
Citation: Mihigo, I.N.; Zennaro, M.;

Uwitonze, A.; Rwigema, J.; Rovai, M.

On-Device IoT-Based Predictive

Maintenance Analytics Model:

Comparing TinyLSTM and

TinyModel from Edge Impulse.

Sensors 2022, 22, 5174. https://

doi.org/10.3390/s22145174

Academic Editor: Roberto Beraldi

Received: 8 June 2022

Accepted: 5 July 2022

Published: 11 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

On-Device IoT-Based Predictive Maintenance Analytics Model:
Comparing TinyLSTM and TinyModel from Edge Impulse
Irene Niyonambaza Mihigo 1,* , Marco Zennaro 2,* , Alfred Uwitonze 3 , James Rwigema 3

and Marcelo Rovai 4

1 African Centre of Excellence in Internet of Things, College of Science and Technology,
University of Rwanda, Kigali P.O. Box 4285, Rwanda

2 Telecommunications/ICT4D Laboratory, The Abdus Salam International Centre for Theoretical Physics,
Strada Costiera, 34151 Trieste, Italy

3 College of Science and Technology, University of Rwanda, Kigali P.O. Box 4285, Rwanda;
alfruwitonze@gmail.com (A.U.); jamesrwigema@gmail.com (J.R.)

4 Instituto de Engenharia de Sistemas e Tecnologia da Informação, Universidade Federal de Itajubá,
Itajuba 37500-903, Brazil; rovai@unifei.edu.br

* Correspondence: irenemihigo1@gmail.com (I.N.M.); mzennaro@ictp.it (M.Z.)

Abstract: A precise prediction of the health status of industrial equipment is of significant importance
to determine its reliability and lifespan. This prediction provides users information that is useful in
determining when to service, repair, or replace the unhealthy equipment’s components. In the last
decades, many works have been conducted on data-driven prognostic models to estimate the asset’s
remaining useful life. These models require updates on the novel happenings from regular diagnostics,
otherwise, failure may happen before the estimated time due to different facts that may oblige rapid
maintenance actions, including unexpected replacement. Adding to offline prognostic models, the
continuous monitoring and prediction of remaining useful life can prevent failures, increase the useful
lifespan through on-time maintenance actions, and reduce the unnecessary preventive maintenance
and associated costs. This paper presents the ability of the two real-time tiny predictive analytics
models: tiny long short-term memory (TinyLSTM) and sequential dense neural network (DNN). The
model (TinyModel) from Edge Impulse is used to predict the remaining useful life of the equipment by
considering the status of its different components. The equipment degradation insights were assessed
through the real-time data gathered from operating equipment. To label our dataset, fuzzy logic based
on the maintainer’s expertise is used to generate maintenance priorities, which are later used to com-
pute the actual remaining useful life. The predictive analytic models were developed and performed
well, with an evaluation loss of 0.01 and 0.11, respectively, for the LSTM and model from Edge Impulse.
Both models were converted into TinyModels for on-device deployment. Unseen data were used to
simulate the deployment of both TinyModels. Conferring to the evaluation and deployment results,
both TinyLSTM and TinyModel from Edge Impulse are powerful in real-time predictive maintenance,
but the model from Edge Impulse is much easier in terms of development, conversion to Tiny version,
and deployment.

Keywords: predictive maintenance; edge; maintenance actions; remaining useful life; equipment;
TinyModel; real-time data

1. Introduction

In today’s maintenance, the early fault detection and prediction is mainly centered
on the maintainer’s experience and their familiarity with the equipment. Due to the
development in engineering and the complexity of equipment, human judgment is not
sufficient to prematurely predict and continuously oversee the status of assets.

As result, over recent decades, machine learning models have been highlighted as
meaningful tools in predictive maintenance, especially in prognostic and asset health

Sensors 2022, 22, 5174. https://doi.org/10.3390/s22145174 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22145174
https://doi.org/10.3390/s22145174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6655-2893
https://orcid.org/0000-0002-0578-0830
https://orcid.org/0000-0002-5687-5645
https://orcid.org/0000-0002-3217-9725
https://orcid.org/0000-0002-6810-3036
https://doi.org/10.3390/s22145174
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22145174?type=check_update&version=1


Sensors 2022, 22, 5174 2 of 20

management [1]. Different prognostic algorithms and models [2] have been developed
using simulated [3] and/or offline data sets [4–7] to estimate the asset’s remaining useful
life (RUL), which is based on the targeted values function.

