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Abstract: This paper deals with guided wave-based structural health monitoring of composite
overwrapped pressure vessels adopted for space application. Indeed, they are well suited for this
scope thanks to their improved performance compared with metallic tanks. However, they are
characterized by a complex damage mechanics and suffer from impact induced damage, e.g., due to
space debris. After reviewing the limited progress in this specific application, the paper thoroughly
covers all the steps needed to design and verify guided wave structural health monitoring system,
including methodology, digital modelling, reliability, and noise estimation for a correct decision-
making process in a virtual environment. In particular, propagation characteristics of the fundamental
anti-symmetric mode are derived experimentally on a real specimen to validate a variety of finite
element models useful to investigate wave interaction with damage. Different signal processing
techniques are demonstrated sensitive to defect and linearly dependent upon damage severity,
showing promising reliability. Those features can be implemented in a probability-based diagnostic
imaging in order to detect and localized impact induce damage. A multi-parameter approach is
achieved by metrics fusion demonstrating increased capability in damage detection with promising
implication in enhancing probability of detection.

Keywords: damage detection; Lamb waves; aerospace structures; ultrasound; smart structures

1. Introduction

Composite Overwrapped Pressure Vessels (COPV) have been adopted in recent
decades as high-pressure gas containers for different industrial needs, moving from auto-
motive to space applications and passing through energy field for hydrogen storage [1].
A significant COPV design is made by a metal liner, generally aluminium, with a full-
composite overwrap, made of a carbon fibre composite which withstands the loads. Usually,
composite part is manufactured through filament winding resulting in different plies with
different orientation. In addition, a thin epoxy bonding layer is applied to optimally nest
the inner metallic hull. The use of carbon fibre composites results in significantly lower
weight than all-metal pressure vessels would have. The key benefits of using composites
make these storage tanks light-weight, with long-term potential. However, they are likely
employed in harsh and unpredictable condition and damage may occur at any time. A
maintenance critical damage consists of through thickness composite damage (e.g., crack
and delamination) and debonding between metallic and composite parts. In particular,
this latter may arise at the interface (decreasing load-carrying capabilities of the structure)
due to impact events (e.g., low energy dynamics and space debris). Hence, it is worth
integrating a structural health monitoring (SHM) system to warn the presence of a possible
detachment which could threaten the component life cycle and dramatically reduce safety.

In this context, SHM is a promising approach conceived in many engineering fields to
increase safety and enhance performance of mechanical components and vehicles. The idea
behind this approach relies on monitoring characteristic data of the structural component
to manage the health status. This can increase safety predicting any unexpected failure
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which may be due to the harsh environment in which the whole system works. In addition,
safety and maintenance requirements of many load carrying structures include scheduled
integrity inspections and in-service damage assessment during the whole lifetime. This
damage tolerance approach is cost demanding and can be replaced by implementing
SHM towards on-condition maintenance, skipping unnecessary inspections and reducing
operating costs [2]. Using a cluster of sensors permanently attached to the structure, it
is possible to gather information about the load carrying component continuously or
on demand [3]. That is to say, on-line and on-demand interrogation of the structure is
performed in place of any other inspection task requiring non-destructive testing with a
probe to scan the whole structure [4]. The last possibility relies on the use of data warning
the presence of every damage during lifetime, which can be derived using several physical
knowledge [5]. In addition, the continuous record of such information enable to record
the structure aging during lifetime. This allows to warn any overload and eventually
estimate the remaining useful life of the structure [6]. Eventually, SHM methodologies
can be combined with an integrated sensing system in composite structures, enabling
self-sensing capabilities with near-zero mass [7].

Among the various techniques available, electromechanical impedance of the sensors [8],
structure vibration response [9,10], and wave propagation in solids [11], are massively used
to warn damage because they are affected by structure characteristics. Among them, guided
waves (GWs) are well suited to look into many types of shell-like structures, where they can
propagate over long distances and interact with emerging flaws. A specific example consists
of composite structures, whose media affect wave propagation characteristics and barely
visible damage due to low velocity impacts can be detected resorting to a few transducers.
In addition, this technique is easily approached for structural health monitoring purpose
using light weight piezoelectric transducers enabling full coverage of the structure under
inspection. Indeed, continuously monitoring the structure rather than inspecting the
component in a non-destructive way can increase safety while reducing operating costs
of the vehicle [2,12]. This aspect is even more important for COPVs for space applications
because structural component release is not feasible and the non-destructive evaluation
should be undertaken during the mission. This is the main reason why SHM approaches
have been recently introduced in the space field [13]. However, exploiting ultrasonic waves
for condition monitoring is far from simple in such multilayered structures due to the
complex propagation behavior. Indeed, Lamb waves are multi-modal and show different
defect-mode interaction, requiring a deep knowledge to design an SHM system in order
to find out the appropriate wave modes according to the flaw types, and the necessary
excitation and suitable sensor configurations [14]. Indeed, a certain defect may arise either
in one of the materials or among them. However, according to the specific wave mode
adopted, wave energy can be focused mostly in a certain layer, whose damage can be
eventually detected appropriately [15]. Otherwise, the scattering behavior can be observed
to detect and estimate the size of the damage at the interface [16]. Nonetheless, a step
further is needed to move from theoretical wave propagation in multilayered COPV to
damage detection. Despite different approaches are available using guided waves in a
non-destructive inspection shape [17], there is still a lack of reliable condition monitoring
approaches enabling the reliable implementation of a permanently installed SHM system.

