
Citation: Gorodnichev, M.; Erokhin,

S.; Polyantseva, K.; Moseva, M. On

the Problem of Restoring and

Classifying a 3D Object in Creating a

Simulator of a Realistic Urban

Environment. Sensors 2022, 22, 5199.

https://doi.org/10.3390/s22145199

Academic Editor: Anastasios

Doulamis

Received: 1 July 2022

Accepted: 6 July 2022

Published: 12 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

On the Problem of Restoring and Classifying a 3D Object in
Creating a Simulator of a Realistic Urban Environment
Mikhail Gorodnichev , Sergey Erokhin, Ksenia Polyantseva * and Marina Moseva

Faculty of Information Technology, Moscow Technical University of Communications and Informatics,
111024 Moscow, Russia; m.g.gorodnichev@mtuci.ru (M.G.); esd@mtuci.ru (S.E.); m.s.moseva@mtuci.ru (M.M.)
* Correspondence: k.a.poliantseva@mtuci.ru

Abstract: Since the 20th century, a rapid process of motorization has begun. The main goal of
researchers, engineers and technology companies is to increase the safety and optimality of the
movement of vehicles, as well as to reduce the environmental damage caused by the automotive
industry. The difficulty of managing traffic flows is that cars are driven by a person and their behavior,
even in similar situations, is different and difficult to predict. To solve this problem, ground-based
unmanned vehicles are increasingly being developed and implemented; however, like any other
intelligent system, it is necessary to train different road scenarios. Currently, an engineer is driving an
unmanned vehicle for training and thousands of kilometers are being driven for training. Of course,
this approach to training unmanned vehicles is very long, and it is impossible to reproduce all the
scenarios that can be found in real operations on a real road. Based on this, we offer a simulator of a
realistic urban environment which allows you to reduce the training time and allows you to generate
all kinds of events. To implement such a simulator, it is necessary to develop a method that would
allow recreating a realistic world in one passage with cameras (monocular) installed on board the
vehicle. Based on this, the purpose of this work is to develop an intelligent vehicle recognition system
using convolutional neural networks, which allows you to create mesh objects for further placement
in the simulator. It is important to note that the resulting objects should be optimal in size so as not
to overload the system, since a large number of road infrastructure objects are stored there. Also,
neural complexity should not be excessive. In this paper, the general concept and classification of
convolutional neural networks are given, which allow solving the problem of recognizing 3D objects
in images. Based on the analysis, the existing neural network architectures do not solve the problems
mentioned above. In this connection, the authors first of all carried out the design of the system
according to the methodology of modeling business processes, and also modified and developed the
architecture of the neural network, which allows classifying objects with sufficient accuracy, obtaining
optimized mesh objects and reducing computational complexity. The methods proposed in this paper
are used in a simulator of a realistic urban environment, which reduces the time and computational
costs when training unmanned transport systems.

Keywords: artificial intelligence; neural networks; CNN; recognition

1. Introduction

Currently, in many large cities, the possibilities of developing transport networks are
close to exhaustion, and car traffic is growing every year. In the current situation, it is
necessary not only to design new roads qualitatively, but also to ensure the efficiency of their
functioning and traffic safety. Solving these problems is impossible without mathematical
modeling of transport networks, which allows you to determine parameters such as traffic
intensity, average speed, delays and time loss.

In recent years, many mathematical models have been developed; however, these
models do not work without real data, since a person with a high degree of uncertainty
of actions is driving vehicles. Autonomous vehicles are being developed and put into

Sensors 2022, 22, 5199. https://doi.org/10.3390/s22145199 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22145199
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1739-9831
https://orcid.org/0000-0002-7102-4208
https://orcid.org/0000-0002-9778-124X
https://doi.org/10.3390/s22145199
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22145199?type=check_update&version=1

Sensors 2022, 22, 5199 2 of 20

operation to solve this problem. New solutions for the transport industry are being applied
in a wide variety of areas, which allows to reduce energy costs and improve the ecology of
cities by optimizing the movement of autonomous vehicles. Global technology giants such
as Google, Uber, and Yandex are fighting to improve the safety of transportation; they are
testing autonomous transport technologies in different regions of the world.

Unfortunately, at the moment, the process of rapid introduction of autonomous ve-
hicles is hindered by 2 factors: people’s distrust of artificial intelligence and the great
complexity of training autonomous driving systems. This work is aimed at reducing the
impact of these factors by creating a simulation of a realistic urban environment, improving
neural network detection/recognition algorithms in conditions of data uncertainty and
developing effective optimization methods. It is important to note that for modern traffic
planning of autonomous vehicles, it is necessary to consider the street and road network as
a whole, and not on individual sections, as is being done now. In addition, the analysis of
autonomous vehicle traffic control systems revealed a large number of problems faced by
designers in the process of their development and in determining the requirements for the
control system; this is due to the following objective factors: a sufficiently high error, the
inability of most systems to take into account the constantly changing external conditions
during movement, the functional limitations of control systems due to the use of external
information sources that determine the position of the vehicle in space.

The aim of this article is to develop an intelligent system for vehicle recognition using
convolutional neural networks.

Many scientists are engaged in research in the development of route planning methods:
Abdul Wahid, Md Tanwir Uddin Haider, Md Masood Ahmad, Arvind Kumar Singh, Xinwu
Qian, Jiawexue, etc. Ukkusuri Wojciech Chmiel, Iwona Skalna and Stanisław Jędrusik
within the framework of the INSIGMA [1] project are investigating the use of a method
based on interval numbers for traffic management in the city. Using this method and
information about the current state of traffic, the proposed system helps to navigate more
effectively in the changing environment of the city. The methodology is based on the
continuous flow of information from the streets and prompt response to changes. Since
traffic parameters are subject to fluctuations (including due to measurement accuracy), a
mechanism has been proposed to prevent frequent route changes. Important results of the
conducted research are the introduction of interval algebra into urban traffic management
and the provision of a theoretical basis for determining conditions that increase the likeli-
hood of obtaining the optimal path with traffic fluctuations; however, the disadvantages of
existing systems are the lack of optimization of reward functions and sufficient convergence
of the network to work in real-time.

Nohel et al. [2] describe the structure of the optimal route model implemented in TDSS,
and its further possible use in the maneuver management system. In their calculations, they
combine an assessment of the entire terrain and the safety characteristics of the working
area; they focus on the cross-country capabilities of wheeled vehicles in terrain conditions;
however, in the case of autonomous vehicles, there is still a need for direct control on the
ground due to the accidental occurrence of microrelief forms and obstacles.

Aguiar et al. [3] describe PRONTO—a flexible and efficient numerical tool for exploring
the space of one or more vehicles. The constraints of the state and the input inequality are
processed using an approximate logarithmic barrier, which allows starting the iterative
process from an impracticable trajectory. Current research efforts are aimed at using the
model being developed as a reactive scheduler, and not just as an operational scheduler.
As disadvantages of existing models, it is worth highlighting the lack of cost minimization
when working in real mode.

Dario et al. [4,5] consider strategies for designing state-feedback control to stabilize
the vehicle during maneuvers. Vehicle stabilization is achieved through a combination of
steering, acceleration and braking. A model with linear parameter variation is obtained as
a result of linearization of a nonlinear model along a reference trajectory. For the model,
the control law with feedback on the state is calculated.

Sensors 2022, 22, 5199 3 of 20

Peng et al. [6] investigates the joint time-varying maneuvering task of forming and
maintaining connectivity, collision avoidance for autonomous ground vehicles with direc-
tion measurements. Time-varying joint maneuvering control laws are being developed
based on artificial potential functions, nonlinear tracking differentiators and the reverse step
method. The stability of a closed-loop distributed formation control system is analyzed on
the basis of I/O stability and cascade stability. The disadvantages of existing developments
are the lack of dynamic models capable of working in real time, while ensuring the proper
level of safety of autonomous vehicles.

Frame synchronization is more difficult when moving objects or moving the camera
sharply, because these factors lead to shaking, shakiness, defects and blurring. Image
stitching solutions based on neural network algorithms are rarely studied due to the lack
of ready-made sets of labeled data. Nie et al. [7] offer an image stitching algorithm based
on unsupervised learning.

Gu et al. [8] explore the “gluing” of multiple images to realize the full spectrum of
a global view of the internal environment. The research is devoted to demonstrating
a large field of view using dynamic image stitching when there is a moving object in
the environment.