There is no universal model due to different systems, type and quality of data, differ-
ent performance conditions, and working principles; therefore, the construction of a life
degradation model up to total failure is mainly performed for the projection of mainte-
nance actions, especially to keep spare inventory on track ahead of time, and it is based on
subjective choice [3], such as asset state, age, usage load, deterioration curve, rate or patterns,
failure types, and conducted maintenance history parameters.

In addition, most of the RUL models for traditional regression problems do not operate
in real-time; thus, they must be updated by new findings from the regular preventive
maintenance [8]. They also mainly rely on the logistical, managerial, and decision support
processes to procure the spares regarding the estimated lifetime, rather than the continuous
fault diagnostics that may fortify the powerful prediction.

Among others, traditional models, such as random forest and XGBoost [9], Sea-
sonal Autoregressive Integrated Moving Average (SARIMA) [10], Support Vector Machine
(SVM) [11–13], a stochastic model, such as Hidden Markov Model (HMM) [14], and fuzzy
neural network [15] have demonstrated efficient predictions on real-time data, but with
some limitations based on manual data processing and expertise of the developer [5,16].
Deep learning has shown admirable performance in the prognosis of a high amount of data [16].
Among the popular deep prognostic models are Convolutional Neural Network (CNN) [5–7,11]
and Recurrent neural network—particularly its long short-term memory [4,17–20] version.

In the predictive maintenance domain, the equipment degradation recalls the long-
term chronological beliefs from its real-time physical performance data; thus, the long
short-term memory (LSTM) variant has been appreciated and adopted in the literature to
provide better performance for time series data [9,19,20] due to its capability to preserve
information for long periods.

These asynchronous predictive models do not provide a full availability of the equipment’s
health state, thus, prompt downtime may occur between two consecutive prediction periods.
Consequently, maintainers claim to continuously oversee their asset’s operating bulletin
that may fall in different health states before reaching the failure point. There is also a claim
on a continuous and autonomous prediction of the RUL of their equipment.

To overcome this deficiency, through the steady novelties in technology, such as the
Internet of Things (IoT), the real-time state of the equipment can be observed continu-
ously on edge by employing different sensors to acquire different health information and
the analytics predictive model in real-time on edge devices. The IoT-based predictive
maintenance [21] may enable users to obtain autonomous real-time updates of their equip-
ment health conditions for timely accurate decision making on maintenance actions.

Adding to the real-time LSTM on edge (TinyLSTM), the Edge Impulse [22] is recently
being developed and deployed as a leading Artificial Intelligence (AI) platform that simpli-
fies the development and deployment of machine learning models on the Tiny embedded
devices (at the edge) with a possibility of ultra-low power consumption (TinyML).

Driven by the claims on extended up-time and lifespan of equipment, to minimize
unplanned downtime and unnecessary preventive maintenance as well as to reduce the
frequency of component replacement, along with this work, we comparatively assessed the
development and deployment of TinyLSTM and TinyModel from Edge Impulse performances
on the real-time data collected from different components of operating equipment with a
purpose to advise the best on edge predictive maintenance analytics model. Both have been
built and evaluated using Keras library [23]. Later, they are transformed into the TinyModel
version for their deployment on the IoT device installed on the monitored equipment.

Adding to existing offline sequential predictive maintenance models, the TinyModel
proposed in this work provides real-time updates on the RUL of the running equipment
and reduces the maintenance time as well as cost through performing only the necessary



Sensors 2022, 22, 5174 3 of 20

maintenance activities in a convenient time; therefore, the model will be continuously running,
and the device on the edge will also require a close degradation monitoring for all of its parts.

By considering the maintainers’ expertise, the gathered real-time data were prepro-
cessed using the fuzzy expert system to find the diagnostic facts to label the maintenance
actions priority, from which the actual remaining useful life could be calculated depending
on the conditional status of each component.