From literature review, it looks evident that the use of structural health monitoring
for COPV monitoring is not explored thoroughly in the literature. Indeed, the principal
papers dealing with this application mostly refer either to the characterization of wave
propagation in COPV or to the feasibility of GW modes to interact with damage arising
in COPV. In addition, there is not any validation with real pressure vessel components
(usually bilayered plates in place of COPV are adopted for the experiments) and no paper
deals with the characterization of a whole SHM system devoted to damage detection
in COPV.

The results achieved in this paper can be useful qualitatively to every general appli-
cation in the GW-based SHM field. Although this latter is a wide research framework
recent reviews on the topic shows that many aspects are still not addressed thoroughly
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and can benefit from the presented findings. In particular, focusing on experiments, it is
clear that there is still much to improve to reach industrial deployment of such an SHM
approach [18]. In this sense, numerical simulations are crucial to help achieving a better
knowledge of the physical phenomenon. However, although many numerical approaches
have been proposed so far, with their advantages and drawbacks [19], it is still very com-
plex to achieve the validation of a digital physical system and improve SHM approaches
introducing a model-based technique.

To close this gap, the present paper covers for the first time all the steps needed to
design and verify a GW-based SHM system, including methodology, digital modelling,
reliability, and noise estimation for a correct decision-making process in the virtual envi-
ronment. In this way, this paper investigates the feasibility of guided waves in performing
SHM of a COPV in terms of defect detection and localization. Virtual tools are used to
support the investigation and idealize the complex structure and simulate wave propaga-
tion accurately. To this end, three distinct finite element (FE) models being characterized
by different degrees of fidelity are conceived and tested. The comparison of numerical
findings with measurements is then carried out to assess the most suited model(s) for SHM
simulation. Then, the most suited approach (compared to measurements) is selected to
simulate SHM inspection. This latter allows to look into the wave damage interaction
and discuss the feasibility of GW-based SHM for COPV. Based on these findings, damage
indicators warning the flaw are formulated using disparate signal processing techniques.
Finally, a damage reconstruction approach based on probabilistic imaging is implemented
to correctly localize the damage.

2. Materials and Methods
2.1. Statement of the Problem

The COPVs have increasingly been used in many fields as a fluid container. Space
structures, launch vehicles, and automotive hollow containers are a few examples of pressure
vessels that can be designed using either metallic or composite materials. Generally, pressure
vessels are classified in four different categories according to their construction characteristics:

• Type I: all-metal vessel, generally made from steel, is easily produced worldwide and
represents the cheapest yet heaviest solution available on the market.

• Type II: mostly steel or aluminum overwrapped by a glass-fiber composite along hoop
direction. The metal vessel and composite materials share about equal structural loads,
as a result lighter but more expensive than Type I vessels.

• Type III: metal liner, generally aluminum, with carbon fiber composite overwrap,
mostly carrying the structural loads.

• Type IV: all-composite vessel made from either carbon or hybrid carbon/glass fiber
composite and equipped with a polymer inner liner.

Type III and Type IV COPVs are much lighter than the other vessel categories (con-
structing pressure vessels, in whole or in part, from composites reduces fuel system and
vehicle weight) but require complex manufacturing with specialized technologies to be
produced. In addition, they are, as a result, quite expensive and are suitable, either for high
value products or in the case of specific needs. Indeed, composite vessels provide better
energy storage density, resulting the most practical solution for high-pressure applications.
In addition, corrosion resistance and overall safety increases together with the service life,
this latter thanks to excellent fatigue resistance shown by composite tows. As a result, they
can last up to 30 years before being replaced, which is twice the lifespan of Type I and Type
II vessels.

As to the manufacturing issues, it is worth noting that COPV is a multilayered com-
ponent consisting of a inner liner (typically, aluminum alloy Al6061-T6) and an external
composite reinforcement (typically made of carbon fibers) which is wrapped on the metal
part. Filament winding technology is employed to manufacture the composite layers
and wrap up the cylindrical metal while achieving homogeneous strength of the whole
container. The presence of dissimilar materials is accommodated using epoxy adhesive
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interposed at the metal-composite interface to ensure structural continuity. In this way,
any fluid leakage is prevented by the metal liner which contains the pressurized fluid
in a sealing manner. Instead, the necessary structural strength is provided by the exter-
nal wrapping with lower weight possible. Finally, this latter also works as a protection
from harsh environment outside. Hence, the composite lay-up is critical maintenance,
being both related to load carrier and the barrier between the inner structure and the
external environment. Indeed, according to the specific application, the COPV surface is
randomly subject to impacts (e.g., space debris, accident induced impact, etc.). Because
carbon fiber-reinforced polymers (CFRPs) show very low normal strength along with low
interlaminar shear strength between adjacent plies with very different fiber orientation,
low velocity impacts may promote damage and delamination can arise between several
plies. In addition to that, most likely a debonding between metal and composite site may
happen at the interface when the impact energy release breaks the adhesive layer. This
consequently decreases the stiffness and crack arising at the interface can propagate making
the structure no longer able to withstand loads. This can be threatening and demands
for damage tolerance design, including strict conservative rules together with in-service
non-destructive inspection. This last schedule is quite demanding, requiring eventually the
dismounting of parts, which is particularly unsuitable for space applications because the
vehicle cannot be eventually removed from service.