Kulawik et al. [9,10] also use neural network algorithms based on convolutional neural
networks (CNN), with which they track synchronization errors during the transmission of
digital images. Previously, the synchronization problem was solved with the help of trigger
triggers in the recording; this solution checks the discrepancy between the received pairs of
images, which allows for detecting delays in the transmission of images between cameras.
For this purpose, a deep network is used to classify the analyzed images into five classes.

However, the existing synchronization algorithms are not sufficient, more efficient
and reliable algorithms are required since numerous studies have shown that the real data
sets that need to be stitched are more complex than the test ones. One of the main criteria
for checking an autonomous vehicle is safe interaction with other road users. Based on
research, testing on real roads is sometimes impractical for safety testing due to their time
and financial costs. Therefore, modeling the “traveled” kilometers is the only possible
way to overcome this limitation. The development of methods for creating a simulation
environment allows experiments to be carried out in a digital environment, rather than
in a real one. The 3D scene of the road network helps to model the distribution of road
infrastructure and the corresponding road conditions; however, the existing methods of
modeling the movement of vehicles have limitations such as inflexibility in various types
of modification of road infrastructure, poor quality of visual effects and low efficiency in
rendering large-scale models, etc. To solve these problems, the method of 3D modeling of
roads based on templates is often proposed; in such methods, road infrastructure data are
first pre-processed before modeling. The centerlines of the roads are analyzed to extract
information about the topology and recalculated to improve the accuracy of the trajectory
and match the terrain. The following companies are engaged in developments in this area:
Zhang et al. [11–13], Malayjerdi et al. [14].

However, it is important to note that the data of the road geoinformation system do not
provide the complete information necessary to create 3D models of roads in complex cases.
For example, without accurate information about the height, it is difficult to determine
the location of various fences. Real-time 3D reconstruction is one of the currently popular
areas of computer vision research; this task has become the main technology in the field
of virtual reality, industrial automatic systems and trajectory planning of mobile robots.
Currently, there are three main problems in the field of real-time 3D reconstruction. Firstly,
it is expensive; this requires more diverse sensors, so it’s less convenient. Secondly, the
recovery rate is low, and the 3D model cannot be accurately set in real time. Thirdly, the
recovery error is large, which cannot accurately meet the requirements of the scenes.

Jia et al. [15] proposed a real-time 3D reconstruction method based on monocular
vision. One RGB-D camera is used to collect visual information in real time, and the
YOLACT++ network is used to identify and segment visual information to extract some of

Sensors 2022, 22, 5199 4 of 20

the important visual information. The three stages of depth recovery, depth optimization,
and deep fusion are then combined to offer a three-dimensional position estimation method
based on deep learning for co-coding visual information; this can reduce the depth error
caused by the depth measurement process, and the exact values of the 3D points of the
segmented image can be obtained directly. Then, a method based on a limited correction of
the distance to the cluster center emissions is proposed to optimize the three-dimensional
point values obtained above; this increases the accuracy of real-time reconstruction and
allows you to get a three-dimensional model of the object in real time.

Sun et al. [16] presented a platform called NeuralRecon for real-time reconstruction of
a 3D scene using monocular video. Unlike existing methods that evaluated depth maps
with one view separately for each keyframe and combined them later, they propose to
directly reconstruct local surfaces represented as sparse TSDF volumes for each video
fragment sequentially using a neural network. The learning-based TSDF merge module,
based on closed repeating blocks, is used to manage the network to combine functions
from previous fragments; this sign allows the network to capture the local smoothness up
to and the global shape up to 3D surfaces in sequential reconstruction of surfaces, resulting
in accurate, consistent reconstruction of the surface in real time.

As a rule, existing research on semantic mapping represented approaches based on
the use of cameras that could not be used in large-scale environments due to their compu-
tational load. Recently, a method of combining 3D lidar with a camera was introduced to
solve this problem, and 3D lidar and camera were also used for semantic 3D mapping. In
this study by Jeong et al. [17], the algorithm consists of semantic mapping and map refine-
ment. In the semantic mapping, GPS and IMU are integrated to evaluate the odometry of
the system, and subsequently point clouds measured using 3D lidar are recorded using this
information. In addition, semantic segmentation based on CNN is used to obtain semantic
information about the environment. To integrate the point cloud with semantic information,
incremental semantic labeling has been developed, including coordinate alignment, error
minimization, and semantic information integration. In addition, to improve the quality
of the generated semantic map, the map refinement is processed in batch mode. As a
disadvantage, it should be noted the low speed of the method.

Training models with high performance require a large set of marked-up data, the
acquisition of which is resource-intensive. The aim of the work, which was carried out by
Kar et al. [18], was the synthesis of labeled data sets that can be used for specific purposes;
they parametrize the dataset generator with a neural network that learns to modify the
attributes of scene graphs derived from probabilistic stage grammars in order to minimize
the gap in distribution between the output and target data obtained. If the real data set
comes with a small labeled test set, then researchers additionally strive to optimize the
meta-goal, i.e., the final results of the task. As a disadvantage, it should be noted that there
is no stage of post-processing by a neural network to bring the picture to the view of the
real world.

The work consists of four parts. The first part is “Introduction”, which describes the
relevance and problems that are solved in the article, as well as an analysis of existing neural
network architectures aimed at solving the problem, identified shortcomings that are solved
by the authors in the works. In the second part “Materials and Methods” the methods are
considered, and the substantiation of the methods used by the authors is carried out. In the
third part “Results”, the system was designed according to the methodology of business
processes, the development and optimization of the architecture of the proposed neural
network is described, and a comparison with analogues is made. The fourth part of the
“Conclusion” presents the generalized results of the study and the possibility of application
in real systems.

Sensors 2022, 22, 5199 5 of 20

2. Materials and Methods
2.1. General Concept and Classification of Neural Networks

Here, we list the main advantages of neural methods in comparison with traditional methods.

1. Solving the problem of unknown patterns.

Traditional expert systems are not able to learn and gain new knowledge. At the same
time, neural networks provide the output of new patterns between input and output data,
which makes it possible to work on data that was not included in the training sample.

2. There is no guarantee of repetition and unambiguity of the final results.

However, in the field of knowledge representation and processing, neural networks
also have advantages:

• Formalization of knowledge is not necessary; it can be replaced by learning by examples;
• Naturalness of processing and presentation of fuzzy knowledge, similar to the imple-

mentation in the brain;
• Parallel processing with proper hardware support creates conditions for real-time operation;
• Hardware implementation is able to provide fault tolerance;
• Processing of multidimensional data (more than three) without increasing labor inten-

sity, as well as knowledge [19].

2.2. The Task of Recognizing 3D Objects in an Image

The task of reliable detection of objects in a three-dimensional scene has become
relevant with the advent and development of methods for obtaining three-dimensional
digital images. Meanwhile, sensors such as LiDAR and RGBD cameras have evolved and
become an increasingly common solution for many autonomous robotics; this work is a
continuation of research on methods for recognizing three-dimensional objects in a point
cloud—a specialized format for representing three-dimensional data.

The methods considered by the authors in [19,20] effectively recognize objects, and
their speed is sufficient for functioning in real time, but the main disadvantage of the
described methods is the requirement of the identity of the desired object to a predetermined
standard. That is, in order to recognize any registered object, it is necessary that the system
already has a three-dimensional model associated with a certain class; this approach is well
suited for recognizing objects on model data, but in reality, the registered object often differs
from its representation in reference models. Recently, methods based on deep learning
technology have become increasingly widespread.

One of the examples of the classical approach to the detection of a three-dimensional
object is the three-dimensional Hough transform [21,22]; this method has become popular
in application for two-dimensional images, where it mainly uses the contours of objects
as areas of interest. When working in a three-dimensional format, the method allocates
special points in a three-dimensional image to reduce computational costs. Such points
are allocated using a special clustering algorithm. The voting procedure takes place in
the accumulator space, taking into account only the selected special points. As a result,
local maxima are obtained in those areas where the desired object can potentially be
located. Another difficulty with adding a third dimension, in addition to the increased
computational load—is the probability of different orientations of the scene and the desired
object; this problem is solved by introducing special vectors that ensure invariance to
rotation and rotation. A little more elaborate is the geometric connectivity method; the
main difference from the three-dimensional Hough transform is a different algorithm for
searching for singular points, which are combined into so-called special areas and translated
into a format described by a special index of forms. The obtained areas in the form of index
values are recorded in two-dimensional histograms, where the voting procedure takes
place for all local neighborhoods contained in the test object.

