enable the extraction of spatial features and the correlation of SAIs. In addition, they
adopted an enlarged patch size when training for the integrated information of objects. Liu
et al. [36] proposed to extract EPI information in a horizontal, vertical, and angular manner
to reconstruct LF images. However, each branch was processed alone, which affected the
final quality. Zhang et al. [37] reconstructed LF images employing 2D and 3D CNNs on
horizontal and vertical EPIs. However, they neglected the angular LF information, slightly
affecting the final reconstruction quality. Salem et al. [38] mapped the LF reconstruction
problem from the 4D into the 2D domain by transforming the 4D LF into a 2D raw LF
image to ease the reconstruction. They provided satisfactory reconstruction quality using a
model inspired by the RCAN [39,40]. Still, they used a heavy model, which affected the
reconstruction time.

3. Methodology
3.1. Problem Formulation

We can consider the LF images as a 2D array of view images, as shown in Figure 2a.
These images have (H, W) and (U, V) spatial and angular resolutions. Our goal is to recon-
struct dense LF images from their sparse input counterparts. Assume LLR ∈ RH×W×u×v

represents the sparse input views with angular resolution (u, v). Using the LR input, our
RCA-LF network can reconstruct a dense output LHR ∈ RH×W×U×V with (U, V) angular
resolution. Before applying the LR input images, we up-sample the sparse input EPIs to
the required output size utilizing the Bicubic interpolation to generate L̃LR ∈ RH×W×U×V .
The last step before applying the LR input to the network is to rearrange it from the 4D
representation L̃LR ∈ RH×W×U×V into the 3D representation L̃LR ∈ RH×W×UV , as shown
in Figure 2b. We reconstruct the 3D L̃LR by stacking the view images in row-major order as
indicated by the blue line in Figure 2a.
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Figure 2. (a) The 4D LF representation as a 2D array of view images. (b) The 3D LF view image stack.

3.2. Network Architecture

We designed our network similarly to the RCAN network [39]. In terms of function-
ality, our model can be divided into primary feature extraction, deep feature extraction,
and final output restoration, as shown in Figure 3a. The primary feature extraction is
implemented using two convolutional layers (Conv). Each Conv is followed by a long
skip connection to bypass the low-frequency components to the output part, allowing
the network to concentrate on high-frequency component extraction. The deep feature
extraction is implemented using ten residual channel attention blocks (RCAB), as shown in
Figure 3b. The final part is implemented by summing the primary extracted features with
the deep extracted features to reconstruct the final output.
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Figure 3. (a) Overview of the proposed RCA-LF network structure. (b) Implementation details of the
residual channel attention block (RCAB).

This is unlike the RCAN method, in which the input is a single-channel input. Then,
channel-wise features are extracted from the input to be processed through the network.
The input in our method is a stack of U ×V images (multi-channel input), where (U, V) is
the angular resolution. Then, more channel-wise features are extracted with the extraction
ratio e to be e×U ×V. The RCAB is the main component of our network, as the RCA-LF
consists of ten RCABs. The RCAB is a residual block (RB) with an integrated channel
attention mechanism (CA). The first part of the RCAB, RB, is built by cascading two Conv
layers with an activation function (ReLU) with a skip connection.

The CA is adopted to allow the network to treat the extracted channel-wise features
unequally and concentrate on the crucial features. A global average pooling is used to shrink
the intermediate C feature map of size H ×W into 1× 1 to obtain the initial channel-wise
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statistics to determine which channels are more important. These channel statistics may be
considered a collection of local descriptors to express the full-view stack [41]. A Conv then
down-samples these initial statistics with a reduction ratio of r. A Conv up-samples these
statistics with the same reduction ratio after being activated by ReLU, as shown in Figure 3
in [39]. Finally, a gate mechanism is applied to learn the nonlinear interactions between
channels and the non-exclusive mutual relationship. The gate mechanism is applied with a
sigmoid function to obtain the final channel-wise statistics.

3.3. Implementation Details

The luminance component is only used to train the RCA-LF network, while the EPIs
of the chrominance components are up-sampled with the Bicubic interpolation. We trained
our network to map the LR input images to the HR LF output images by minimizing the
L1 loss and optimizing the Adam optimizer with its default parameters [42]. The L1 loss
is defined as follows when a training set has N combinations of input and counterpart
ground-truth pictures:

L1 =
1
N ∑ N

i=1

∣∣∣Li
HR − f

(
Li

LR

)∣∣∣
f () represents the function responsible for mapping the LR input into the HR output

and is implemented by the RCA-LF network. All the Conv layers used were of size 3× 3
with zero padding, except for the Conv layers used for the CA, which were of size 1× 1.
Both the extraction ratio e and the reduction ratio were set to 8. We trained the network
with patches of size 32× 32 and a batch size of 128. We started the training with an initial
learning rate of 10−4 and decreased it exponentially by 0.1 every 100 epochs while we
trained the network for 150 epochs. We used 100 full LF images to train our network [15,43],
using TensorFlow [44] on an NVIDIA GeForce RTX 3090 GPU. PSNR and SSIM were used
as reconstruction quality assessment indicators.