The major contributions of this paper are the following:

• For real-time application, the real-time performance data to develop the model were
gathered using an IoT device installed on the equipment.

• For multi-conditional parameters that may separately affect the equipment life, the
data are labeled using the fuzzy expert system based on the maintainers’ expertise.

• To predict an equipment’s remaining useful life depending on equipment’s compo-
nent’s status, the IoT-based real-time predictive analytics models—LSTM and Model
from Edge Impulse—are developed and compared.

• For the fault prediction and early notification on maintenance priority suggestions,
each model is converted to TinyModel, and its deployment onto an IoT device for
continuous real-time health monitoring is simulated.

The results show the prediction ability is good with a low mean squared error (MSE)
of 0.01 and 0.11 for LSTM and the model from Edge Impulse, respectively. The R2 for LSTM
is 77% whereas the accuracy is 99.87% for the model from Edge Impulse. We compared the
process from model creation up to deployment simulation and we concluded by proposing
the TinyModel from Edge Impulse platform to be a suitable and easy model for real-time
edge application.

The remainder of this paper is organized as follows: we introduce the data gathering
and processing in Section 2; Section 3 details the functionalities of selected models; Section 4
discusses models’ results; Section 5 concludes the work and suggests future works.

2. Data Gathering and Processing

Following the defined steps to develop and deploy a predictive TinyModel, as shown
in Figure 1, the main Predictive Maintenance (PdM) engine is the data and the way they
are preprocessed. The type and quality of data determine the prediction accuracy that
reflects the correctness of decisions on maintenance actions to be taken. For better precision
in prediction, two types of data are needed: historical and real-time data. Historical
data help to understand the operation of the equipment and to select the critical physical
condition parameters to be monitored in a real-time manner. They are recorded by the
experts in maintenance who also help to determine the necessary parameters to monitor.
The real-time data from the specified equipment shall provide clear insights of its real
health status. This also requires vigorously observing any change from the real-time data
against the behaviors of the equipment operating status.

Figure 1. Strategic steps to build an Analytics TinyModel.

2.1. Data Acquisition

The process to collect the real-time data starts by choosing the equipment, under-
standing its operational procedures, learning its diagnostics from the maintenance history,
and highlighting the major detected faults, their causes, and their impact on the overall



Sensors 2022, 22, 5174 4 of 20

equipment life. From the acquired evidence, we highlight the critical components, their
conditional parameters to be intelligently observed, as well as the required materials.

In line with the PdM claim, the longtime real-time data that may provide different
scenarios of the equipment’s health status were collected using the data collector developed
in [24]. The data collection processes shown in Figure 2 are used in this work to collect and
save data before being processed and used to build the predictive model.

Figure 2. Data acquisition process.

The defined sensors according to the critical health condition parameters were in-
stalled on different critical components of the selected equipment (autoclave sterilizer) and
timestamped data were sent to the virtual database via the General Packed Radio Service
(GPRS) communication device as it was the easiest method to continuously observe the
data flow by means of an internet connection without frequent visits to the equipment.

The real-time data have been collected from three different critical components to
compare the overall performance of the autoclave. Considering that two components
among the three present similar physical performance parameters with the same indicators
even though they serve different activities, during our experiment we have considered
data from only two components. The four variables’ dataset from which a short sample
is shown in Table 1 consists of Temperature (Temp.), Vibration (Vibr.), and two Current
(Curr.) flows from the different sources (A and B), which is considered to build our models.

Table 1. Dataset sample presentation.

Temp. (°C ) Vib. (mm/s) Curr. A (mA) Curr. B (mA)

33.44 48 0.12 0.12
33.88 46 0.08 17.53
30.56 16 2.72 0.10
32.50 11 0.03 0.12
35.56 7 0.01 0.12
35.88 47 0.01 0.10
43.63 47 0.06 0.12

Since the equipment does not operate all the time, the data were only gathered during
operation times.



Sensors 2022, 22, 5174 5 of 20

2.2. Data Preprocessing and Labeling Using Fuzzy Expert System

For the PdM precision and decision making on maintenance activities, the supervised
predictive analytics tools are quite helpful. This requires the preprocessed data [25] such as
cleaned, prepared, and labeled data.