Sensors 2022, 22, 5199 6 of 20

There is a large amount of work on recognizing objects in a three-dimensional point
cloud obtained using LiDAR and a stereo camera using a combination of various individual
features and descriptors with classification by machine learning methods [21–24]. Semantic
segmentation methods are also widely used, where structured classifiers are used instead
of separate classifiers. Unlike the above approaches, architecture learns to extract features
and classify objects from “raw” 3D data. The volumetric representation is also better than
point clouds in the way it distinguishes free space from the unknown. In addition, methods
using point clouds require point neighborhoods for calculations, which often becomes
computationally unsolvable with a large number of points.

Inspired by the successful application of convolutional neural networks to solve
recognition problems on two-dimensional images, some authors have expanded their use
for stereo data. Such approaches treat the channel with “depth” as an additional channel,
along with the usual channels R, G, B; however, geometric information in three-dimensional
data are not fully used, which makes integration between visual points difficult.

For LiDAR data, features [23] have been proposed, locally obtained on data with a
2.5D representation, and some works investigate this approach in combination with a kind
of so-called unsupervised learning [25]. In [24], an encoding is proposed that effectively
uses depth information, but the approach is still two-dimensional-oriented; it produces a
more accurate representation of the environment.

2.3. Existing Technologies

Currently, artificial intelligence for object recognition is being actively introduced into
various fields of activity. Among all neural networks, CNN (convolutional neural networks)
copes with this task, it made it possible to make a leap in the field of computer vision. The
most current and widespread CNN architecture is aimed at two-dimensional images; there
are also models among this architecture applied to three-dimensional images.

With the improvement and growth of technologies, as well as the growth of LiDAR
sensors, the recognition of three-dimensional objects has reached a new stage. At the
moment, various methods are being developed for the classification and reconstruction
of 3D objects, segmentation of 3D scenes. To begin with, we look at the methods used to
recognize three-dimensional objects.

With the help of special devices, a kind of three-dimensional point cloud is built, which
represents a three-dimensional scene. When implementing this method, the following
problems may occur:

• Our cloud consists of a chaotic order of points;
• The relationship of points is a certain distance by which it becomes necessary to contact

the network;
• Data loss.
• To solve these problems, you can use the following methods:
• Sorting. The method is not the most effective;
• Using a symmetric function to aggregate information. That is, a function whose value

does not change depending on the order of the elements.

This method was implemented in PoinNet. The PointNet architecture contains three
key modules: a maximum pooling layer as a symmetric function for aggregating informa-
tion from all points, a local and global information combination structure, and two joint
alignment networks that align input points and point functions.

The authors of the PointNet architecture propose to transmit information about points
(x, y, z) directly to a deep neural network. In order to find the symmetry function for
the disordered input, the general function defined in the current set is approximated by
applying the symmetric function to the transformed elements. PointNet approaches the
function of a multilayer perceptron network and has been transformed by the composition
of a monotonous function and a maximum union function. The output of the function
forms a vector, which is considered as the global signature of the input data set and is fed to
each point, combining global objects with each of the point functions. Then, new functions

Sensors 2022, 22, 5199 7 of 20

at one point are extracted based on the combined point functions, since local as well as
global information will be known at the point. The joint alignment network forming the
third module is inspired by the fact that the semantic labeling of the current cloud should
be non-invariant if the current cloud undergoes geometric transformations. PointNet
predicts the affine transformation matrix by the T-net architecture and directly applies this
transformation to the coordination of input points. T-net consists of point independent
extraction functions, maximum pooling, and fully connected layers. The transformation
matrix in the object space has a higher dimension. Thus, for optimization, an ordering
term that restricts the function transformation matrix to be close to the orthogonal matrix is
added to the softmax training loss. As a result, for each object (class) the points required
for the assessment are given.

There is a problem that in three-dimensional scenes, no one has considered which data
format is best suited for processing. For the point cloud, a voxel grid was used—this is the
most intuitive way to embed 3D objects into a grid so that they look like pixel images. It can
be obtained from a point cloud (image). To do this, you need to create a 32 × 32 × 32 array,
which will be filled with zeros. Then it is necessary to calculate the points inside each small
voxel, and also perform scaling. The voxel was then assigned a common color; moreover, it
was also possible to use the arithmetic mean of the points to assign a color.

As a neural network working with a voxel grid, consider the three-dimensional
convolutional neural network VoxNET for real-time object recognition. It was proposed
by the authors as a technology for recognizing cars and pedestrians [26]. The architecture
consists of 3 main parts -the Feature Learning Network, convolutional middle layers
(Convolutional Middle Network) and the Region Proposal Network. Of course, in the
presence of a complex Vox dataset, the grid will not be the best choice. VoxNET is a
relatively old technology, however, without it, the review of existing solutions would not
be complete.

All the technologies considered are not suitable for solving the task of restoring a
realistic urban environment, due to their high computational complexity, a large number of
images submitted to the input and the lack of automatic conversion of a point cloud into a
mesh with optimization of the final model.

2.4. Problem Statement

The task of the work is to implement the recognition of vehicles and road infrastructure
objects for the further creation of a simulator of the urban environment. At the input, the
neural network receives a photo, at the output—the classification of the road infrastructure
object and its mesh for loading into the simulator.

To solve this problem, it is convenient to use object-oriented, structural and functional
programming. To display the results of the program and the ability to work with the
program on an intuitive level, a convenient and intuitive interface is required, displaying
all the necessary menus, hints, and so on.

Python was chosen to implement the system. Python is a modern object-oriented
language with a large number of libraries available. The convenience and extensibility of
the language can significantly simplify development, and the use of additional libraries
allows you to use a lot of ready-made already-implemented functions.

3. Results
3.1. System Operation Design

We will carry out the design of the solution using the standard methodology of
business process modeling IDEF0. A contextual diagram of the functioning of the entire
system is shown in Figure 1.

Sensors 2022, 22, 5199 8 of 20

Sensors 2022, 22, x FOR PEER REVIEW 8 of 21

3. Results
3.1. System Operation Design

We will carry out the design of the solution using the standard methodology of busi-
ness process modeling IDEF0. A contextual diagram of the functioning of the entire sys-
tem is shown in Figure 1.

Figure 1. Contextual diagram of the system functioning.

Training and validation samples are submitted to the input of the system, as well as
the dynamic libraries used are connected. Random images are taken as the basis for recog-
nition.
At the output of the system, we get a recognized image;
The mechanisms are the Python user and environment;
The decomposition of the context diagram is shown in Figure 2.

Figure 2. Decomposition of the context diagram.

According to the decomposition, data are first prepared in the system, training and
validation samples are loaded, and dynamic libraries are connected; after that, a neural
network is created. Then the model is launched. The final process is the recognition and

Figure 1. Contextual diagram of the system functioning.

Training and validation samples are submitted to the input of the system, as well
as the dynamic libraries used are connected. Random images are taken as the basis
for recognition.

At the output of the system, we get a recognized image;
The mechanisms are the Python user and environment;
The decomposition of the context diagram is shown in Figure 2.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 21

3. Results
3.1. System Operation Design

We will carry out the design of the solution using the standard methodology of busi-
ness process modeling IDEF0. A contextual diagram of the functioning of the entire sys-
tem is shown in Figure 1.

Figure 1. Contextual diagram of the system functioning.

Training and validation samples are submitted to the input of the system, as well as
the dynamic libraries used are connected. Random images are taken as the basis for recog-
nition.
At the output of the system, we get a recognized image;
The mechanisms are the Python user and environment;
The decomposition of the context diagram is shown in Figure 2.

Figure 2. Decomposition of the context diagram.

According to the decomposition, data are first prepared in the system, training and
validation samples are loaded, and dynamic libraries are connected; after that, a neural
network is created. Then the model is launched. The final process is the recognition and

Figure 2. Decomposition of the context diagram.

According to the decomposition, data are first prepared in the system, training and
validation samples are loaded, and dynamic libraries are connected; after that, a neural
network is created. Then the model is launched. The final process is the recognition
and evaluation of the model. Decomposition of the “Data Preparation” process is shown
in Figure 3.

Sensors 2022, 22, 5199 9 of 20

Sensors 2022, 22, x FOR PEER REVIEW 9 of 21

evaluation of the model. Decomposition of the “Data Preparation” process is shown in
Figure 3.

Figure 3. Decomposition of the “Data Preparation” process.

In the process of data preparation, a data source, dynamic libraries are connected,
after which the data are prepared for processing. Decomposition of the “Model Startup”
process is shown in Figure 4.

Figure 4. Decomposition of the “Model Startup” process.

During the startup process, the model is loaded and trained based on a previously
created neural network. Decomposition of the process “Work and evaluation of the
model” is shown in Figure 5.