4. Experiments and Discussion

We conducted comprehensive experiments to validate the effect of the proposed
RAC_LF network. We compared the RCA_LF numerically and visually with state-of-the-
art methods using real-world LF images. We used 30 LFs from the 30 scenes dataset [15],
31 LFs from the refractive and reflective surfaces dataset [43], and 43 LFs from the occlusions
dataset [43]. The average PSNR and SSIM [45] over the reconstructed LF luminance were
used for the numerical comparison. We compared the RCA_LF over two interpolation tasks
(2 × 2–8 × 8 and 3 × 3–7 × 7) and two extrapolation tasks (2 × 2–8 × 8 extrapolations
1 and 2), as shown in Figure 4.
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Tables 1–4 present numerical data indicating the proposed approach’s effectiveness.
Numerical comparisons are provided regarding peak-signal-to-noise ratio (PSNR) and the
structural similarity index (SSIM) [45]. Figures 5–8 show a visual contrast highlighting
our model’s ability to recreate high-quality images with sharper edges around object
boundaries, even in obscured areas and against complex backgrounds. However, we
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attribute the significant improvement in our model results to: (1) 3D representation (LF
view stack), allowing the network to model and understand relations between different
LFs; (2) the channel attention mechanism, which played an important role by allowing the
network to concentrate on the crucial features.

4.1. Different Reconstruction Tasks
4.1.1. Task 3 × 3–7 × 7

Wu et al. [31] underutilized angular data, using EPIs in just one direction. Utiliz-
ing EPIs in horizontal and vertical dimensions subsequently yielded superior outcomes.
Nonetheless, they hierarchically up-sampled LF, increasing error accumulation on the most
recently reconstructed views. In addition, they proposed a second paradigm based on
sheared EPIs [32]. In particular, low-angular-resolution EPIs were sheared before being up-
sampled to the necessary angular resolution. The up-sampled EPIs with various shearing
methods were fused by learning fusion scores using a CNN. Liu et al. [36] used angular
information more effectively than earlier techniques, yet this was insufficient since they
only employed one EPI stack in each direction. Zhang et al. [37] used micro-lens pictures
and view image stacks to investigate further LF data. Salem et al. [38] used the raw LF
representation to ease the reconstruction process. In addition, they initialized the input
image using the nearest view initialization method. However, this method had a limitation
for some reconstruction tasks. Additionally, it affected the quality of the final image.

Table 1. The proposed model’s numerical comparison (PSNR/SSIM) model to reconstruct 7 × 7 out
of 3 × 3 views.

Dataset Wu [31] Wu [32] Liu [36] Zhang [37] Salem [38] Proposed

30 Scenes 41.40/0.980 43.592/0.986 44.86/0.991 45.68/0.992 45.96/0.991 46.41/0.992
Reflective 42.19/0.974 43.092/0.977 44.31/0.980 44.92/0.982 45.45/0.983 45.73/0.984
Occlusions 37.25/0.925 39.748/0.948 40.16/0.957 40.80/0.955 41.21/0.957 41.41/0.951

Average 40.28/0.959 42.14/0.971 43.11/0.976 43.80/0.976 44.21/0.977 44.51/0.976

4.1.2. Task 2 × 2–8 × 8, Extrapolation 0

Both Kalantari et al. [15] and Shi et al. [16] generate new views by distorting the input
views by their assessed disparity/depth. On the other hand, depth estimation and warping
are challenging, particularly for LF pictures with a tiny depth difference, making it possible
for images to be flawed and seem out of place. Due to Yeung et al.’s disregard for the
connections between distinct views, their approach generates false shadows and ghosting
artifacts at the borders of reconstructed views [46].

4.1.3. Task 2 × 2–8 × 8, Extrapolation 1, 2

Reconstructing 8 × 8 out of 2 × 2 views is a challenging task due to the sparseness
of the input views. Yeung et al. [46] observed that the reconstruction quality of the center
views is much worse than that of the views located near the input views. Because the
center view is the farthest distance from any input views, inferring the details with greater
accuracy presents the biggest problem. Therefore, they proposed different combinations of
interpolation and extrapolation to reconstruct LF images. As a result, the average distance
from all the novel views is shorter than before, increasing the reconstruction quality of the
center views. Most available algorithms are optimized for interpolation tasks and cannot
predict extrapolated views. That is why ghosting and artifacts often appear around thin
structures and occluded regions. Extrapolation is more challenging than interpolation
because certain portions of the reconstructed views are not present in the input. In addition,
it cannot keep the slopes of the lines in the reconstructed EPIs the same. It is challenging to
devise a method for dealing with different relationships between input and output views.
However, the task becomes more feasible and efficient with our proposed approach.
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Table 2. The proposed model’s numerical comparison (PSNR/SSIM) to reconstruct 8 × 8 out of 2 × 2
views: extrapolation 0.