An alternative solution consists of continuous condition monitoring integrating a
network of sensors on or within the COPV structure. The idea lies in the design of a
permanent structural health monitoring system based on high-frequency diagnostic waves.
Ultrasonic transducers are employed to let guided waves propagate through the COPV
medium. According to the travelling mode (either symmetric or anti-symmetric), ultrasonic
waves show a typical propagation velocity depending upon the excitation frequency and
the media properties, which change when damage arises locally. Each transducer can
either generate a diagnostic wave (actuator) or record the structural vibration due to the
diagnostic input (sensor). Using a actuator–sensor pair, the structural response can be
recorded on both pristine and damaged structure and compared in such a way to gather
information about the hidden flaw. The idea behind this approach is that using a cluster of
sensors, post-processing raw data can return information about damage presence, along
with its location and severity.

In this context, a combined experimental and numerical investigation is presented in
this paper considering a COPV typically adopted for space application. The full scale of
the liner is shown in Figure 1a while the whole container obtained after filament winding
is depicted in Figure 1b, respectively. From the pictures’ background a scaled specimen for
laboratory tests is also visible. This is the sample adopted for SHM experiments.

In details, the composite layup consists of hoop and helical (unidirectional) plies
stacked together resulting in a 3.2-millimeter-thick multilayered composite characterized
by the lamination sequence [902/ ± 11/902/ ± 11/902/ ± 11/ ± 11/702]. Instead, the
liner is made from aluminum alloy and is characterized by a 3.35 mm thickness. Finally,
the epoxy material interposed at the interface forms a 0.12 mm adhesive layer. Material
properties of aluminum alloy, unidirectional composite plies and epoxy adhesive are
reported in Table 1 according to the manufacturer specifications. The COPV nominal
section results a 170 mm diameter circumference. The cylinder radius is kept to close both
tips of the hollow structure.
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Figure 1. Test article liner (a) and the whole structure obtained by filament winding process (b) [16].

Table 1. Mechanical properties of aluminum layer (Al), composite material (CFRP), and adhesive
layer (Ad).

E1 [GPa] E2-3
[GPa]

E12-3
[GPa] E23 [GPa] ν12-3 ν23

ρ
[Kg/m3]

Al 71.0 71.0 26.7 26.7 0.33 0.33 2700
CFRP 171.0 8.2 4.1 2.3 0.23 0.42 1520
Ad 2.0 2.0 7.6 7.6 0.30 0.30 1200

2.2. Experimental Setup

Figure 2 shows the experimental setup used to look into the propagation behav-
ior of Lamb waves, whose dispersive characteristics are further exploited to validate
numerical simulations.

The laboratory scale COPV shown in Figure 1b is equipped with three lead zirconate
titanate (PZT) disks along the longitudinal direction of the container using vacuum-based
secondary bonding. The PZT transducer is made of ferroelectric soft piezo material (PIC255)
produced by Physik Instrumente and characterized by 10 mm diameter and 0.25 mm thick-
ness. The bonding procedure is used to obtain optimum adhesion between transducer and
CFRP, characterized by rough surface. This results in a very thin and homogeneous bonding
layer, which practically transmits the deformation of the transducer to the structure through
an ultrasonic dry coupled method. The PZT disk returns a time varying strain when excited
by a variable voltage load (converse piezoelectric phenomenon). Otherwise, it returns a
time dependent voltage when the structure vibrates (direct piezoelectric phenomenon). To
this end, disk leads are soldered to electrical cables and connected to either a waveform
generator (actuator) or an oscilloscope (sensor). This latter digitizes the signal recorded by
the sensor when wave travels across the media. The former (HP/Agilent 33120A) is instead
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used to generate a tone burst signal to polarize the PZT disk enabling the piezoelectric
phenomenon. The diagnostic signal consists of 4.5 sinusoidal cycles windowed by the
Hanning function. This waveform is selected to obtain a band bell spectrum (without
leakage) tightened around the carrier frequency and characterized by a rather limited
duration over time. The frequency spectrum obtained prevents undesired effects due to
dispersion while the limited time duration prevents overlapping of waves travelling all
around the hollow structure. The signal amplitude is finally boosted up to 80 Vpp through a
customized amplifier to obtain a high signal to noise ratio. BNC connectors and twisted and
insulated cables are adopted to link the instruments are described before and sketched in
Figure 2. Wave propagation is excited in T1 in a laboratory with uncontrolled environment
in the range 10–80 kHz to characterize the dispersive behavior of the first antisymmetric
mode of Lamb waves (A0). To this end, the waves passing across T2 and T3 are recorded
and digitized by the oscilloscope to be eventually downloaded on a personal computer.
Post-processing ultrasonic data, the time of arrival is then estimated at each frequency
using the short-time Fourier transform [20] and the velocity calculated as:

vg =
δs

t3 − t2
(1)

where δs is the distance between the sensors and ti is the time of arrival of the wave at the
i-th sensor. This approach is used to avoid undesired transient effect due to the transducer
and reduce the error in the velocity estimation [21].