Figure 3. Decomposition of the “Data Preparation” process.

In the process of data preparation, a data source, dynamic libraries are connected, after
which the data are prepared for processing. Decomposition of the “Model Startup” process
is shown in Figure 4.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 21

evaluation of the model. Decomposition of the “Data Preparation” process is shown in
Figure 3.

Figure 3. Decomposition of the “Data Preparation” process.

In the process of data preparation, a data source, dynamic libraries are connected,
after which the data are prepared for processing. Decomposition of the “Model Startup”
process is shown in Figure 4.

Figure 4. Decomposition of the “Model Startup” process.

During the startup process, the model is loaded and trained based on a previously
created neural network. Decomposition of the process “Work and evaluation of the
model” is shown in Figure 5.

Figure 4. Decomposition of the “Model Startup” process.

During the startup process, the model is loaded and trained based on a previously
created neural network. Decomposition of the process “Work and evaluation of the model”
is shown in Figure 5.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 21

Figure 5. Decomposition of the process “Work and evaluation of the model”.

During the operation of the model, accuracy is first evaluated on two samples—train-
ing and validation; after that, the model is evaluated by parameters.

At the end of the process, randomly selected images are recognized in order to
demonstrate the operation of the model. Recognition data are output to the user.

3.2. System Architecture
The application under development consists of a main unit (a neural network per-

forming data recognition), a training module, an evaluation module for the resulting
model, an initial set of images, and plugins. The architecture of the neural network used
is shown in Figure 6.

Figure 5. Decomposition of the process “Work and evaluation of the model”.

Sensors 2022, 22, 5199 10 of 20

During the operation of the model, accuracy is first evaluated on two samples—training
and validation; after that, the model is evaluated by parameters.

At the end of the process, randomly selected images are recognized in order to demon-
strate the operation of the model. Recognition data are output to the user.

3.2. System Architecture

The application under development consists of a main unit (a neural network perform-
ing data recognition), a training module, an evaluation module for the resulting model, an
initial set of images, and plugins. The architecture of the neural network used is shown
in Figure 6.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 21

Figure 6. Neural network architecture.

First, libraries are connected, then images are loaded into the program and prepared
for processing; after that, the neural network is trained, or the already trained model is
loaded. After that, the correctness of the network operation is checked, and its operation
is also checked on several randomly selected images.

3.3. Description of the Algorithm
In a three-dimensional convolution, the convolutional layer repeats the same opera-

tions as in a two-dimensional one. It’s just that this implementation is already happening
on several pairs of two-dimensional matrices. The output features are a weighted sum of

Figure 6. Neural network architecture.

Sensors 2022, 22, 5199 11 of 20

First, libraries are connected, then images are loaded into the program and prepared
for processing; after that, the neural network is trained, or the already trained model is
loaded. After that, the correctness of the network operation is checked, and its operation is
also checked on several randomly selected images.

3.3. Description of the Algorithm

In a three-dimensional convolution, the convolutional layer repeats the same opera-
tions as in a two-dimensional one. It’s just that this implementation is already happening
on several pairs of two-dimensional matrices. The output features are a weighted sum of
the input features (where the weights are the values of the kernel itself) and are located in
approximately the same places as the output pixels on the input layer.

Whether the input features fall into “approximately the same place” or not depends
on whether it is located in the region of the kernel that created the output signal; this means
that the size of the kernel of a convolutional neural network determines the number of
features that will be combined to produce new features at the output.

Each filter in the convolutional layer creates only one output channel, and does this by
“sliding” each filter kernel through the corresponding input channels, creating a processed
version of each channel. Some kernels may have more weight than others in order to focus
more on certain input channels (for example, a filter may give the red channel of the kernel
more weight than other channels, and thus respond better to differences in the image along
the red channel).

Each processing version in the channels is then added together to form a channel. The
kernel of each filter generates one version of each channel, and the filter as a whole creates
a common output channel.

Finally, each output file has its own offset. The offset is added to the output channels
to create the final output channel.

The result is the same for any number of filters: each filter uses its own set of kernels
and scalar offsets to process the input signal, as described above, to create an output channel;
they are then combined together to produce a common output, with the number of output
channels equal to the number of filters; this usually involves applying non-linearity before
transferring the input data to another convolutional layer, and then repeating the process.

At the initial stage, the neural network is untrained. In a general sense, training is
understood as the sequential presentation of an image to the input of a neural network,
from a training set, then the received response is compared with the desired output. Then
this error delta must be extended to all connected neurons of the network. Thus, neural
network training is reduced to minimizing the error function by adjusting the weights of
synaptic connections between neurons. The error function refers to the difference between
the received response and the desired one.

The error back propagation algorithm determines the strategy for selecting weights
and network parameters using gradient optimization methods and is considered one of the
most effective learning algorithms.

The method is used to minimize the neural network error and obtain the desired
output. The main idea of the method is to propagate error signals from the network output
to its inputs in the opposite direction of direct signal propagation.

The first stage of training is network initialization.
At the second stage of training, a training sample is presented and the values of the

signals of the neurons of the network are calculated.
At the third stage, it is necessary to change the weight coefficients so as to minimize

the objective function:

E =
1
2
(

k

∑
j=1

y(xi)− di)
2, (1)

At each step of the training, the weight coefficients are changed according to the formula:

wij(t + 1) = wij(t)− αγjF′(Sj)yi, (2)

Sensors 2022, 22, 5199 12 of 20

where α is the learning coefficient, t and t + 1 are the moments of time before and after the
change of weights and thresholds, respectively, the indices i and j denote the neurons of
the first and second layer of neurons, respectively, γj is the difference between the network
output and the reference, F is the activation function.

The thresholds of the network are changed by the formula:

Tj(t + 1) = Tj(t) + αγjF′(Sj), (3)

The error for the hidden layer with index i is calculated through the errors of the next
layer with index j as follows:

γi = ∑
j

γjF′(Sj)wij, (4)

The learning process continues until the number of iterations exceeds the established
limit [27].

3.4. Formation of a Training Sample

As a subject area, ground vehicles are selected, namely: cars, buses, trucks, motorcy-
cles, bulldozers, excavators. A ready-made dataset providing sufficient variety and high
accuracy of markup was not found, so it was decided to collect the dataset from various
sources, including: the website auto.ru [28]. Images were downloaded from all ads of
the first two pages of each of the target categories; after that, the data were filtered out of
duplicates and inappropriate images (details, interior, etc.)

The following datasets were also used:

«Is it a Train or Bus» [29], from here images with buses were used;
«UK Truck Brands Dataset» [30], which was used to create a sample with trucks;
«Vehicle Dataset» [31], from which images of motorcycles and cars were taken;
«Open Images Dataset» [32]. Images with buses and trucks were used from this dataset.

We also collected our own data set, which was collected by means of an installation
mounted on a car (Figure 7) that drove through the streets of Moscow [33,34].

Sensors 2022, 22, x FOR PEER REVIEW 13 of 21

'(1) () ()j j j jT t T t F Sαγ+ = + , (3)

The error for the hidden layer with index i is calculated through the errors of the next
layer with index j as follows:

' ()i j j ij
j
F S wγ γ= , (4)

The learning process continues until the number of iterations exceeds the established
limit [27].

3.4. Formation of a Training Sample
As a subject area, ground vehicles are selected, namely: cars, buses, trucks, motorcy-

cles, bulldozers, excavators. A ready-made dataset providing sufficient variety and high
accuracy of markup was not found, so it was decided to collect the dataset from various
sources, including: the website auto.ru [28]. Images were downloaded from all ads of the
first two pages of each of the target categories; after that, the data were filtered out of
duplicates and inappropriate images (details, interior, etc.)

The following datasets were also used:
«Is it a Train or Bus» [29], from here images with buses were used;
«UK Truck Brands Dataset» [30], which was used to create a sample with trucks;
«Vehicle Dataset» [31], from which images of motorcycles and cars were taken;
«Open Images Dataset» [32]. Images with buses and trucks were used from this dataset.

We also collected our own data set, which was collected by means of an installation
mounted on a car (Figure 7) that drove through the streets of Moscow [33,34].

Figure 7. Data Collection Installation.

The result is a dataset consisting of 3000 images. The entire sample was divided into
3 parts: training 70%, validation 10%, testing 20%. The distribution of the data contained
in the dataset by class is shown in Figure 8.

Figure 8. Parameters of the training, testing and validation samples.

Figure 7. Data Collection Installation.

The result is a dataset consisting of 3000 images. The entire sample was divided into
3 parts: training 70%, validation 10%, testing 20%. The distribution of the data contained in
the dataset by class is shown in Figure 8.