2.2.1. Data Preprocessing

Since for real-time application at the edge, the raw data from the sensors are fed immedi-
ately to the predictive analytics model on the device for processing and analytics, every step
performed in the data preprocessing phase has to be captured and coded onto the microcon-
troller to be executed before data are able to be supplied to the TinyModel. As a result, it is
necessary to maintain the originality of the data. As a result, the data processing may not
require more cleanup. Only missing data and data normalization are taken into consideration.

2.2.2. Recall of Fuzzy Expert System in Predictive Maintenance

Considering that all decisions on maintenance activities are taken via the maintainer’s
expertise, there is no a single way to assume the health status of the equipment without
assessing each part of it, and that the shortage from any component may affect the overall
performance of the equipment or cause a failure. As a result, we needed to use a tool that
may put together different health statuses from different critical components of a single
piece of equipment to determine the maintenance priorities.

Fuzzy logic, an artificial intelligence software proposed by Zadeh (1965) [26], is
adopted as a tool to facilitate the transformation of the maintainers’ expertise into an
automated expert system that will provide a continuous observation of the equipment
state and accordingly plan and prioritize maintenance activities before any unplanned
downtime can occur.

For complex industrial equipment with many components, including uncertain and
imprecise behavior, there is a risk that unplanned downtime may occur for the whole system.
To address this problem, fuzzy logic is a powerful tool for modeling and controlling this type of
equipment [27]. Referring to the literature [28–33], fuzzy logic has been used in maintenance
as a decision-making, scheduling, and hazard-level reckoning tool.

Based on the maintainers’ expertise as well as long-time continuous monitoring of
the equipment and their components’ health status vis a vis their physical conditions and
associated performance, we labeled our conditional data from sensors using the Fuzzy
Expert System, which is simple to learn and use, as it does not require a speculative model.

The diagram of the Fuzzy Expert System [34] in Figure 3 shows that the data from
the sensors are fed to the fuzzifier to be converted into fuzzy input sets with some extent
of membership varying in the interval of [0, 1]. Each value in the [0, 1] interval denotes
the degree of ambiguity in the set—0 means that the value does not fit the fuzzy set; 1
represents a peak value in the set. The fuzzified inputs set value (F(i)) is computed using a
sigmoid function in Equation (1). The function presents the symmetry property described
in Equations (2) and (3).

F(i) =
1

1 + e−1
(1)

F(i) + F(−i) = 1 (2)

(F(i1) + F(−i1))× (F(i2) + F(−i2))× . . .× (F(in) + F(−in)) = 1 (3)



Sensors 2022, 22, 5174 6 of 20

Figure 3. Fuzzy inference system.

The fuzzified input set is directed to the Mamdan inference engine [35] to be weighed
by mapping the defined fuzzy sets, which are well-matched to experienced human op-
erators that map precedent rules (created using IF, both AND and OR operators, THEN
syntax) and consequences in a knowledge base. The fuzzy set (X) is presented as a group
of tidy pairs, as shown in Equation (4) and the mapping function (M(i)) in Equation (5).
The inference aggregates the output (crisp value), which is transformed into a real-world
output by the defuziffier.

X = (i, M(i)), i ⊂ I (4)

M(i) = I → [0, 1] (5)

where X is a fuzzy set, M(i): Membership function, i: element belongs in the universe of
discourse and I: universe of discourse.

2.2.3. Data Labeling (RUL) Using a Fuzzy Expert System

Considering that preventive maintenance is regularly conducted to keep up the equip-
ment, reaching the downtime state of the equipment is not feasible; thus, the remaining
useful time is defined as the remaining time to reach the very-high maintenance priority
zone and the remaining time is calculated in terms of days. The possible scenarios from
input variable membership to create fuzzy rules are assessed in order to build a fuzzy
system that can figure out the maintenance activities priority liable to the health status
of different components of the equipment. The maintenance priorities are then used to
compute the remaining useful life (RUL) of the entire equipment. The arithmetical functions
in Python are used to determine the RUL at each row of data by considering a current data
point to compute the remaining time until the data point, which belongs to the very-high
maintenance priority zone.