Figure 2. Schematization of the overall experimental setup adopted for wave propagation analysis [16].

2.3. Numerical Simulation

Simulation of wave propagation has been addressed by many authors so far [19].
Among various techniques available, finite element modelling is a flexible and reliable solu-
tion as it is implemented in many commercial software with easy pre- and post-processing
capabilities. For the scope of this research, FE modelling is implemented in Abaqus vir-
tual environment using transient dynamic analysis to formulate the equations of motion.
Meanwhile, the dynamic explicit technique is used to integrate them in order to achieve a
fast computing. Indeed, simulating wave propagation in multilayered media requires a
very fine discretization which makes the implicit scheme too heavy from computational
standpoint [20]. As a consequence, the convergence of the solution is ensured by keeping
very small the integration time steps and the computing time reduced by enabling parallel
computing through domain packaging among the workstation processors.

As to the idealization of the structure, different assumptions are made to simplify the
modelling and reduce computation costs, resorting to different FE models. The idea is to
define and validate several models which can then be adopted to simulate wave–damage
interaction so that the most suited model for this kind of application and the specific
investigation can be adopted. First of all, it is worth noting that due to the high radius to
thickness ratio of the COPV, the wave propagation can be idealized as it happens along a
planar media (i.e., thin plate). Generally, the propagation in between a couple of transducers
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(along the line of sight) can be idealized as a perturbation travelling across a thin plate under
specific conditions. Despite COPV being rather complex, when the curvature radius is
sufficiently higher than the characteristic dimension of the phenomenon (i.e., characteristic
wavelength), this assumption can be accepted. This approach is commonly adopted
in literature to characterize the wave propagation according to the material adopted to
manufacture the multi-layered structure because returning reasonable results except for
the reflections from the borders.

Hence, a multilayered plate is discretized and further assumptions are made. Firstly, a
full-3D laminated structure is conceived to idealize the component with highest fidelity
possible. Each layer of the structure is discretized as a single lamina, whose material
properties are assigned as engineering constants while the local reference system is aligned
to the fiber direction. The solid anisotropic medium is idealized through the C3D8R
(brick-type) element. As a very small mesh is made necessary by convergence compliance
of the explicit integration, the reduced version of the element is preferred to the full
formulation to keep lower the computational effort. Indeed, the distance between the
element centroid (where the integration is solely carried out) and the nodes (where the
displacement information is needed) is so small that does not alter the field of solutions [20].

Secondly, a simplified 2D model is conceived making use of CPE4R elements to
idealize the waveguide along the line of sight. Indeed, the detailed 2D plane strain model is
extremely useful to accurately discretize the through thickness properties of a multilayered
structure while keeping computational cost very low. In addition, this idealization allows
to simulate wave propagation under different flaw patterns without resorting to a complex
damage discretization. In addition, the model can be easily updated to comply with
different propagation directions through rotating material properties. Reduced integration
is still adopted to keep time effort lower.

Thirdly, the plate plane is thoroughly discretized as an equivalent single layer (ESL)
whose stiffness is the same as that characterizing the section of the three-dimensional plate.
In this case, the plate is discretized in detail, while the through thickness behavior is as-
sumed, implementing the first shear deformation theory (FSDT) to derive the displacement
functions through the thickness. The displacement approximation is obtained idealizing
the composite media through the S4R element and numerically compensated accounting
the shear effects [20]. Again, reduced integration is to keep lower computational efforts.

Another significant assumption regards the transducer idealization. Since the di-
mension thereof is rather limited and usually much smaller than the distance between
actuator and sensor, they are discretized as a single node. The actuation is conveyed to the
structure forcing the waveform as out of plane displacement. In the same way, the sensing
phase is simulated recording the out of plane displacement. The last point of discussion
deals with the flaw modelling. Impact induced damage is quite complicated and includes
matrix cracks and delamination in between adjacent layers. This latter can be simulated as
node detachment in both 3D and 2D approaches efficiently. Instead, although this is still
possible with the ESL model duplicating the single layer [22], the shear strain cannot be
represented less correctly than introducing a complicated formulation for shear correction
factor. Nonetheless, an alternative solution is available and relies on local reduction in
material properties through the thickness when defining the layer stacked around the
ESL [23].