Sensors 2022, 22, 5199 13 of 20

Sensors 2022, 22, x FOR PEER REVIEW 13 of 21

'(1) () ()j j j jT t T t F Sαγ+ = + , (3)

The error for the hidden layer with index i is calculated through the errors of the next
layer with index j as follows:

' ()i j j ij
j
F S wγ γ= , (4)

The learning process continues until the number of iterations exceeds the established
limit [27].

3.4. Formation of a Training Sample
As a subject area, ground vehicles are selected, namely: cars, buses, trucks, motorcy-

cles, bulldozers, excavators. A ready-made dataset providing sufficient variety and high
accuracy of markup was not found, so it was decided to collect the dataset from various
sources, including: the website auto.ru [28]. Images were downloaded from all ads of the
first two pages of each of the target categories; after that, the data were filtered out of
duplicates and inappropriate images (details, interior, etc.)

The following datasets were also used:
«Is it a Train or Bus» [29], from here images with buses were used;
«UK Truck Brands Dataset» [30], which was used to create a sample with trucks;
«Vehicle Dataset» [31], from which images of motorcycles and cars were taken;
«Open Images Dataset» [32]. Images with buses and trucks were used from this dataset.

We also collected our own data set, which was collected by means of an installation
mounted on a car (Figure 7) that drove through the streets of Moscow [33,34].

Figure 7. Data Collection Installation.

The result is a dataset consisting of 3000 images. The entire sample was divided into
3 parts: training 70%, validation 10%, testing 20%. The distribution of the data contained
in the dataset by class is shown in Figure 8.

Figure 8. Parameters of the training, testing and validation samples. Figure 8. Parameters of the training, testing and validation samples.

The structure of the neural network includes convolutional and fully connected layers
and layers of subdiscretization (max-pooling). An example of such an architecture is shown
in Figure 9. To reduce the effect of retraining, batch normalization and dropout were used.
As an activation function—ReLU [35], as the most common today.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 21

The structure of the neural network includes convolutional and fully connected lay-
ers and layers of subdiscretization (max-pooling). An example of such an architecture is
shown in Figure 9. To reduce the effect of retraining, batch normalization and dropout
were used. As an activation function—ReLU [35], as the most common today.

Figure 9. Example architecture of a convolutional network [36].

The current architecture uses the following order. First, the features are extracted us-
ing five convolutional layers. Then, the last feature map is converted into a vector and fed
to the input of a hidden fully connected layer, followed by an output layer with 6 neurons.

The cross-entropy was used as a loss function. Accuracy was also monitored during
the training process. The values of metrics at the training and evaluation stages are shown
in Figure 10.

Figure 10. Graphs showing the learning process.

Cross entropy-based loss function:

(ln (1)ln(1))C y a y a= − + − − (5)

If the output signal is close to the desired value, the value of the loss function is close
to 0:

lim 0
a y
C

→
= (6)

There is no slowing down of learning when '() 0zσ →

(())i
i

C x z y
w

σ∂ = ⋅ −
∂

 (7)

()C z y
b

σ∂ = −
∂

 (8)

During the training, the following hyperparameters were exposed: the learning rate
is 0.001, the size of the batch is 32, the maximum number of epochs is 1000. At the same
time, feedback was used for an early stop in order to stop the training of the model in the
absence of improvements in the loss function on the validation part of the sample. The
model was trained for 41 epochs, after which an early stop occurred, since the highest
indicators were at 31 epochs.

Figure 9. Example architecture of a convolutional network [36].

The current architecture uses the following order. First, the features are extracted using
five convolutional layers. Then, the last feature map is converted into a vector and fed to
the input of a hidden fully connected layer, followed by an output layer with 6 neurons.

The cross-entropy was used as a loss function. Accuracy was also monitored during
the training process. The values of metrics at the training and evaluation stages are shown
in Figure 10.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 21

The structure of the neural network includes convolutional and fully connected lay-
ers and layers of subdiscretization (max-pooling). An example of such an architecture is
shown in Figure 9. To reduce the effect of retraining, batch normalization and dropout
were used. As an activation function—ReLU [35], as the most common today.

Figure 9. Example architecture of a convolutional network [36].

The current architecture uses the following order. First, the features are extracted us-
ing five convolutional layers. Then, the last feature map is converted into a vector and fed
to the input of a hidden fully connected layer, followed by an output layer with 6 neurons.

The cross-entropy was used as a loss function. Accuracy was also monitored during
the training process. The values of metrics at the training and evaluation stages are shown
in Figure 10.

Figure 10. Graphs showing the learning process.

Cross entropy-based loss function:

(ln (1)ln(1))C y a y a= − + − − (5)

If the output signal is close to the desired value, the value of the loss function is close
to 0:

lim 0
a y
C

→
= (6)

There is no slowing down of learning when '() 0zσ →

(())i
i

C x z y
w

σ∂ = ⋅ −
∂

 (7)

()C z y
b

σ∂ = −
∂

 (8)

During the training, the following hyperparameters were exposed: the learning rate
is 0.001, the size of the batch is 32, the maximum number of epochs is 1000. At the same
time, feedback was used for an early stop in order to stop the training of the model in the
absence of improvements in the loss function on the validation part of the sample. The
model was trained for 41 epochs, after which an early stop occurred, since the highest
indicators were at 31 epochs.

Figure 10. Graphs showing the learning process.

Cross entropy-based loss function:

C = −(y ln a + (1− y) ln(1− a)) (5)

If the output signal is close to the desired value, the value of the loss function is close
to 0:

lim
a→y

C = 0 (6)

There is no slowing down of learning when σ′(z)→ 0

∂C
∂wi

= xi · (σ(z)− y) (7)

Sensors 2022, 22, 5199 14 of 20

∂C
∂b

= σ(z)− y (8)

During the training, the following hyperparameters were exposed: the learning rate is
0.001, the size of the batch is 32, the maximum number of epochs is 1000. At the same time,
feedback was used for an early stop in order to stop the training of the model in the absence
of improvements in the loss function on the validation part of the sample. The model was
trained for 41 epochs, after which an early stop occurred, since the highest indicators were
at 31 epochs.

As a result, 96.4% accuracy was achieved on the training part of the data block,
88.2% on the test sample and 90.3% on the validation.

An error matrix was also visualized to assess which classes the model makes the most
mistakes on (Figure 11). The error matrix is a tabular distribution between the correct
answer and the one given by the neural network. According to the rows, the correct answer,
according to the columns– is the one given by the neural network. The number of matches
at intersections. The correct answers will lie on the main diagonal of the array.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 21

As a result, 96.4% accuracy was achieved on the training part of the data block, 88.2%
on the test sample and 90.3% on the validation.

An error matrix was also visualized to assess which classes the model makes the most
mistakes on (Figure 11). The error matrix is a tabular distribution between the correct an-
swer and the one given by the neural network. According to the rows, the correct answer,
according to the columns– is the one given by the neural network. The number of matches
at intersections. The correct answers will lie on the main diagonal of the array.

Figure 11. Visualization matrix of errors (testing sample).

It can be seen from the error matrix that the excavator is predicted extremely inaccu-
rately, while there are no errors at all for bulldozers; this may be due to the insufficient
number of examples of this class in the sample.

For comparison with already existing solutions, the networks YOLOv5 [37], Mask R-
CNN [38], ResNeXt [39], VGG16 [40] were selected; they were trained on the same data
sets as the network we are developing, namely: a set of data that was collected from the
site “auto.ru”, “It is Train or Bus”, “UK Truck Brands Dataset”, “Vehicle Dataset”, “Open
Image Dataset”, as well as the collected dataset with streets of Moscow.

Comparisons of classification quality for each class are presented in Tables 1–4. The
best indicators for each class are highlighted in bold.

Table 1. Comparison of precision grades for each class. The best indicators for each class are high-
lighted in bold.

Vehicle Our Net YOLOv5 Mask R-CNN ResNeXt VGG16
Bulldozer 0.87 0.71 0.87 0.71 0.71

Bus 0.83 0.63 0.86 0.65 0.67
Car 0.89 0.63 0.86 0.69 0.67

Dredge 1.00 0.77 0.92 0.79 0.77
Motorcycle 0.92 0.67 1.00 0.77 0.91

Truck 0.84 0.83 0.86 0.83 0.91

Table 2. Comparison of recall scores for each class. The best indicators for each class are high-
lighted in bold.

Vehicle Our Net YOLOv5 Mask R-CNN ResNeXt VGG16

Figure 11. Visualization matrix of errors (testing sample).