To label our data, we reflected on the fact that each component may push the equip-
ment to downtime. Based on the historical methods used to detect errors during regular
preventive maintenance and expert inspections as well as their results, we have classified
the health status into the Fuzzy Expert System’s linguistic variables of each component
versus the value range of its working condition parameters as Normal, Slightly Strange,
and Very Strange. The output variable (maintenance action priority) zones shall depend
on the fuzzy membership functions of status from the four variables. By means of the
triangular membership function, Figures 4–7 show the linguistic variable as the health sta-
tus ranges (on the X-axes) of different parameters—Figure 8 summarizes the maintenance
priority output. The X-axes and Y-axes present the ranges of maintenance priority and the
degree of priority, respectively.



Sensors 2022, 22, 5174 7 of 20

Figure 4. Temperature variable.

Figure 5. Vibration variable.

Figure 6. Current (A) variable.

Figure 7. Current (B) variable.



Sensors 2022, 22, 5174 8 of 20

Figure 8. Maintenance priority variables.

The maintenance priority linguistic variables recall the urgency levels as either low,
moderate, high, or very high, which designate the need for maintenance action as either no
action, far future, near future, or immediate maintenance action, respectively.

From the maintenance priority calculated by the Fuzzy Expert System, we labeled our
dataset by computing the remaining useful life (RUL). The RUL is calculated using functions
in Python that consider the current state and compute the probable time to attain the
neighbor data point belonging in the risky zone, which is indicated by very-high priority.
The RUL is calculated in terms of the number of days remaining for the equipment to
operate continuously before entering the risky zone. Adding to the raw data in Table 1,
Table 2 shows randomly picked rows from the dataset with two added columns consisting
of maintenance priority (M. Priority) generated through fuzzy and different values of
calculated RUL as a label of our dataset. The priority varies in a normal fuzzy output range
of [0, 1], whereas the RUL is calculated in terms of days and the maximum is 22 without
any maintenance.

Table 2. Labeled dataset.

Temp. (°C ) Vib. (mm/s) Cur. A (mA) Cur. B (mA) M. Priority (0 to 1) RUL (Days)

89 12 2.53 17.65 0.90 1
47 6 6.07 0.01 0.86 2

34.81 12 4.89 0.12 0.86 3
44.88 6 2.79 0.03 0.86 4
31.44 9 5.21 0.15 0.86 5
33.75 0 3.56 0.11 0.86 6
26.87 0 0.1 15.45 0.89 7
28.25 50 0.13 0.05 0.86 8

38 7 0.13 0.12 0.38 9
34 6 0.11 0.11 0.31 10

37.88 8 0.1 0.12 0.38 11
30.31 0 0.1 0.12 0.15 12
30.31 10 0.1 0.12 0.15 13
29.25 0 0.08 0.12 0.13 14
29.25 0 0.08 0.11 0.13 15
29.25 0 0.13 0.1 0.13 16
28.44 0 0.1 0.11 0.13 17

25 0 0.13 0.33 0.12 18
28.5 0 0.03 0.32 0.13 19
28.5 0 0.13 0.11 0.13 20
30.19 10 0.1 0.11 0.15 21
30.18 9 0.11 18.2 0.89 22



Sensors 2022, 22, 5174 9 of 20

3. Predictive Analytics Models (LSTM and Model from Edge Impulse)

Replying to the shortage in continuous and real-time availability of industrial equip-
ment health states with the purpose of providing predictive maintenance solutions at the
edge in real-time, and by taking consideration of the LSTM model prediction performance
on real or sequential data from the literature and the currently booming Edge Impulse
platform that provides a single way to develop and deploy real solutions on the edge
device, both LSTM and the model from Edge Impulse are assessed in this work.

3.1. Long Short-Term Memory (LSTM)

In the TensorFlow backend, using Python, data were preprocessed, labeled using
fuzzy logic, as described in Section 2.2.2, and later through the Keras library [23], which
was used to build the sequential long short-term memory (LSTM) model.

