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Abstract: Most machine learning algorithms only have a good recognition rate on balanced datasets.
However, in the field of malicious traffic identification, benign traffic on the network is far greater
than malicious traffic, and the network traffic dataset is imbalanced, which makes the algorithm
have a low identification rate for small categories of malicious traffic samples. This paper presents
a traffic sample synthesizing model named Conditional Tabular Traffic Generative Adversarial
Network (CTTGAN), which uses a Conditional Tabular Generative Adversarial Network (CTGAN)
algorithm to expand the small category traffic samples and balance the dataset in order to improve
the malicious traffic identification rate. The CTTGAN model expands and recognizes feature data,
which meets the requirements of a machine learning algorithm for training and prediction data. The
contributions of this paper are as follows: first, the small category samples are expanded and the traffic
dataset is balanced; second, the storage cost and computational complexity are reduced compared to
models using image data; third, discrete variables and continuous variables in traffic feature data
are processed at the same time, and the data distribution is described well. The experimental results
show that the recognition rate of the expanded samples is more than 0.99 in MLP, KNN and SVM
algorithms. In addition, the recognition rate of the proposed CTTGAN model is better than the
oversampling and undersampling schemes.

Keywords: malicious traffic identification; conditional GAN; sample synthesis; data balancing

1. Introduction

The rapid development of network technology brings convenience to people. However,
it is also accompanied by security problems. Many devices that meet technical requirements
can access the Internet, including software with malicious behaviors, such as invading users’
hosts, stealing information, destroying equipment, etc., bringing great hidden dangers to
users’ privacy and to the security of their property. The secure protection of information
and property on the network is a key problem to be solved, and the accurate identification
of traffic plays an important role in solving this problem.

The methods of malicious traffic identification mainly include port-based [1], payload-
based [2,3] and machine learning algorithms. The port based identification method is
no longer suitable for the current network environment because many network attacks
no longer use fixed and conventional ports. However, identification methods based on
payloads cannot identify the encrypted traffic, and at present, traffic encryption in the
network has become a gradual trend. In order to solve the problem of encrypted malicious
traffic identification, people began to study the identification method based on machine
learning algorithms.

Lucia et al. [4] used Convolutional Neural Networks (CNN) and Support Vector
Machine (SVM) algorithms to identify traffic, and the recognition effect of SVM algorithm
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was better than the CNN. Shekhawat et al. [5] used three machine learning algorithms
(SVM, XGBoost, Random Forest) to identify traffic respectively, and further analyzed the
extracted features. They suggested that feature selection based on the model itself (domain
free method) may be better than selecting features based on human expertise. Some
researchers use deep learning algorithms to automatically extract features and then identify
traffic [6–8]. He et al. [9] proposed a malicious traffic detection method based on a CNN and
Auto-Encoders (AE). The encoder is trained with benign traffic to learn its reconstruction
ability. When malicious traffic is input into the encoder, the reconstruction rate cannot reach
the threshold; that is, the traffic is judged as a malicious one. Zhong et al. [10] proposed
a heterogeneous ensemble-learning traffic detection framework based on multiple deep
learning models.

Many machine learning algorithms work well on balanced datasets but not on imbal-
anced datasets. In the real network environment, benign traffic has a large amount of data
and is easy to collect, while malicious traffic has a small amount of data and is difficult to
collect. In many network traffic datasets, benign traffic is far more than malicious traffic.
Similar situations exist in practical applications. We need to accurately identify malicious
traffic in a large number of benign traffic. Data imbalance leads to the low recognition
accuracy of many machine learning models. People have conducted a lot of research to
solve this problem. From the perspective of model improvement, Telikani et al. [11] pro-
posed a cost-sensitive deep learning model, which determines the cost function according
to the cost matrix of data, so as to reduce the impact of dataset imbalance. He et al. [9] only
used the large amount of benign traffic data to train the AE and judge whether the traffic
is benign or malicious through the reconstruction rate of the AE. However, these kinds of
models are complex and have poor adaptability to different traffic data.