It can be seen from the error matrix that the excavator is predicted extremely inaccu-
rately, while there are no errors at all for bulldozers; this may be due to the insufficient
number of examples of this class in the sample.

For comparison with already existing solutions, the networks YOLOv5 [37], Mask
R-CNN [38], ResNeXt [39], VGG16 [40] were selected; they were trained on the same data
sets as the network we are developing, namely: a set of data that was collected from the
site “auto.ru”, “It is Train or Bus”, “UK Truck Brands Dataset”, “Vehicle Dataset”, “Open
Image Dataset”, as well as the collected dataset with streets of Moscow.

Comparisons of classification quality for each class are presented in Tables 1–4. The
best indicators for each class are highlighted in bold.

Sensors 2022, 22, 5199 15 of 20

Table 1. Comparison of precision grades for each class. The best indicators for each class are highlighted
in bold.

Vehicle Our Net YOLOv5 Mask R-CNN ResNeXt VGG16

Bulldozer 0.87 0.71 0.87 0.71 0.71

Bus 0.83 0.63 0.86 0.65 0.67

Car 0.89 0.63 0.86 0.69 0.67

Dredge 1.00 0.77 0.92 0.79 0.77

Motorcycle 0.92 0.67 1.00 0.77 0.91

Truck 0.84 0.83 0.86 0.83 0.91

Table 2. Comparison of recall scores for each class. The best indicators for each class are highlighted
in bold.

Vehicle Our Net YOLOv5 Mask R-CNN ResNeXt VGG16

Bulldozer 1.00 0.67 0.93 0.71 0.77

Bus 0.89 0.71 0.86 0.79 0.77

Car 0.91 0.91 0.92 0.92 0.91

Dredge 0.29 0.63 0.92 0.69 0.77

Motorcycle 0.92 0.67 0.75 0.67 0.67

Truck 0.85 0.67 1.00 0.67 0.71

Table 3. Comparison of F1 scores for each class. The best indicators for each class are highlighted
in bold.

Vehicle Our Net YOLOv5 Mask R-CNN ResNeXt VGG16

Bulldozer 0.93 0.69 0.9 0.71 0.74

Bus 0.86 0.67 0.86 0.71 0.71

Car 0.90 0.74 0.89 0.79 0.77

Dredge 0.44 0.69 0.92 0.73 0.77

Motorcycle 0.92 0.67 0.86 0.71 0.77

Truck 0.85 0.74 0.92 0.74 0.80

Table 4. Comparison of time and accuracy of classification of different networks. The best indicators
for each class are highlighted in bold.

Net Name Accuracy Time

Our net 88.20% 5.01442 ms

YOLOv5 69.37% 5.48544 ms

Mask R-CNN 88.19% 6.76321 ms

ResNeXt 73.49% 6.97524 ms

VGG16 75.82% 5.60733 ms

As can be seen from the classification results, the dredge class shows the worst results;
this is due to the fact that the training was conducted on a small sample of data; it is
planned to finalize this in the future.

Training schedules for YOLOv5, Mask R-CNN, ResNeXt and VGG16 networks are
shown in Figures 12–15.

Sensors 2022, 22, 5199 16 of 20

Sensors 2022, 22, x FOR PEER REVIEW 16 of 21

Bulldozer 1.00 0.67 0.93 0.71 0.77
Bus 0.89 0.71 0.86 0.79 0.77
Car 0.91 0.91 0.92 0.92 0.91

Dredge 0.29 0.63 0.92 0.69 0.77
Motorcycle 0.92 0.67 0.75 0.67 0.67

Truck 0.85 0.67 1.00 0.67 0.71

Table 3. Comparison of F1 scores for each class. The best indicators for each class are highlighted
in bold.

Vehicle Our Net YOLOv5 Mask R-CNN ResNeXt VGG16
Bulldozer 0.93 0.69 0.9 0.71 0.74

Bus 0.86 0.67 0.86 0.71 0.71
Car 0.90 0.74 0.89 0.79 0.77

Dredge 0.44 0.69 0.92 0.73 0.77
Motorcycle 0.92 0.67 0.86 0.71 0.77

Truck 0.85 0.74 0.92 0.74 0.80

Table 4. Comparison of time and accuracy of classification of different networks. The best indica-
tors for each class are highlighted in bold.

Net Name Accuracy Time
Our net 88.20% 5.01442 ms
YOLOv5 69.37% 5.48544 ms

Mask R-CNN 88.19% 6.76321 ms
ResNeXt 73.49% 6.97524 ms
VGG16 75.82% 5.60733 ms

As can be seen from the classification results, the dredge class shows the worst re-
sults; this is due to the fact that the training was conducted on a small sample of data; it is
planned to finalize this in the future.

Training schedules for YOLOv5, Mask R-CNN, ResNeXt and VGG16 networks are
shown in Figures 12–15.

Figure 12. Visualization matrix of errors (validation sample). Figure 12. Visualization matrix of errors (validation sample).

Sensors 2022, 22, x FOR PEER REVIEW 17 of 21

In order to choose the optimal training period for YOLOv5, in order to avoid a situ-
ation not before training or retraining the model, it was decided to train the model on a
different number of epochs and compare the results obtained. Comparison of training in
25, 50 and 75 epochs and their visualization is carried out using TensorFlow and is shown
in Figure 13.

Figure 13. Comparison of training YOLOv5 at 25 (red graph), 50 (blue graph) and 75 (purple
graph) epochs.

Based on the comparison graphs of training in 25, 50 and 75 epochs, the best results
were shown at 75 epochs, since the degree and correctness of detection using this model
turned out to be much higher, and the error is much smaller compared to the rest.

To choose the optimal training period for Mask R-CNN, in order to avoid a situation
not before training or retraining the model, it was decided to train the model on a different
number of epochs and compare the results obtained. Comparison of training in 20, 40 and
60 epochs and their visualization is carried out using TensorFlow and is shown in Figure
14.

Figure 13. Comparison of training YOLOv5 at 25 (red graph), 50 (blue graph) and 75 (purple
graph) epochs.

Sensors 2022, 22, 5199 17 of 20

Sensors 2022, 22, x FOR PEER REVIEW 17 of 21

In order to choose the optimal training period for YOLOv5, in order to avoid a situ-
ation not before training or retraining the model, it was decided to train the model on a
different number of epochs and compare the results obtained. Comparison of training in
25, 50 and 75 epochs and their visualization is carried out using TensorFlow and is shown
in Figure 13.

Figure 13. Comparison of training YOLOv5 at 25 (red graph), 50 (blue graph) and 75 (purple
graph) epochs.

Based on the comparison graphs of training in 25, 50 and 75 epochs, the best results
were shown at 75 epochs, since the degree and correctness of detection using this model
turned out to be much higher, and the error is much smaller compared to the rest.

To choose the optimal training period for Mask R-CNN, in order to avoid a situation
not before training or retraining the model, it was decided to train the model on a different
number of epochs and compare the results obtained. Comparison of training in 20, 40 and
60 epochs and their visualization is carried out using TensorFlow and is shown in Figure
14.

Figure 14. Comparison of training Mask R-CNN at 20 (red graph), 40 (blue graph) and 60 (purple
graph) epochs.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 21

Figure 14. Comparison of training Mask R-CNN at 20 (red graph), 40 (blue graph) and 60 (purple
graph) epochs.

Based on the comparison graphs of training in 20, 40 and 60 epochs, the best results
were shown at 60 epochs, since the degree and correctness of detection using this model
turned out to be much higher, and the error is much smaller compared to the rest.

To choose the optimal training period for ResNeXt, in order to avoid a situation not
before training or retraining the model, it was decided to train the model on a different
number of epochs and compare the results obtained. Comparison of training in 60, 75 and
90 epochs and their visualization is carried out using TensorFlow and is shown in Figure
15.

Figure 15. Comparison of training ResNeXt at 60 (red graph), 75 (blue graph) and 90 (purple
graph) epochs.

Based on the comparison graphs of training in 60, 75 and 90 epochs, the best results
were shown at 90 epochs, since the degree and correctness of detection using this model
turned out to be much higher, and the error is much smaller compared to the rest.

To choose the optimal training period for VGG16, in order to avoid a situation not
before training or retraining the model, it was decided to train the model on a different
number of epochs and compare the results obtained. Comparison of training in 25, 50 and
75 epochs and their visualization is carried out using TensorFlow and is shown in Figure
16.

Figure 15. Comparison of training ResNeXt at 60 (red graph), 75 (blue graph) and 90 (purple
graph) epochs.