2.4. Signal Processing
2.4.1. Damage Assessment

SHM relying on ultrasonic guided waves as diagnostic method requires the estab-
lishment of a dedicated decision framework (to warn the presence of a damage) based on
either one or multiple damage metrics. This latter is usually based on a specific feature
extracted from the waveform which should be sensitive either to the damage from physics
point of view or to any statistical variation of the ultrasonic signal acquired.
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When interacting with a delamination-like damage, waves scatter in multiple di-
rections. Along the line of sight, it can be transmitted, reflected, or converted from the
discontinuity, showing propagation characteristics different than the incident wave. When
crossing damage, the amplitude and the time of arrival of the wave transmitted trough
the flaw changes. This is mostly due to the thickness variation of the medium caused by
the delamination arising between two adjacent layers and returning a different structural
impedance. The damaged zone works as an impedance cage, with part of the energy
trapped in between the tips of the delamination [24]. As a consequence, the transmitted
wave shows a lower amplitude, which can be caught by a sensor placed beyond the de-
fect. This phenomenon promotes the signal amplitude as a suitable candidate for damage
detection, whose metrics in a damage index shape can be defined as:

DISA =
|AC − AB|

AB
(2)

where the extracted feature A is, respectively, evaluated on pristine (AB) or currently
operating (AC) structure.

Likewise, the smaller thickness of the medium reduces the thickness-frequency of the
problem and may result in a different arrival time when the wave velocity decreases. This
is particularly visible in anti-symmetric mode inspection, showing high dispersivity in the
low ultrasound range ([10–80] kHz). Hence, the time of flight among actuator and sensor
can be placed as additional feature to gather information about any delamination arising in
between them, resulting in the damage index like:

DIToF =
|tC − tB|

tB
(3)

where t is the time of arrival of the transmitted wave. Scattering occurring at the discon-
tinuity can be also caught through waveform energy analysis. As the transmitted and
reflected energy varies according to the debonding, any sensor beyond the damage will
record less energy travelling through. Meanwhile, any sensors placed before the flaw will
register more energy flowing due to the reflected signal back scattered from the defect site.
The energy of the signal is included in a damage indicator to detect the defect presence as:

DIE =
E(SC(t))− E(SB(t))

E(SB(t))
(4)

where S(t) is the digitized waveform
Otherwise, damage detection can be achieved in an autonomous way relying on

statistical analysis of the waveform. Instead of using a physics based feature, the idea
behind this approach is to warn the presence of the damage looking into statistically
meaningful variation of the signal using common post processing techniques. Among
them, cross-correlation and root mean square deviation evaluated among different signals
(i.e.,: baseline and current waveform) are particularly suited to reveal any statistically
meaningful variation in the waveform over the time. Comparing the waveforms referred,
respectively, to the pristine status and the current damaged condition, the metric warning
actual damage is obtained.

Firstly, two signals can be statistically compared computing a classical correlation
index, such as the Pearson Correlation Coefficient, ρ, which can be detailed as:

ρ =

∣∣∣∑Nsp
i=1(x1,i − x̄1)(x2,i − x̄2)

∣∣∣√
∑

Nsp
i=1(x1,i − x̄1)

2(x2,i − x̄2)
2

(5)
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where x̄ represents the average of the samples set. Two perfectly correlated signals returns
ρ = 1, which is what is expected comparing two inspections when no damage arises.
Otherwise, if signals do not match statistically, a smaller correlation coefficient is obtained.
That is where damage actually occurs. As such, the detection index is computed as:

DICC = 1− ρ (6)

Secondly, the damage index approach based on root-mean-square deviation is com-
puted to discern the different states of the structure as follows [25]:

DIR = RMSD(Sc(t); S̄b(t)) (7)

In the previous equations S(t) is again the digital signal of the waveform recorded on
either the baseline or current condition.

It is worth noting that damage metrics and, as such, damage indicators are affected by
any noise in the signals and any environmental disturbances, including electromagnetic
coupling and temperature variation. That is the reason why concurrent measurements
carried out at the same structural condition and compared through signal processing do not
return a null damage indicator, as expected ideally. For this reason, the decision-making
framework usually needs a statistical analysis of multiple inspections to assess the noise in
an unsupervised mode and chose an opportune threshold of detection.

2.4.2. Damage Localization

Considering a sensor pair used to interrogate the structure, one or more signal re-
sponses can be defined to gather any health information along the line of sight. Using
a cluster of sensors, a combination of possible interrogation paths is made available and
can be exploited to localize the damage. However, this latter diagnosis output is strongly
depending upon the efficient reconstruction algorithm. Every information collected along
a specific path should be be opportunely weighted and moved to the structure mesh in
order to get to a probabilistic distribution of having a damage in a specific point, such as a
tomographic representation.

Among various reconstruction algorithms, probability based diagnostic imaging is
commonly used for guided wave-based SHM as they are easy to implement and do not
require many inputs [26,27]. The damage indicators defined by post processing raw signal
constitute the signal responses and provide information about damage sensitivity along
the direct line of sight in between each pair of transducers. During SHM inspection,
transducers are actuated individually, while remaining sensors works as receivers and
record wave signals. This procedure returns the network shown in Figure 3a. Structure
interrogation is performed multiple times. A first reference state (baseline) is recorded
on a known undamaged condition of the structure. Other states (current) are stored via
scheduled interrogations. Every time an inspection is carried out, DIs are computed
for each transducer pair comparing current state with baseline state. At this point, it
is of utmost importance defining how the path related information is distributed and
weighted all through the structure. For this reason, a weight distribution function is set
up implementing a distance Index (dI) for every point of the structure which introduces a
decreasing probability according to the distance from the path. The combination of damage
responsive indicator and distance related indicator returns a damage probability index
(DPI) all through the structure as shown in Figure 3b. The i-th path interrogation returns a
probability in every point of the structural mesh, P, as follows:

DPIi(P) = DIi · dIi(P) (8)

where dIi weights the distance of the point P from the i-th path defining a decreasing
probability far from it. This mathematical formulation accounts both the damage severity
(assessed by the DI) estimated along the i-th path and the proximity of a specific point P
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to the i-th path (weighted by dI). Finally, the DPI at a specific point P is evaluated as the
normalized cumulative effect returned by every possible path at the point P:

DPI(P) = ∑n
i=1 DPIi(P)
max(DPI)

(9)

Figure 3. Piezoelectric transducer array and resulting propagation paths where damage indices
are calculated (a). Structural mesh where damage probability index is derived using probability
distribution function (b).

About the weighting distribution function over the structure, distance indices are
computed in three different ways. First, the norm between each structural node and
the straight line including both transducers is used to compute the actual distance δ(P)
value. Second, this distance is calculated considering both sensors as foci of an ellipse
which return iso-probability lines. Finally, the norm between each structural node and the
segment connecting transducers is used. The distance index is then evaluated following
the Equation (10).

dI = {
β−δ(P)

β−1 , i f δ(P) ≤ β

0 , i f δ(P) ≥ β
(10)

In this formulation, δ(P) is the above mentioned distance and β is the parameter
defining the maximum distance up to which the path shows influence. Namely, if the
distance is greater than β, the path has no influence on that point and the DPI suddenly van-
ishes. β value is usually calibrated on known condition to improve the reconstruction [28].
Otherwise, it can be optimized following several approaches [29,30].

3. Results

This section collects the results obtained from measurements and simulated environ-
ments. Firstly, the dispersion characteristics of the A0 Lamb wave mode is derived to
validate several numerical approaches. Secondly, the simulated environments are used to
evaluate the damage indicators to warn the presence of debonding from early stage. Finally,
the several signal processing approaches are further developed to localize the damage using
the probabilistic reconstruction approach. It is worth noting that the experimental activities
are performed mainly to validate the several numerical methods adopted. Indeed, the
characterization of the SHM system performed in this paper is not feasible experimentally
and requires further simulation to verify that diagnostic parameters (e.g., frequency, wave
mode, signal feature, etc.) and damage indices are effective for damage detection. As
means of compliance, the dispersion curve of the first fundamental mode is adopted as
A0 is the most important wave mode excited until 100 kHz, which is the frequency range
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envisioned for the monitoring approach. This validation is effective because this mode is
high dispersive and matching the experimental trend allows to motivate the numerical
validation with a very good confidence.

3.1. Dispersion Characterization

Anti-symmetric fundamental mode of Lamb waves (A0) shows severe dispersive
behavior in the low ultrasound which results in varying wave velocity versus frequency.
The graphical representation of the curve (i.e., dispersion curve) is essential means of
validation for FE models. Group velocity can be estimated from the time of flight, as shown
in Equation (1), comparing the time of arrival of two wave packets (t1 and t2), either excited
or sensed at two different places using the Short-Time Fourier transform. This calculation is
carried out in between 10 and 80 kHz for both measurements and simulations to reconstruct
the dispersive trend of the A0 mode. Measurements are carried out on the scaled COPV
shown in Figure 1b. Instead, numerical investigations are simulated using the equivalent
COPV plate idealized with 3D, 2D, and ESL models, respectively. The results are reported
in Figure 4.

Figure 4. Dispersion curve of A0 Lamb wave mode propagating in COPV. Equivalent plate is used
to simulate the wave propagation using FE models.

It is worth noting that the 3D approach well intercepts the dispersion characteristics
of the A0 mode. This is usually expected due to the high fidelity model conceived. How-
ever, the need for discretizing accurately the lamination sequence (resulting in at least
one element per ply through the thickness) and being compliant with the convergence
constraints given by explicit integration returns a huge number of degrees of freedom. That
is to say, the computational cost exponentially increases with structure complexity and it is
acceptable only for detailed analysis dedicated to specific investigations.

Instead, the ESL approach based on first shear deformation theory does not predict
the dispersion behavior of A0 mode unless at very low frequencies. Indeed, when the
frequency increases, the wavelength of A0 mode decreases and the shear effects start
emerging suddenly. This is emphasized by the high thickness of the structure which
enables shear effects that cannot be predicted with a first-order shear deformation theory
correctly without sorting to a more complex shear correction factor [20]. As suggested by
the literature, FSDT is not suited when the slenderness ratio of the plate is too small because
Reisnner–Mindlin theory fails to return displacement field through the thickness and even a
reasonable shear correction factor does not compensate the error [31]. Despite the benefit in
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terms of computational efforts gained with ESL approach, material characterization cannot
be achieved correctly. An alternative solutions consists in increasing the displacement order
(e.g., third order shear deformation theory) to encompass such shear effects. However, this
option usually returns computational costs close to those of the 3D approach [32].