From the perspective of data balancing, the traditional methods mainly include over-
sampling [12] and undersampling [13] techniques. Oversampling technology may cause
over fitting problem, and undersampling technology will lead to insufficient learning of the
data. Synthetic Minority Oversampling Technique (SMOTE) [14] technology is an improved
algorithm based on oversampling. Instead of copying samples, it adds a small amount of
noise to the samples to obtain different data. Qian et al. [15], Yan et al. [16] balanced the
traffic datasets with the SMOTE algorithm and identified traffic on new datasets. However,
SMOTE technology does not add new information to the samples. Goodfellow [17] first
proposed generating sample data using the Generative Adversarial Network (GAN) in
2014. Different from the above methods, the data generated using the GAN contain data
samples completely different from the original data.

Vu et al. [18] used an Auxiliary Classifier Generic Advantageous Network (ACGAN) [19] to
expand traffic samples, balance SSH and non-SSH data, and then identified traffic. Dong et al. [8]
used the Wasserstein GAN (WGAN) [20] to balance the traffic dataset and classify it. There are
also studies that use the GAN and its derivative algorithms to generate traffic data [12,21,22],
mixed with real data and train models and improving the performance of IDS and malware
detection systems. In the research of using GAN and its derivative algorithms to expand traffic
datasets, many of the studies use the original traffic data and convert it into images, and then
expand the datasets and identify the traffic. However, the data used by many machine learning
algorithms to train models and predict categories are feature data. If we synthesize original data
or images, we also need to extract features later. Moreover, the storage and operation of images
need a large cost.

In the research on the synthesis of the feature data of traffic data, Merino et al. [23]
used a GAN to generate attack traffic in the NSL KDD99 dataset and balanced the dataset.
Shahriar et al. [24] proposed a GAN-based Intrusion Detection System (G-IDS), which uses
a GAN to generate imbalanced and missing data and improve the detection ability of the
intrusion detection system. Their experiments were also trained and tested on the NSL
KDD99 dataset. However, the NSL KDD99 dataset is too outdated, and the characteristics
of network traffic are relatively simple and regular. It is no longer suitable for the current
complex network environment. Huang et al. [25] proposed an Imbalanced Generative
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Adversarial Network Intrusion Detection System (IGAN-IDS) to perform data balancing
and traffic category recognition on NSL KDD99, UNSW-NB15 and CIC-IDS2017 datasets.
The recognition accuracy was improved compared with other machine learning algorithms.
However, their algorithm did not fully consider the feature attributes of traffic data and
cannot fully reflect the feature distribution of traffic data.

In the research on traffic data expansion using the GAN and its derivative algorithms,
there are mainly two approaches: expanding original traffic data and expanding feature
data. The expansion schemes of original traffic data need to store the synthetic samples
after expansion and then extract and filter the features, so as to identify malicious traffic.
These schemes require a lot of storage costs, and the calculation of images also requires a
high cost. As for the expansion schemes of feature data, many datasets used in the schemes
are outdated and have limited reference significance. Moreover, the existing research on
the distribution of flow data features is insufficient.

The motivation of this paper is to use feature data for expansion, which meets the re-
quirements of machine learning algorithm training and prediction. In this way, only feature
data need to be saved during storage, while Pcap data and images do not, which greatly
reduces the storage cost. In the subsequent model training process, feature extraction is
not required again, which reduces the calculation cost. What is more, in order to better
deal with the discrete and continuous variables in the features of traffic data, we use the
CTGAN [26] model to generate data.

In the proposed CTTGAN scheme, after obtaining the original traffic data, we extract
and filter the data to get characteristers, and then expand small class samples of data with
the CTGAN algorithm. Considering the need of practical application, we only use the
amplified data as the training set and the real data as the test set. The main contributions of
this paper are as follows:

1. We proposed the CTTGAN scheme to expand the small category samples in the traffic
datasets. After the expansion, all the indicators have been improved, and the effect
is stable.

2. In the field of traffic data synthesizing, our research focuses on one-dimensional
tabular feature data rather than image data, which are applicable to machine learning
models and greatly reduce the storage and computing costs.

3. The scheme uses the CTGAN model, which can obtain better results when processing
discrete variables and continuous variables in traffic data at the same time.