Dataset Wu [31] Kalantari [15] Shi [16] Yeung [46] Zhang [37] Salem [40] Proposed

30 Scenes 35.25/0.928 40.11/0.979 41.12/0.985 41.21/0.982 41.98/0.986 42.33/0.985 42.69/0.986
Reflective 35.15/0.940 37.35/0.954 38.10/0.958 38.09/0.959 38.71/0.962 38.86/0.962 39.45/0.967
Occlusions 31.77/0.881 33.21/0.911 34.41/0.929 34.50/0.921 34.76/0.918 34.69/0.922 35.41/0.928

Average 34.06/0.916 36.89/0.948 37.88/0.957 37.93/0.954 38.48/0.955 38.62/0.956 39.18/0.960

Table 3. The proposed model’s numerical comparison (PSNR/SSIM) to reconstruct 8 × 8 out of 2 × 2
views: extrapolation 1.

Dataset Yeung [46] Zhang [37] Salem [40] Proposed

30 Scenes 42.47/0.985 43.57/0.989 43.76/0.988 44.26/0.989
Reflective 41.61/0.973 42.33/0.975 42.44/0.974 43.16/0.979
Occlusions 37.28/0.934 37.61/0.937 37.93/0.948 38.47/0.943

Average 40.45/0.964 41.17/0.967 41.38/0.970 41.96/0.970

Table 4. The proposed model’s numerical comparison (PSNR/SSIM) to reconstruct 8 × 8 out of 2 × 2
views: extrapolation 2.

Dataset Yeung [46] Zhang [37] Salem [40] Proposed

30 Scenes 42.74/0.986 43.41/0.989 43.43/0.987 43.92/0.989
Reflective 41.52/0.972 42.09/0.975 42.26/0.975 42.81/0.978
Occlusions 36.96/0.937 37.60/0.944 37.91/0.945 38.25/0.935

Average 40.41/0.965 41.03/0.969 41.20/0.969 41.66/0.967

4.2. Reconstruction Time

Table 5 presents the average run-time to reconstruct a full LF image for the first task:
7 × 7 out of 3 × 3 views. We tested our model on an NVIDIA Geforce RTX 3090. The
proposed model can reconstruct LF images faster due to its highly parallel design.

Wang et al. [47] consume a lot of time as they do not reconstruct the entire scene in
one feedforward pass. Instead, they reconstruct rows and then columns hierarchically.
Yeung et al. [46] and Liu et al. [36] used MATLAB to build their code, which contains many
time-consuming reshaping operations. Compared to Salem et al. [38], they used 15 residual
blocks (RBs) compared to the 10 RBs in our proposed work. In addition, they process LFs
in the raw representation of size 7H × 7W compared to H ×W in our implementation.

Table 5. Average run-time to reconstruct 7 × 7 out of 3 × 3 views.

Wang [47] Yeung [46] Liu [36] Salem [38] Proposed

Run-Time 5.74 s 4.58 s 2.45 s 1.911 s 0.686 s

4.3. Ablation Study

We compared three different architectures to validate the effect of the channel attention
(CA) mechanism on the reconstruction process. Numerical comparison is presented in
Table 6, where the first row indicates the simplest case without applying the CA mechanism.
The second row gives the results for the block that is the same as the one proposed in [39]
with the CA integrated inside the RCAB. The final row gives the results for the proposed
block with the CA separated from the RB, as shown in Figure 9.
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Table 6. Investigating the channel attention mechanism (CA) effect on the proposed architecture.

Model 3 × 3–7 × 7 30 Scenes Reflective Occlusions Average

No CA 44.86/0.990 44.74/0.981 40.06/0.951 43.22/0.974
CA inside RB 46.20/0.992 45.71/0.984 41.35/0.954 44.42/0.976

CA separated from
RB 46.41/0.992 45.73/0.984 41.41/0.951 44.51/0.976
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5. Future Work

In this paper, we present a method for reconstructing light field images. The proposed
method is characterized by its applicability to all reconstruction tasks for LF images with
a small baseline. Although this model is efficient, it fails to reconstruct LF images with
a broad baseline. In addition, it sometimes fails to reconstruct parts of the scenes with
complex backgrounds or contains severe reflections. Therefore, we are trying to develop a
method capable of reconstructing complex scenes and scenes with a broad baseline.

6. Conclusions

This research proposes an effective learning-based paradigm for increasing the angular
resolution of LF images. We up-sampled input EPIs to the required angular size, which
allows our network to be used for any reconstruction task. In addition, this allowed
the network to comprehend and accurately represent the connection since the input and
output were of the same size. Finally, we adopted the channel attention mechanism to
help the network to concentrate on the important features by assigning higher weights.
The proposed RCA_LF network reconstructs LF images by mapping the up-sampled low-
resolution images into high-resolution 3D LF volumes. The RCA_LF outperforms other
state-of-the-art methods in reconstructing LF images with a small baseline.
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