Finally, the 2D model returns a reasonable result being able to predict dispersion curve
of the A0 mode properly all through the frequency range. Indeed, this model allows to
discretize in detail the lamination stacking sequence returning the through thickness shear
strain arising during wave propagation with high degree of fidelity. In addition, being the
discretization limited to the section along the line of sight, the number of degrees of freedom
is rather limited even in complex and thick composite structures. As a consequence, a
prediction matching is achieved with lower computational cost possible. This enable a
versatile tool to analyze a variety of damage patterns in a parametric view. Nonetheless, it
is worth noting that this kind of idealization allows simulating wave propagation along
one path and requires updating material properties to encompass anisotrpic effect on
wave pattern propagation. In addition, the two dimensional boundary does not allow
contemplating the three-dimensional in-plane scattering happening at the damage site.

Due to the findings achieved, the 2D model is selected to parametrically investigate
the effect of a possible debonding at the metal-CFRP interface towards SHM (i.e., damage
metrics versus damage size). Instead, 3D and ESL approaches are adopted further to create
data encompassing the full scattering analysis (i.e., damage localization).

3.2. Damage Assessment

Damage is idealized as a perfect debonding between metal and CFRP sides occurring
at the interface. Hence, connections among boundary elements are removed at the interface
with CFRP to simulate the defect with variable size in between 0 and 25 mm. The sketch of
the model adopted and discretized with the 2D FE approach is reported in Figure 5.

Figure 5. Sketch of the 2D FE model adopted to characterize the metrics vs damage size. The adhesive
layer is intentionally enlarged.

Waveforms are recorded in pitch catch mode with actuator and sensor being placed
at 300 mm distance and delamination modelled in the middle thereof. Digital data
are then post-processed to introduce mathematical noise into the signals and simulate
concurrent measurements. This is made necessary to reproduce variability typical of
measurements [33]. Typical results obtained computing energy based feature and RMSD
analysis are reported in Figure 6a,b, respectively. In both cases the damage indicators are
normalized by the maximum value achieved.
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(a) (b)

Figure 6. Damage index versus defect size using energy based feature (a) and root mean sqare
deviation analysis (b) carried out at 50 kHz.

The black bars are data obtained when no defect is actually modelled. That is to say,
the same structural configuration is interrogated and ultrasonic waves compared together
using the same metric as for damage detection. The results obtained are representative
of the inherent noise within the signals introduced by mathematical alteration and they
are used to calibrate the artificial model on the experimental noisy. Indeed, the DI values
obtained are in line with those coming from concurrent measurements. Instead, the blue
bars show the damage indicator when such a damage is actually present. Again, the
concurrent measurements are simulated via mathematical noise and the data plotted versus
the number of simulation and according the defect size.

The findings show that damage detection is possible since defect is early emerging.
However, the sensitivity to damage rate and noise level is different, eventually resulting in
different reliability. As to this latter aspect, it is worth noting that a quite linear trend of DI
versus defect size is found, which is quite important when tackling reliability assessment
of the SHM system [34]. However, other influence parameters are crucial in this view,
including how defect position affects the detection, which it is not easy handling. Other
damage indicators shows a very similar result less than time of flight and signal amplitude.
They are both able to warn the presence of the damage. However, the former one does
not show a statistically meaningful variability and does not increase linearly. The lack of
linearity is still present when evaluating signal amplitude.

3.3. Damage Localization

This section shows the attempt to localize a damage arising at the aluminum-composite
interface in a model assisted way. To enable full in-plane wavefield analysis, the 3D
approach is used this time, introducing an actuator and sensor network consisting in
12 transducers uniformly placed all around a 300 mm diameter circle. The damage size is
kept constant to 20 × 20 mm and moved from the center of the plate up to the circum-
ference. Figure 7 shows the detection of centered damage obtained performing different
distribution weighting function and optimizing the β parameter. Despite localization is
achieved always in a satisfactory way, elliptic weight function returns usually the sharpest
reconstruction possible.

Since different features are available, the detection was carried out either using a
single parameter reconstruction or combining more data to exploit complementary thereof.
Figure 8 shows different damage detection results changing the parameter selected for
defect assessment. In particular, it is worth noting that time of flight does not return a very
good damage reconstruction. Nonetheless, data fusion depicted in Figure 8f shows that
error disappears thanks to the features’ complementary.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Maps of Damage Probability Index relying on energy based index. Damage map and
contour plot using linear (a,b), modified linear (c,d), and elliptical (e,f) weight distribution function.
Colorbar in between 0 and 1. SHM carried out at 50 kHz.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Maps of Damage Probability Index using elliptic weight distribution function relying on
energy (a), correlation (b), RMSD (c), time of flight (d), signal amplitude (e), and fusion (f) based
damage indicator. Colorbar in between 0 and 1. SHM carried out at 50 kHz.

A final investigation regards the position of the damage, which affects the reconstruc-
tion quality and, as such, the localization results. However, a satisfactory detection is
always achieved while combining all parameters together as depicted in Figure 9.
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(a) (b)

(c) (d)

Figure 9. Maps of Damage Probability Index using elliptic weight distribution function and relying
on data fusion based damage indicator at 0 mm (a), 50 mm (b), 100 mm (c), and 150 mm (d) far away
from the center. Colorbar in between 0 and 1. SHM carried out at 50 kHz.