The structure of this paper is arranged as follows. In Section 2, we introduce the
principle of GAN, especially the derivative algorithms of GAN in tabular data generation.
In Section 3, we introduce the proposed Conditional Tabular Traffic GAN (CTTGAN)
scheme in detail and present the scheme’s flow chart and algorithm. In Section 4, the
experimental results and a comparative analysis are given. Finally, conclusions are drawn
in Section 5.

2. Preliminaries

Using GAN to expand samples can generate new samples that did not exist before,
which will not cause over-fitting problems and can reflect the characteristics of samples
well. Many GAN-derived algorithms have been proposed according to their properties
in the fields of images [27], music [28], natural language generation [29] and so on. The
scheme proposed in this paper aims to expand traffic feature data to balance the dataset,
that is, to expand the tabular data.

In this section, we introduce the implementation principle of GAN and its derivative
algorithms in the field of tabular data generation.

2.1. GAN and Conditional GAN

The basic idea of GAN [17] is to make the generator and discriminator confront each
other to improve their performance. The schematic diagram is shown in Figure 1.
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Figure 1. Schematic diagram of the GAN.

Let G(z) be the generator, and the input noise z ∼ p(z) be the output of synthetic data
through G(z). The real data and the synthetic data are input to the discriminator D(x),
and the discriminator outputs the discrimination result. The result of D is fed back to G,
and G improves the generation algorithm to make the synthetic data closer to the real data.
When more similar synthetic data and real data are input to D, D also needs to improve its
discrimination ability to accurately distinguish the synthetic data from the real data. The
above process is repeated continuously, and the generation and discrimination ability of G
and D are continuously improved until the network reaches a Nash equilibrium. It can be
considered that the data generated by the network are close to the real data. The objective
function of the GAN is shown in Equation (1):

min
G

max
D

V(D, G) = Ex∼pdata (x)[log D(x)] + Ez∼P(z)[log(1− D(G(z)))] (1)

Mirza et al. [30] proposed that the GAN has the disadvantage that the modeling
process is too free, which may make the training process difficult to control. In order to
solve this problem, they proposed the Conditional GAN (CGAN). The idea of CGAN
model is to add additional information variable y to the modeling of generator G and
discriminator D to guide the generation of data. The objective function of CGAN is shown
in Equation (2):

min
G

max
D

V(D, G) = Ex∼pdata (x)[log D(x|y)] + Ez∼P(z)[log(1− D(G(z|y)))] (2)

2.2. GAN in Generating Tabular Data

Many studies have been conducted on the generation of tabular data using the GAN.
Yahi et al. [31] studied the use of the GAN to generate continuous laboratory time series data
and proposed that it may be beneficial to combine the representation learning of the training
queue before training the GAN model. Yu et al. [32] showed that it is difficult to pass the
gradient update from the discriminator to the generator when using GAN to generate
discrete tokens. They proposed the SeqGAN model, modeling the generator as stochastic,
and directly updating the gradient of the generator. Choi et al. [33] proposed medGAN
to generate realistic patient records. They focus on the generation of high-dimensional
discrete variables (binary and count features). Lederrey et al. [34] proposed DATGAN
model to generate population data. They combined expertise and deep learning methods
and used directed acyclic graph to identify the relationships between variables.

2.3. Conditional Tabular GAN (CTGAN)

In the research of using GAN to generate tabular data, most of them are for discrete
variables or continuous variables. When there are discrete variables and continuous
variables in the real data at the same time, the algorithms will have difficulty generating
data with the same distribution as the real data. To solve this problem, Xu et al. [26]
proposed the CTGAN model. They designed a conditional generator to resample the
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imbalanced discrete columns. The reconstructed distribution of the real data is shown in
Equation (3), in which k∗ represents the i∗th discrete column Di∗ value:

P( row ) = ∑
k∈Di∗

PG( row | Di∗ = k∗)P(Di∗ = k) (3)

3. Proposed Scheme
3.1. Design Concept

The network traffic characteristics include discrete variables such as the number of
forward packets, the number of backward packets, the length of forward packets, the length
of backward packets, etc., and continuous variables such as the number of forward packets
per second, the number of backward packets per second, and the average packet length,
etc. We propose the Conditional Tabular Traffic GAN (CTTGAN) scheme. In the stage of
traffic sample expansion, the CTGAN model is used to expand each type of small sample to
obtain the synthetic traffic data. In the CTGAN model, two fully connected hidden layers
are used in both the generator and discriminator. The relu activation function is used in the
generator and the leaky relu function is used in the generator.