In order to choose the optimal training period for YOLOv5, in order to avoid a situation
not before training or retraining the model, it was decided to train the model on a different
number of epochs and compare the results obtained. Comparison of training in 25, 50 and
75 epochs and their visualization is carried out using TensorFlow and is shown in Figure 13.

Based on the comparison graphs of training in 25, 50 and 75 epochs, the best results
were shown at 75 epochs, since the degree and correctness of detection using this model
turned out to be much higher, and the error is much smaller compared to the rest.

To choose the optimal training period for Mask R-CNN, in order to avoid a situation
not before training or retraining the model, it was decided to train the model on a different

Sensors 2022, 22, 5199 18 of 20

number of epochs and compare the results obtained. Comparison of training in 20, 40 and
60 epochs and their visualization is carried out using TensorFlow and is shown in Figure 14.

Based on the comparison graphs of training in 20, 40 and 60 epochs, the best results
were shown at 60 epochs, since the degree and correctness of detection using this model
turned out to be much higher, and the error is much smaller compared to the rest.

To choose the optimal training period for ResNeXt, in order to avoid a situation not
before training or retraining the model, it was decided to train the model on a different
number of epochs and compare the results obtained. Comparison of training in 60, 75 and
90 epochs and their visualization is carried out using TensorFlow and is shown in Figure 15.

Based on the comparison graphs of training in 60, 75 and 90 epochs, the best results
were shown at 90 epochs, since the degree and correctness of detection using this model
turned out to be much higher, and the error is much smaller compared to the rest.

To choose the optimal training period for VGG16, in order to avoid a situation not
before training or retraining the model, it was decided to train the model on a different
number of epochs and compare the results obtained. Comparison of training in 25, 50 and
75 epochs and their visualization is carried out using TensorFlow and is shown in Figure 16.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 21

Figure 16. Comparison of training VGG16 at 25 (red graph), 50 (blue graph) and 75 (purple graph)
epochs.

Based on the comparison graphs of training in 25, 50 and 75 epochs, the best results
were shown at 75 epochs, since the degree and correctness of detection using this model
turned out to be much higher, and the error is much smaller compared to the rest.

After conducting a study and comparing the model we developed with existing pop-
ular solutions (YOLOv5, Mask R-CNN, ResNeXt, VGG16), we can draw the following
conclusions:
1. The network developed by us has the best classification time (5.01442 ms) among the

considered models. The closest result was shown by YOLOv5 (5.48544 ms).
2. The network developed by us has the best classification accuracy (88.2%) among the

models considered. The closest result was shown by the Mask R-CNN model
(88.19%).
Based on the demonstrated results, we can conclude that the model we have devel-

oped is best suited for solving the task at hand—recognition and classification of vehicles
and road infrastructure objects for further creation of an urban environment simulator.
Despite the fact that the average classification accuracy is not much higher than Mask R-
CNN, however, the performance increases.

4. Conclusions
As a result of this study, the following results were obtained:

1. The system was designed using the standard methodology of business process mod-
eling IDEF0.

2. The system architecture has been developed.
3. A data set has been formed, consisting of data from open sources (data collected from

the site “auto.ru “, datasets: “It is Train or Bus”, “UK Truck Brands Dataset”, “Vehicle
Dataset”, “Open Image Dataset”), as well as data collected through the installation,
fixed on a car that drove through the streets of Moscow.

4. The study and comparison of existing popular neural network models that are used
for similar tasks, namely—YOLOv5, Mask R-CNN, ResNeXt, VGG16; these models
were trained on the same data as the model being developed.

Author Contributions: Conceptualization, M.G. and S.E.; Methodology, S.E. and M.M.; Project ad-
ministration, M.G.; Software, K.P.; Validation, M.G., K.P. and M.M. All authors have read and
agreed to the published version of the manuscript.

Figure 16. Comparison of training VGG16 at 25 (red graph), 50 (blue graph) and 75 (purple
graph) epochs.

Based on the comparison graphs of training in 25, 50 and 75 epochs, the best results
were shown at 75 epochs, since the degree and correctness of detection using this model
turned out to be much higher, and the error is much smaller compared to the rest.

After conducting a study and comparing the model we developed with exist-
ing popular solutions (YOLOv5, Mask R-CNN, ResNeXt, VGG16), we can draw the
following conclusions:

1. The network developed by us has the best classification time (5.01442 ms) among the
considered models. The closest result was shown by YOLOv5 (5.48544 ms).

2. The network developed by us has the best classification accuracy (88.2%) among the
models considered. The closest result was shown by the Mask R-CNN model (88.19%).

Based on the demonstrated results, we can conclude that the model we have developed
is best suited for solving the task at hand—recognition and classification of vehicles and
road infrastructure objects for further creation of an urban environment simulator. Despite
the fact that the average classification accuracy is not much higher than Mask R-CNN,
however, the performance increases.

Sensors 2022, 22, 5199 19 of 20

4. Conclusions

As a result of this study, the following results were obtained:

1. The system was designed using the standard methodology of business process
modeling IDEF0.

2. The system architecture has been developed.
3. A data set has been formed, consisting of data from open sources (data collected from

the site “auto.ru “, datasets: “It is Train or Bus”, “UK Truck Brands Dataset”, “Vehicle
Dataset”, “Open Image Dataset”), as well as data collected through the installation,
fixed on a car that drove through the streets of Moscow.

4. The study and comparison of existing popular neural network models that are used
for similar tasks, namely—YOLOv5, Mask R-CNN, ResNeXt, VGG16; these models
were trained on the same data as the model being developed.

Author Contributions: Conceptualization, M.G. and S.E.; Methodology, S.E. and M.M.; Project
administration, M.G.; Software, K.P.; Validation, M.G., K.P. and M.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chmiel, W.; Skalna, I.; Jędrusik, S. Intelligent route planning system based on interval computing. Multimed. Tools Appl. Vol. 2019,

78, 4693–4721. [CrossRef]
2. Nohel, J.; Stodola, P.; Flasar, Z. Model of the Optimal Maneuver route. In Path Planning for Autonomous Vehicles-Ensuring Reliable

Driverless Navigation and Control Maneuver; IntechOpen: London, UK, 2019.
3. Aguiar, A.P.; Bayer, F.A.; Hauser, J.; Häusler, A.J.; Notarstefano, G.; Pascoal, A.M.; Rucco, A.; Saccon, A. Constrained optimal

motion planning for autonomous vehicles using PRONTO. In Sensing and Control for Autonomous Vehicles; Springer: Cham,
Switzerland, 2017; pp. 207–226.

4. Penco, D.; Davins-Valldaura, J.; Godoy, E.; Kvieska, P.; Valmorbida, G. Control for autonomous vehicles in high dynamics
maneuvers: LPV modeling and static feedback controller. In Proceedings of the 2021 IEEE Conference on Control Technology and
Applications (CCTA), San Diego, CA, USA, 9–11 August 2021; pp. 283–288.

5. Penco, D.; Davins-Valldaura, J.; Godoy, E.; Kvieska, P.; Valmorbida, G. Self-scheduled H∞ control of autonomous vehicle in
collision avoidance maneuvers. IFAC-PapersOnLine 2021, 54, 148–153. [CrossRef]

6. Peng, Z.; Wang, D.; Li, T.; Han, M. Output-feedback cooperative formation maneuvering of autonomous surface vehicles with
connectivity preservation and collision avoidance. IEEE Trans. Cybern. 2019, 50, 2527–2535. [CrossRef]

7. Nie, L.; Lin, C.; Liao, K.; Liu, S.; Zhao, Y. Unsupervised deep image stitching: Reconstructing stitched features to images. IEEE
Trans. Image Process. 2021, 30, 6184–6197. [CrossRef]

8. Gu, X.; Song, P.; Rao, Y.; Soo, Y.G.; Yeong, C.F.; Tan, J.T.C.; Asama, H.; Duan, F. Dynamic image stitching for moving object. In
Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December
2016; pp. 1770–1775.