The long short-term memory (LSTM) is an improved cell of recurrent neural networks
(RNN) [36], which was developed to mitigate the gradient vanishing presented by the
vanilla RNN. RNN, in its structure, presents a short memory to keep a current iteration
output. It then feeds this output as an input to the following iteration. This makes RNN
suitable to process the time series data by keeping a memory of the last iterations and
recognizing the dependencies between iterations.

Bearing to the ordinary short-term memory of the RNN, LSTM adds long-term storage
capability and gates that allow the algorithm to reflect on the long-term dependencies
from the data of the past iterations and also increase the learning process. This makes
LSTM more suitable to handle sequential problems, especially with time series data. The
information to be kept or forgotten from the LSTM memory is determined by its gates. The
LSTM cell structure is shown in Figure 9, which presents four collaborating gates, namely
input (I), forget (F), memory cell (M), and output (O) gates, which replace the hidden
neurons of the ordinary RNN.

Figure 9. LSTM cell structure.

The four gates also represent the four layers through the sigmoid (σ) and tangent
activation (tanh) functions that compute each gate’s task in order to update the cell state
memory (Ct) and to control the output as well.

Based on the previously hidden state information hx − 1 and current iteration Xt
at time t, using the sigmoid function, the forget gate compute Equation (6), to decide on
which information in the memory state to keep or to throw away.

ft = σ(W f xt + Whht − 1 + b f ) (6)



Sensors 2022, 22, 5174 10 of 20

The sigmoid layer output varies between 0 and 1 and if the output is closer or equal to
zero, all information is thrown out. After the forget layer decides, the input gate decides
on the new candidate data for the next layer. It performs Equation (7) using the sigmoid
function to quantify the new information from the new iteration to update the memory
state (Mt).

it = σ(Wixt + Whht − 1 + bi) (7)

On the other side, the tanh layer residing in the memory gate generates a vector of
new memory value (Mt) over Equation (8). The two gates’ outputs are then combined and
pointwise multiplied in Equation (9) to create an update to the cell memory state (Ct).

mt = φ(Wmxt + Wmht − 1 + bm) (8)

Ct = ft × Ct−1 + i×mt (9)

The output gate applies the tanh function to the cell memory, then computes
Equation (10) to decide on the information to be output. Equation (11) is then computed to
determine the hidden information for the next iteration.

ot = σ(Woxt + Woht − 1 + b0) (10)

ht = ot × φ(ct − 1) (11)

After all computation into the cell, it produces the predicted information (Yt) by
performing Equation (12):

Yt = w0ht + b0 (12)

Notation: F: forget, I: input, M: memory cell, O: output gate, t: time at current iteration,
t − 1: time at previous iteration, σ: Sigmoid activation function, W: connection weight
matrix allied to the gate hidden state, xt: current input at time t, ht − 1: hidden state from
the previous iteration, b: bias, and Ct cell memory state at time t.

3.2. Predictive Analytics Model from Edge Impulse

Edge Impulse is the novel platform in the era of machine learning with the purpose
of providing embedded machine learning solutions on edge applications [22]. Adding
to other machine learning development platforms, Edge Impulse provides the simplest
way to collect data using either built-in or outer sensors in smart devices, such as mobile
and embedded devices. Edge Impulse also helps in analyzing the data, designing and
testing the model, as well as providing the deployable version of the model without much
experience in coding. It also allows customized data and the ability to customize the model
design.

4. Results and Discussion

The intention of this section is to build and compare the two competent sequential
models that drive us to adopt a suitable predictive analytical model for IoT-based predictive
maintenance real-time application. From the literature, LSTM was mainly used and performed
well on time series data. In contrast, the Edge Impulse platform has provided a simplified
way to build and deploy a new model on edge applications. Consequently, both the LSTM
and model from Edge Impulse were designed, trained, and evaluated to learn real-time data
collected from autoclave equipment for our experiment. Both models were then converted
into TinyModel versions and deployed on the edge through simulation using unseen real-time
data.