3.2. Scheme Process

The scheme flow chart is shown in Figure 2. First, preprocess the original traffic
datasets to obtain the characteristic data. Next, expand each small traffic category to obtain
the synthetic samples. Finally, train the identification model on the balanced dataset and
make predictions.

Generator Discriminator

Synthetic 

Data

True Data

True or Synthetic

CTGAN Model

Synthetic 

data
Network

Traffic

Feature 

data

Feature 

extraction 

and 

screening

Clean

data

Data 

cleaning

Traffic Data 

Preprocessing

Traffic Data Expansion

Training 

set

Test

set

Train model

Traffic Identification

Trained Model

MLP, KNN, SVM

Predict

BENIGN DoS 
Hulk

Port
Scan

Heart
bleed

...

Figure 2. CTTGAN scheme flow chart.
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3.3. Scheme Steps

In the data preprocessing section, first extract effective features of traffic data. Then,
filter the features and remove unpractical ones, such as the timestamp, destination host and
source host IP address. These features will make the traffic flow have obvious attributes;
however, such features do not exist in practical applications. Next, we clean up the data,
that is, remove data with missing terms and infinity values. In the small category traffic
data expansion section, the CTGAN model is used to expand each small sample to obtain
synthetic traffic data. Finally, the identification model is trained for traffic prediction.
Considering the actual application demand, the traffic to be predicted shall be the real
traffic. Therefore, we randomly selected part of the real traffic data as the test set, and
mix the remaining real traffic data and synthetic traffic data as the training set to train the
model. After the identification model is obtained, we predict the test set and obtain the
results. The steps are shown in Algorithm 1 and Figure 3.

Feature Data

Raw Traffic Data

Extract Features

Selected Features

Select Features

Clean Data

Clean the Data

Small 

Categories

Yes No

Synthetic Data

Expand the Data

Using CTGAN Algorithm

Select Randomly

Training Set

Trained Model

Train the Model

Test Set

Predict

Select Randomly

Identification Results

Figure 3. CTTGAN step flow chart.
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Algorithm 1: The Proposed CTTGAN
Input: Raw Network Traffic Data (X, Y)
Output: Traffic Identification Results (y_pred)
(X′, Y′) = Preprocess(X, Y);
if small category = True then

z ∼ pz;
for k steps do

Min(loss(G(z)));
Min(loss(D(x)));

end
Gen = G(z);

end
Stest = Random(X′, Y′) ;
Straining = Random((X′, Y′), Gen) ;
MLP/KNN/SVM. f it(Straining);
y_pred = MLP/KNN/SVM.predict(Stest);
return y_pred;

4. Experimental Results

In this section, we first introduce the dataset, evaluation indicators and experimental plat-
form configuration, and then show the experimental results and conduct comparative analysis.

4.1. Dataset Description

We used CIC-IDS2017 dataset in the experiment, which was published by Canadian
Institute of Network Security. The dataset collected network traffic data from 9 a.m. on
3 July 2017 to 5 p.m. on 7 July 2017, including benign traffic and 14 attack traffic events.
The dataset is open and typical, and the traffic data are relatively new, which is consistent
with the current network environment. The traffic category and quantity are shown in
Tables 1 and 2. It can be seen from Table 2 that the traffic data categories are imbalanced.

The dataset contains original network traffic data (PCAPs) and feature data (CSV)
obtained by flow feature extraction tool CICFlowMeter. The feature data include 78 fea-
tures such as flow duration, maximum packet length, minimum packet length, number
of forward packets, number of reverse packets, etc. (the original feature data contains
79 features, in which the feature “forward packet header length” repeated twice and we
deleted once). The following experiments were conducted with feature data.