9. Kubanek, M.; Bobulski, J.; Kulawik, J. A method of speech coding for speech recognition using a convolutional neural network.
Symmetry 2019, 11, 1185. [CrossRef]

10. Kulawik, J.; Kubanek, M. Detection of False Synchronization of Stereo Image Transmission Using a Convolutional Neural
Network. Symmetry 2021, 13, 78. [CrossRef]

11. Zhang, X.; Zhang, M.; Jiang, L.; Yue, P. An interactive 4D spatio-temporal visualization system for hydrometeorological data in
natural disasters. Int. J. Digit. Earth 2020, 13, 1258–1278. [CrossRef]

12. Cao, W.; Wang, X.; Ming, Z.; Gao, J. A review on neural networks with random weights. Neurocomputing 2018, 275, 278–287.
[CrossRef]

13. Zhang, X.; Zhong, M.; Liu, S.; Zheng, L.; Chen, Y. Template-Based 3D Road Modeling for Generating Large-Scale Virtual Road
Network Environment. ISPRS Int. J. Geo-Inf. 2019, 8, 364. [CrossRef]

14. Malayjerdi, M.; Kuts, V.; Sell, R.; Otto, T.; Baykara, B.C. Virtual simulations environment development for autonomous vehicles
interaction. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Virtual, Online,
16–19 November 2020; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 84492, p. V02BT02A009.

http://doi.org/10.1007/s11042-018-6714-x
http://doi.org/10.1016/j.ifacol.2021.08.595
http://doi.org/10.1109/TCYB.2019.2914717
http://doi.org/10.1109/TIP.2021.3092828
http://doi.org/10.3390/sym11091185
http://doi.org/10.3390/sym13010078
http://doi.org/10.1080/17538947.2019.1701110
http://doi.org/10.1016/j.neucom.2017.08.040
http://doi.org/10.3390/ijgi8090364

Sensors 2022, 22, 5199 20 of 20

15. Jia, Q.; Chang, L.; Qiang, B.; Zhang, S.; Xie, W.; Yang, X.; Sun, Y.; Yang, M. Real-Time 3D Reconstruction Method Based on
Monocular Vision. Sensors 2021, 21, 5909. [CrossRef] [PubMed]

16. Sun, J.; Xie, Y.; Chen, L.; Zhou, X.; Bao, H. NeuralRecon: Real-time coherent 3D reconstruction from monocular video. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 15598–15607.

17. Jeong, J.; Yoon, T.S.; Park, J.B. Multimodal sensor-based semantic 3D mapping for a large-scale environment. Expert Syst. Appl.
2018, 105, 1–10. [CrossRef]

18. Kar, A.; Prakash, A.; Liu, M.Y.; Cameracci, E.; Yuan, J.; Rusiniak, M.; Acuna, D.; Torralba, A.; Fidler, S. Meta-sim: Learning to gen-
erate synthetic datasets. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA,
15–20 June 2019; pp. 4551–4560.

19. Linnenberger, A.; McLeod, R.R.; Basta, T.; Stowell, M.H. Three dimensional living neural networks. In Proceedings of the SPIE
9548, Optical Trapping and Optical Micromanipulation XII, San Diego, CA, USA, 28 August 2015; Volume 9548. [CrossRef]

20. GeÌron, A. Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems, 2nd ed.; O’Reilly: Sebastopol, CA, USA, 2019.

21. Wang, J.; Fu, P.; Gao, R.X. Machine vision intelligence for product defect inspection based on deep learning and Hough transform.
J. Manuf. Syst. 2019, 51, 52–60. [CrossRef]

22. Yan, B.; Xu, N.; Zhao, W.B.; Xu, L.P. A three-dimensional Hough transform-based track-before-detect technique for detecting
extended targets in strong clutter backgrounds. Sensors 2019, 19, 881. [CrossRef] [PubMed]

23. Benning, M.; Celledoni, E.; Ehrhardt, M.J.; Owren, B.; Schönlieb, C.-B. Deep learning as optimal control problems: Models and
numerical methods. J. Comput. Dyn. 2019, 6, 171–198. [CrossRef]

24. Miller, D.; Sünderhauf, N.; Milford, M.; Dayoub, F. Uncertainty for identifying open-set errors in visual object detection. IEEE
Robot. Autom. Lett. 2021, 7, 215–222. [CrossRef]

25. Chen, J.; Jia, K.; Chen, W.; Lv, Z.; Zhang, R. A real-time and high-precision method for small traffic-signs recognition. Neural
Comput. Appl. 2022, 34, 2233–2245. [CrossRef]

26. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying graph convolutional networks. In Proceedings of the
International Conference on Machine Learning PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871.

27. Cong, Y.; Tian, D.; Feng, Y.; Fan, B.; Yu, H. Speedup 3-D texture-less object recognition against self-occlusion for intelligent
manufacturing. IEEE Trans. Cybern. 2018, 49, 3887–3897. [CrossRef] [PubMed]

28. Auto [Electronic Resource]—Access Mode. Available online: https://auto.ru (accessed on 3 February 2022).
29. Dataset «Is it a Train or Bus». Available online: https://www.kaggle.com/notjeremy0w0/is-it-a-train-or-bus (accessed on

3 February 2022).
30. Dataset «UK Truck Brands Dataset». Available online: https://www.kaggle.com/bignosethethird/uk-truck-brands-dataset

(accessed on 3 February 2022).
31. Dataset «Vehicle Dataset». Available online: https://www.kaggle.com/krishrana/vehicle-dataset (accessed on 3 February 2022).
32. Dataset «Open Images Dataset». Available online: https://storage.googleapis.com/openimages/web/index.html (accessed on

3 February 2022).
33. Gorodnichev, M.G.; Dzhabrailov, K.A.; Polyantseva, K.A.; Gematudinov, R.A. On Automated Safety Distance Monitoring

Methods by Stereo Cameras. In Proceedings of the 2020 Systems of Signals Generating and Processing in the Field of on Board
Communications, Moscow, Russia, 19–20 March 2020; pp. 1–8. [CrossRef]

34. Polyantseva, K.; Gorodnichev, M. Neural network approaches in the problems of detecting and classifying roadway defects. In Pro-
ceedings of the 2022 Wave Electronics and its Application in Information and Telecommunication Systems, St. Petersburg, Russia,
30 May –3 June 2022; pp. 1–7.

35. Chen, Y.; Dai, X.; Liu, M.; Chen, D.; Yuan, L.; Liu, Z. Dynamic ReLU. In Computer Vision—ECCV 2020. Lecture Notes in Computer
Science; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer: Cham, Switzerland, 2020; Volume 12364. [CrossRef]

36. Medium. Wide Residual Networks with Interactive Code [Electronic resource]. Access Mode. Available online: https://medium.
com/@SeoJaeDuk/wide-residual-networks-with-interactive-code-5e190f8f25ec (accessed on 1 February 2022).

37. Kim, J.H.; Kim, N.; Park, Y.W.; Won, C.S. Object Detection and Classification Based on YOLO-V5 with Improved Maritime Dataset.
J. Mar. Sci. Eng. 2022, 10, 377. [CrossRef]

38. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

39. Pant, G.; Yadav, D.P.; Gaur, A. ResNeXt convolution neural network topology-based deep learning model for identification and
classification of Pediastrum. Algal Res. 2020, 48, 101932. [CrossRef]

40. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint 2014,
arXiv:1409.1556.

http://doi.org/10.3390/s21175909
http://www.ncbi.nlm.nih.gov/pubmed/34502800
http://doi.org/10.1016/j.eswa.2018.03.051
http://doi.org/10.1117/12.2191406
http://doi.org/10.1016/j.jmsy.2019.03.002
http://doi.org/10.3390/s19040881
http://www.ncbi.nlm.nih.gov/pubmed/30791600
http://doi.org/10.3934/jcd.2019009
http://doi.org/10.1109/LRA.2021.3123374
http://doi.org/10.1007/s00521-021-06526-1
http://doi.org/10.1109/TCYB.2018.2851666
http://www.ncbi.nlm.nih.gov/pubmed/30040672
https://auto.ru
https://www.kaggle.com/notjeremy0w0/is-it-a-train-or-bus
https://www.kaggle.com/bignosethethird/uk-truck-brands-dataset
https://www.kaggle.com/krishrana/vehicle-dataset
https://storage.googleapis.com/openimages/web/index.html
http://doi.org/10.1109/IEEECONF48371.2020.9078616
http://doi.org/10.1007/978-3-030-58529-7_21
https://medium.com/@SeoJaeDuk/wide-residual-networks-with-interactive-code-5e190f8f25ec
https://medium.com/@SeoJaeDuk/wide-residual-networks-with-interactive-code-5e190f8f25ec
http://doi.org/10.3390/jmse10030377
http://doi.org/10.1016/j.algal.2020.101932

	Introduction
	Materials and Methods
	General Concept and Classification of Neural Networks
	The Task of Recognizing 3D Objects in an Image
	Existing Technologies
	Problem Statement

	Results
	System Operation Design
	System Architecture
	Description of the Algorithm
	Formation of a Training Sample

	Conclusions
	References