4.1. LSTM Model Structure and Performance Metrics

Using the Keras deep learning library [23], which runs on the TensorFlow platform [37]
in Python, we built the LSTM analytics predictive model. Our dataset contains a total of



Sensors 2022, 22, 5174 11 of 20

126,333 data points taken with an equal interval of one minute between two data points.
As LSTM refers to the previous data to figure out the convenient function of new data, we
set data to be sampled into a small sample of 60 data points, whereby LSTM shall learn
before concluding on the next prediction point. The sample size was fixed based on the
length of time used by the equipment to complete a single operation cycle and that the
health status assessment could be summarized at least after each operation cycle.

To fit the LSTM structure, our data were arranged into a three-dimensional array format
and split into two parts, the train and test datasets, with portions of 80% and 20%, respectively.
The data format loaded into the LSTM to train and after to test is shown in Figure 10, where
the priority and RUL (two last columns, respectively) were used to build a predictive analytics
model.

Since each model performs according to the applied hyperparameters, we iterate the
training and testing phases using different parameters to obtain the best results evaluated
by assessing loss and model performance accuracy through mean squared error (MSE) and
coefficient of determination (R) metrics for both training and testing datasets.

The adopted model structure, hyperparameters, and performance result metrics’
values at a minimum loss are presented in Table 3.

Table 3. Model structure metrics and performance values.

Parameters Optimum Metrics’ Value

Model training dataset portion 80%
Model evaluation dataset portion 20%

Model Type Sequential
LSTM layer 32 neurons

Hidden Dense layer 16 neurons
Dropout packaging 0.2

Output layer (Dense) 1 neuron
Optimizer Adam

Learning rate 0.001
Epoch 5

Performance metrics MSE (Mean Square Error) and Coefficient of determination R2

Batch size 16
Time step window 60

Train MSE 0.0295
Test MSE 0.01

R2 0.77

Our model fits the regression line at 77%, which is reasonably good since the data may
vary from normal to worse values; we note that the far data from the regression line could
not be considered as an outlier if it belongs to the equipment condition parameters’ range.
The total train loss of 0.029 and total test loss of 0.01 are small, which is good for the model’s
performance.

Figure 10 presents the model loss trend. To determine the best model performance
values for minimum loss and overfitting, at each hyperparameter value, the model was
tested on both datasets. It is seen that the losses for the test dataset are lower than that of
train dataset and overfitting was not present. In addition, both model training and testing
losses are lower as the epochs increase and keep steady at closer points.

To evaluate the real and predicted RUL relationship, the test dataset was used.
Figure 11 shows that both real and predicted RUL (on Y-axes) are reasonably closer when
you keep rounding a float number to an integer. The RUL in our real data is rounded to the
closer integer at each time point whereas the predicted results are kept in floats.



Sensors 2022, 22, 5174 12 of 20

Figure 10. LSTM model loss.

Figure 11. Actual versus predicted RUL.



Sensors 2022, 22, 5174 13 of 20

Model from Edge Impulse Structure and Performance Metrics

The Edge Impulse platform provides a well-structured and simple step to build
a model. It allows users to upload different types of preprocessed data.

For this experiment on a predictive model, the raw data were uploaded and indicated
as time series data. Since our data were used for regression problems, the data upload
technique may differ from the familiar classification method. The dataset structure requires
separate files, each named under its label for all data points. Figure 12 presents a single
sampled data point and its corresponding features as each data point of our dataset is made
by four variables and named on its specific label.

Figure 12. Data presentation in Edge Impulse.

Forwarding to the model building, we start with the default settings and built-in
neural network (NN) architecture in Edge Impulse, and we keep tuning the settings and
retraining to obtain a best model that may fit our data with the least amount of loss. Table 4
illustrates the adopted optimal prior model parameter settings and the architecture of the
NN block.

Table 4. Model parameter settings and neural network block architecture.

Parameters Specifications

Training Cycles 10 Cycles
Training dataset 80% of the entire dataset
Testing dataset 20% of the entire dataset

Validation dataset (to be used during training) 20% of the entire dataset
Learning rate 0.005

Activation ReLu
Batch size 32

Epoch 10
Loss function Mean Squared Error (MSE)
Model type Sequential
Input layer 4 features

Hidden Dense layer at first level 20 neurons
Hidden Dense level at second level 10 neurons

Output layer 1 class (1 neuron—no Activation)

The hidden dense layers are fully connected. Within the current version of the devel-
oped Edge Impulse platform for regression problems, the model output always appears
in classes. With the optimum specifications in Table 4, using the validation dataset, the
achieved minimum loss reaches 0.11.