It can be seen from Table 2 that the benign traffic accounts for more than 80 percent,
far more than the sum of 14 types of malicious traffic. Among the 14 types of malicious
traffic, 11 types of traffic samples, such as DoS GoldenEye and FTP-Patator, account for
less than 1 percent, and three types of traffic samples, Infiltration, Web Attack Sql Injection
and Heartbleed, account for less than 0.001 percent. That is, the traffic dataset is seriously
imbalanced, which will make the machine learning algorithm biased towards the larger
category samples, and the recognition rate of the smaller of category samples will be low.

Table 1. Overview of dataset CIC-IDS2017.

Date Traffic Category

Monday BENIGN
Tuesday BENIGN, FTP-Parator, SSH-Parator

Wednesday BENIGN, DoS Hulk, DoS GoldenEye, DoS slowloris, DoS slowhttptest,
Heartbleed

Thursday BENIGN, Web Attack Brute Force, Web Attack XSS, Web Attack Sql
Injection, Infiltration

Friday BENIGN, PortScan, DDoS, Bot
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Table 2. The categories and quantities of dataset CIC-IDS2017.

Traffic Category Quantity Proportion

BENIGN 2,260,360 80.33%
DoS Hulk 229,198 8.15%
PortScan 157,703 5.60%

DDoS 127,082 4.52%
DoS GoldenEye 10,289 0.37%

FTP-Patator 7894 0.28%
SSH-Patator 5861 0.21%

DoS slowloris 5771 0.21%
DoS slowhttptest 5485 0.19%

Bot 1943 0.07%
Web Attack Brute Force 1497 0.05%

Web Attack XSS 648 0.02%
Infiltration 34 0.0012%

Web Attack Sql Injection 21 0.0007%
Heartbleed 11 0.0004%

4.2. Evaluation Indicators

We use three classical evaluation indicators, Recall, Precision and F1-score, in the
experiment. The specific meanings are as follows:

TP (True Positive) indicates the number of positive cases recognized as positive, FP
(False Positive) indicates the number of negative cases recognized as positive, FN (False
Negative) indicates the number of positive cases recognized as negative and TN (True
Negative) indicates the number of negative cases recognized as negative. In the case
of multi-classification problems, when evaluating the classification of one category, the
samples of this category are recorded as positive cases, and all the other samples are
recorded as negative cases.

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1-score =
2× Recall × Precision

Recall + Precision
(6)

Recall reflects the ratio that a certain type of data are correctly detected; Precision
reflects the ratio of all data detected as a certain type of data; F1-score takes both recall
and precision into account. For a good traffic detection model, it should have high Recall,
Precision and F1-score.

4.3. Experimental Platform Configuration

The experiments were conducted on Windows 11 64-bit OS and 16 GB of RAM. The
code was written in Python 3.8 using the sklearn 0.24.1, sdv 0.14.0, pandas 1.2.4, numpy
1.20.1 and matplotlib 3.5.1 libraries. We called some algorithms in the sklearn library to
segment the training set and test set, draw the confusion matrix and train the MLP, KNN
and SVM models; the Sdv library was used to train the CTGAN model and generate data;
the pandas and numpy libraries were used to preprocess data; and the Matplotlib library
was used to draw and save pictures. The download website, brief introduction and used
functions of the libraries are shown in Table 3. The IDE used in the experiment is pycharm,
version 2020.3 x64.
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Table 3. The download website, description and used functions of the libraries (all web links accessed
on 5 June 2022).

Library Download Website Description Used Function

sklearn https://scikit-learn.org Tools for predictive data analysis

confusion_matrix,
train_test_split,
preprocessing,
MLPClassifier,

KNeighborsClassifier, SVC

sdv https://github.com/sdv-dev/SDV A synthetic data generation ecosystem CTGAN, evaluate

pandas https://pandas.pydata.org A data analysis and manipulation tool read_csv, factorize,
DataFrame

numpy https://numpy.org A scientific computing package diag, sum, mean

matplotlib https://matplotlib.org A comprehensive visualization library pyplot

4.4. Experimental Results and Analysis
4.4.1. Identification Results of Raw Data

In Experiment 1, we extracted the categories with data quantities greater than 10,000.
For DDoS, DOS Hulk, PortScan and DoS GoldenEye (data quantities between 10,000 and
1,000,000), we extracted 10,000 pieces of data. Subsequent experiments can verify that
10,000 pieces of data are enough to stabilize the model recognition rate. For BENIGN data
(with a data quantity of more than 1,000,000), considering that the normal network samples
contain many types of traffic, such as accessing normal web pages, sending and receiving
emails, downloading data, etc., in order to fully characterize benign traffic, 100,000 samples
were selected for experiments. The quantity of the data used in the experiment one is
shown in Table 4.