3.4. Discussion

Composite overwrapped pressure vessels are being increasingly used thanks to their
inherent advantages in terms of weight to volume ratio and extended life span possible.
However, complex manufacturing and composite sensitivity to low velocity impacts still
affect the design and threaten safety during lifetime, giving rise to concern. To overcome
such a drawback, GW-based SHM is investigated in this paper, showing promising impact
even in fields of application undiscovered so far, such as space domain. In particular, the
feasibility of Lamb waves is investigated to timely warn damage early emerging during
the mission. Propagation behavior is rather complicated by the multilayered media, and
supporting simulation is adopted to predict its key characteristics to further investigate and
eventually design effective SHM solutions. In this view, this paper shows how different
simulation approaches are suited to predict the dispersive behavior of A0 propagating
and scattering in COPV media. In particular, 2D FE modelling shows promising impact
in reducing computational efforts without compromising accuracy. This allowed to look
into damage detection sensitivity versus flaw size using a variety of detection metrics,
either based on physics phenomena related to wave scattering at the defect or exploiting
statistical information gathered within waveform signals. The idea is to rely on different
parameters as it happens that each signal feature may be affected by a variety of damage
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in a different manner. Having more features to look into, enhance the reliability of the
system and improves the diagnosis. Here, the different parameters are analyzed against
their reliability (Figure 6 shows the effect of damage dimension) and the linear trend
of typical features versus flaw size is in accordance with the requirements from [33] for
reliability assessment, which can be extended to SHM [34]. Likewise, damage detection and
localization potentialities according to the different features are demonstrated in Figure 8,
where imaging clearly changes with the feature adopted for damage reconstruction. Finally,
the reliability of the system is stressed again against the damage position relying on the
multi-parameter approach (i.e., fusion of several information from selected signal features)
in Figure 9.

It is worth noting that the characterization of the GW-based SHM system as performed
in this paper requires the evaluation of different influencing factors, such as diagnostic
parameters (e.g., frequency, wave mode, signal feature, etc.), damage indices versus defect
dimension, damage location, and noise. This type of activity is not feasible experimentally
and requires further simulation to assess the effect of such factors, as well as the potentiality
of the SHM system. Indeed, either a huge number of specimens is necessary or a reversible
damage can be introduced (such as sponge, bolts, etc.). Nonetheless, this latter approach
relies on a damage idealization and does not reflect the typical impact induce damage.
Instead, with a numerical model it is possible to simulate the failure with increasing
fidelity, as highlighted in the paper. However, the use of numerical simulation only is
not recommended without a prior validation of the numerical model. This is the reason
why a first experimental campaign was performed, whose results are used to characterize
the dispersion behavior of the anti-symmetric fundamental mode. Hence, once being
validated, the idea is to employ the digital twin of the specimen in place of the original
specimen. Hence, this is the reason why the numerical analysis is finally extended to
explore damage localization possibilities using a three-dimensional model. Information
gathered as damage indicators are distributed and weighted all through the structure
implementing a probabilistic imaging approach. Results demonstrate that localization
is achieved accurately and errors using single feature can be overcome implementing
such a data fusion approach to have a reliable defect assessment no matter the position of
the damage.

As a final remark, it is worth pointing out that this paper deals with the identification
and localization of impact induced damage. Impact is not necessarily due to a long term
endurance. Indeed, it is an unforeseen event and results in an abrupt damage through the
thickness which needs to be warned and diagnosed promptly. Hence, the main aim of the
paper is to demonstrate the efficiency and reliability of a GW-based SHM system. As a
more industrial oriented research, a long term testing campaign can be performed to test
in a real operating life the condition monitoring approach. However, this would require
a devoted research programme for which the feasibility study proposed in this paper is
worth being considered as a preliminary statement.

4. Concluding Remarks

Composite overwrapped pressure vessels are being increasingly used thanks to their
inherent advantages in terms of weight to volume ratio and possible extended life span.
However, complex manufacturing and composite sensitivity to low velocity impacts still
affect the design and threaten safety during lifetime, giving rise to concern. To overcome
such a drawback, SHM is investigated in this paper, showing promising impact even in
fields of application undiscovered so far, like space domain. In particular, the feasibility of
Lamb waves is demonstrated in this paper to timely warn early damage which emerges
during the lifetime. In addition, this paper shows how different simulation approaches are
well suited to predict the dispersive behavior of A0 propagating and scattering in COPV
media. In particular, 2D FE modelling shows promising impact in reducing computa-
tional efforts without compromising accuracy. This allows to look into damage detection
sensitivity versus flaw size using a variety of detection metrics, either based on physics
phenomena related to wave scattering at the defect or exploiting statistical information
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gathered within waveform signals. Based on these findings, it is possible to asses whether
the SHM approach is reliable or not. Finally, extending the numerical analysis to explore
damage localization using 3D FE modelling, information gathered as damage indicators
can be distributed and weighted all through the structure implementing a probabilistic
imaging approach. Results demonstrate that localization can be achieved accurately and
errors using single feature can be overcome implementing such a data fusion approach to
have a reliable defect assessment no matter the position of the damage.
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