Table 4. Data quantity in experiment one.

Traffic Category Quantity

BENIGN 100,000
DoS Hulk 10,000
PortScan 10,000

DDoS 10,000
DoS GoldenEye 10,000

FTP-Patator 7894
SSH-Patator 5861

DoS slowloris 5771
DoS slowhttptest 5485

Bot 1943
Web Attack Brute Force 1497

Web Attack XSS 648
Infiltration 34

Web Attack Sql Injection 21
Heartbleed 11

We use MLP, KNN and SVM machine learning algorithms to classify the raw imbal-
anced data. For the 14 categories of malicious traffic, we increase the number of training
samples step by step, and obtain the growth curve of the Recall indicator with the number
of samples, as shown in Figure 4. In order to reflect the relationship between the Recall
indicator of each traffic category and data quantity, experiments are carried out for each
traffic category; that is, for each category, the number of samples is increased step by step,
the data of other categories are kept unchanged and the change in the Recall value of this
category is recorded.

https://scikit-learn.org
https://github.com/sdv-dev/SDV
https://pandas.pydata.org
https://numpy.org
https://matplotlib.org
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Figure 4. Growth curve of Recall indicator with number of traffic samples using three machine
learning algorithms. (a) MLP; (b) KNN; (c) SVM.

There are 14 curves in Figure 4a–c representing the change in the Recall values of
14 traffic categories with the number of samples. In the three figures, there are six traffic
categories in which the Recall values are not stable. They are Bot, Web Attack Brute Force,
Web Attack XSS, Infiltration, Web Attack Sql Injection and Heartbleed. The experimental
results show that in different machine learning algorithms, all kinds of traffic samples need
to reach a certain amount of data to make the trained model stable.

As for the selection of data volume, we give some supplementary explanations. The
quantity of the extracted data is related to many factors, such as the complexity of the
data itself, the number of extracted features, the significance of the features, whether the
extracted features are reasonable and so on. In addition, the selection of data volume
is also closely related to the architecture and implementation functions of the machine
learning model. It can be seen from the experimental results that when the sample size
of the original traffic data is sufficient, 5000 pieces of data can be used to train different
machine learning models to achieve stability. This data volume may be of great reference
value for datasets similar to the CIC-IDS2017 dataset (78 features and 14 traffic categories).
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4.4.2. Identification Results after CTTGAN Expansion

For the six traffic categories with insufficient data in experiment one, we consider the
quantity of Web Attack XSS, Infiltration, Web Attack Sql Injection and Heartbleed are too
small to fully reflect the characteristics of the samples, so these four traffic categories will
not be considered in subsequent studies. For Bot and Web Attack Brute Force, we use the
CTGAN algorithm to expand them and conduct identification experiments. The following
experiments use MLP algorithm for identification. The values of Recall, Precision and
F1-score are obtained as shown in Figure 5.
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Figure 5. Experimental results of Bot and Web Attack Brute Force in MLP identification algorithm.
(a) Recall; (b) Precision; (c) F1-score.

Blue curves in the figures represent the original data, and red curves represent syn-
thetic data. Considering the needs of practical application, in the experiments of synthetic
data, 500 pieces of real traffic data are randomly selected as the test set, and another 500 real
traffic data are randomly selected and are mixed with synthetic data as the training set.
The control variable method is used in the experiment; that is, when changing the quantity
of Bot traffic data, the other categories of data are kept unchanged, and we record the
indicators of Bot data. The same operation is performed on Web Attack Brute Force data. It
can be seen from the experimental results that the indicators of Bot and Web Attack Brute
Force have improved after expansion and finally reach stability.
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To verify the effectiveness of the proposed scheme, we selected traffic categories with
sufficient sample sizes to perform a verification with. DDoS, DoS GoldenEye, FTP-Patator
and SSH-Patator are selected, and the results are shown in Figure 6.
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Figure 6. Experimental results of four traffic categories with sufficient sample sizes in the MLP
identification algorithm. (a) DDoS; (b) DoS GoldenEye; (c) FTP-Patator; (d) SSH-Patator.

The experimental results show that the synthetic samples have a similar fluctuation
trend with the original samples, which indicates that the synthetic samples can reflect the
characteristics of the original data well. In addition, in order to verify the effectiveness of
the proposed scheme, we use the MLP, KNN and SVM algorithms to identify the traffic
of the expanded dataset. The results are shown in Table 5. For Bot and Web Attack Brute
Force, 500 real samples are randomly selected as the test set, and 4500 generated samples
are used as the training set. The data volume of other traffic categories is the same as that
of Experiment 1.

In the recognition results obtained by the KNN, SVM and MLP algorithms, the recog-
nition recall index of Bot and Web Attack Brute Force all reaches more than 0.99, and all
training sets are real samples. The results show that the proposed scheme is effective.
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Table 5. Identification results of the expanded dataset.

Data Category
Recall

MLP KNN SVM

BENIGN 0.9904 0.9881 0.9682
DoS Hulk 0.9980 0.9925 0.9015
PortScan 0.9990 0.9590 0.9910

DDoS 0.9980 0.9940 0.9350
DoS GoldenEye 0.9980 0.9975 0.9730

FTP-Patator 0.9968 0.9987 0.9899
SSH-Patator 0.9981 0.9949 0.9889

DoS slowloris 0.9913 0.9931 0.9671
DoS slowhttptest 0.9909 0.9918 0.9854

Bot 0.9980 0.9960 0.9980
Web Attack Brute Force 0.9960 0.9960 1.0000

Note: Red indicates the Recall index of small category samples in CTTGAN scheme, all of which are above 0.99.

4.4.3. Comparative Experiments

The above experiments verify the effectiveness of the proposed scheme. Next, we
further compare the CTTGAN scheme with oversampling and undersampling, the two
most common schemes used to balance datasets in machine learning algorithms [35].
Oversampling refers to the repeated sampling of a few samples, and undersampling refers
to the discarding of some large samples to achieve a balance between the data. The results
of the MLP algorithm are shown in Table 6. The quantity of data for the traffic categories is
shown in brackets. The Recall values of the small traffic categories in the CTTGAN scheme
reach more than 0.99, which are marked in red. The confusion matrix of the experimental
results is shown in Figure 7.

Table 6. Experimental results of the comparative experiment.

Data Category
Recall

Raw Data
(Amount)

Over Sampling
(Amount)

Under Sampling
(Amount)

CTTGAN
(Amount)

BENIGN 0.9864 (100,000) 0.9829 (100,000) 0.9433 (1500) 0.9904 (100,000)
DoS Hulk 1.0000 (10,000) 0.9925 (10,000) 1.0000 (1500) 0.9980 (10,000)
PortScan 0.9990 (10,000) 0.9990 (10,000) 1.0000 (1500) 0.9990 (10,000)

DDoS 0.9975 (10,000) 0.9985 (10,000) 1.0000 (1500) 0.9980 (10,000)
DoS GoldenEye 0.9990 (10,000) 0.9995 (10,000) 0.9967 (1500) 0.9980 (10,000)

FTP-Patator 0.9975 (7894) 0.9981 (7894) 0.9867 (1500) 0.9968 (7894)
SSH-Patator 0.9906 (5861) 0.9915 (5861) 0.9933 (1500) 0.9881 (5861)

DoS slowloris 0.9922 (5771) 0.9931 (5771) 0.9900 (1500) 0.9913 (5771)
DoS slowhttptest 0.9909 (5485) 0.9918 (5485) 0.9967 (1500) 0.9909 (5485)

Bot 0.7918 (1943) 0.9720 (5000) 0.9967 (1500) 0.9980 (5000)
Web Attack Brute Force 0.9431 (1497) 0.9530 (5000) 0.9467 (1497) 0.9960 (5000)

Note: Red indicates the Recall index of small category samples in the CTTGAN scheme, all of which are above 0.99.

In Experiments 1 and 2, it can be concluded that both real samples and synthetic
samples are stable when the quantity reaches 5000. Therefore, in the oversampling exper-
iment, we repeatedly sampled Bot and Web attack brute force samples to 5000, and the
data of other traffic categories remain unchanged. In the undersampling experiment, the
quantity of Web attack brute force is 1497, and we randomly selected 1500 pieces of data
for other traffic categories to balance the data. In the CTTGAN experiment, the Bot and
Web attack brute force samples were expanded to 5000. The data of other traffic categories
remained unchanged.
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Figure 7. Confusion matrix of comparative experiment. (a) Original data; (b) Oversampling; (c) Un-
dersampling; (d) CTTGAN.

The results show that the recognition rate of the Bot and Web Attack Brute Force
samples is low in the original case. In the oversampling experiment, the recognition rate of
Bot has been greatly improved, and the recognition rate of Web Attack Brute Force has been
slightly improved. In the undersampling experiment, the recognition rate of Bot reaches
more than 0.99, the recognition rate of Web Attack Brute Force is almost unchanged and
the BENIGN recognition rate decreases. In the CTTGAN experiment, the recognition rate
of each category is high.

4.4.4. Discussion and Analysis

In the experiments, we synthesize feature data of network traffic, rather than original
data or image. The synthetic data can be directly input to machine learning algorithms,
saving storage costs and computing costs. In addition, it may be more reasonable to
calculate and process the feature data in the CTTGAN model. In some schemes that convert
network traffic into images, the first n bytes of the original network traffic are converted
into gray images. These bytes contain the destination IP, source IP and other information,
which is unreasonable to be used to identify the traffic category. Such problems can be
solved in the CTTGAN.
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The network traffic features include both continuous variables and discrete variables.
We use the CTGAN algorithm to generate two types of data at the same time. The synthetic
data have similar distributions to the original data. First, we conduct experiments to verify
that in different identification algorithms, the traffic data need to reach a certain quantity
to make the model achieve a stable recognition rate. Secondly, we verify that for small
category traffic samples, the synthetic data can improve the performance of the model. For
large category samples, the synthetic data have similar fluctuation trends to the original
one. These experimental results prove that the data generated by the CTTGAN scheme are
close to the real data, and the generated data can be used as a supplement to the insufficient
samples. What is more, we perform traffic recognition for all categories. In the MLP, KNN
and SVM algorithms, the recognition rate of the expanded samples reaches more than 0.99.
Finally, we compare the CTTGAN model with oversampling and undersampling schemes.
The performance of the CTTGAN is better than the oversampling and undersampling
schemes on the whole, which proves that the proposed CTTGAN scheme is effective and
has practical significance.

In the experiments, all test sets are composed of real data, which proves that the
synthetic data can be used as a supplement in the training of the model to improve its
performance in real detection scenarios.

5. Conclusions

In this paper, we propose the CTTGAN model to expand network traffic samples to
balance the dataset in order to improve the recognition rate of machine learning algorithms.
Different from most traffic data expansion models, the CTTGAN model does not convert
network traffic data into images, but extracts its effective features and then expands the
feature data. In this way, the synthetic feature data conform to the data structure of machine
learning algorithms, and we do not need to extract features after data expansion. This re-
duces storage costs and computational complexity and speeds up computing. Experiments
show that the recognition rate of traffic categories with less data is low, and the recognition
rate increases and reaches a stable level when there is sufficient data. After expanding the
small category samples with the CTTGAN model, the recognition rate reaches more than
0.99, and the model has good stability. We also use the CTTGAN to synthesize the large
category samples to verify that the fluctuation trend is similar to the real data. Therefore,
the proposed CTTGAN model is effective. Moreover, the recognition rate of the CTTGAN
model is higher than that of the oversampling and undersampling schemes, which proves
that the CTTGAN model has good experimental results and practical value.

In future work, we will further study the expansion of categories with too few samples,
such as Web Attack XSS, Infiltration, Web Attack Sql Injection and Heartbleed. We will
study how to fully mine the characteristics of these categories of data, reflect the overall
distribution and then realize reasonable expansion of these data to achieve effective iden-
tification. In addition, we consider the study of instant identification of malicious traffic,
which is of great significance for practical applications.
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