As the Edge Impulse is specifically designed to build models for real-time application
on the edge, after each training and validation set, the built model summarizes the model
performance on the device at the edge, as shown in Figure 13.



Sensors 2022, 22, 5174 14 of 20

Figure 13. On Device Performance.

Figure 14 shows the specification of the device at the edge to host the TinyModel.
The model testing results show a good model performance of 99.87% and MSE of 0.11.

Figure 14. Edge Impulse model testing results.

The results in Figure 15 show that most of the performance data from our equipment
fall into class one of the RUL, which is similar to actual RUL from raw data.

Figure 15. Evaluation data presentation.

4.2. TinyModel

For both the LSTM model and model from Edge Impulse, the TinyModel is obtained
by converting the ordinal neural-network-based model to TinyModel. From Edge Impulse,
the conversion process is integrated into the platform. In contrast, for the LSTM model, we
used the TensorFlow-Lite (TF-Lite) converter to convert the ordinary Keras LSTM to TF-Lite
TinyLSTM.

Both conversions methods require specifying the type of device that will host
the TinyModel. Considering the industrial constraint of energy consumption, we chose
the Arduino Nano BLE Sense [38], which was purposely designed to have power saving
features for IoT-based edge applications.

To learn more about the needed embedded device to host the model into Edge Impulse,
we optimize and compile the model for deployment to check the final recommended
specification of targeted embedded devices. Since the TF-Lite does not provide the summary
of the needed device specifications additional tools will be required to assume the needed
deployment memory and possible latency.

Finally, the TinyModels for both LSTM and the model from Edge Impulse were built,
and the source files were downloaded to be installed and deployed on the embedded device.
Figure 16 shows the TinyModel firmware for Arduino Nano BLE Sense built from
Edge Impulse.



Sensors 2022, 22, 5174 15 of 20

Figure 16. TinyModel firmware for Arduino Nano BLE Sense.

4.3. Simulating the Deployment and Inference Creation

Both TinyModel’s (TinyLSTM & TinyModel_EI) deployment were simulated using
unseen data gathered from the same equipment. Prior to feeding data to the simulator,
all preprocessing activities performed on training and testing data were considered and
must be coded onto the microcontroller to be processed before reaching the TinyModel.
The obtained simulation results from both TinyModels are shown in Figures 17 and 18,
respectively, for TinyLSTM and TinyModel_EI.

Figure 17. Deployment simulation results for TinyLSTM-Model.



Sensors 2022, 22, 5174 16 of 20

Figure 18. Deployment simulation results for TinyEI-Model.

Deployment simulation results were shown to have almost the same model perfor-
mance as the results obtained when evaluating the models. To evaluate the similarities
between actual and predicted outputs, we compared actual and predicted RUL and found
no differences. To facilitate the maintainers that observe the detailed condition status of
their equipment, we must determine the critical status of the overall equipment. Adding
to Figures 17 and 18, Table 5 shows the real physical conditional values from the different
components of the equipment and predicted RUL in order to determine the overall equip-
ment status. The values from components that may cause the downtime and RUL in the
last column are highlighted in red.

Table 5. Real-time data and predicted RUL.

Temp. (°C ) Vib. (mm/s) Cur. A (mA) Cur. B (mA) Actual RUL (Days)

50.56 45 0.14 17.97 1
54.31 25 2.63 0.01 1
54.31 55 2.65 0 1
55.13 127 2.71 18.07 1
47.69 50 0.14 18.09 1
41.44 42 0.14 18.23 1
37.88 48 0.14 18.12 1

36 70 0.14 18.06 1

Depending on the maintainers’ demand, physical conditional values in the same
health status could be given the same color code to help them observe and fully explain the
reason behind the predicted RUL.

4.4. Models’ Comparison

The comparison consists of three main components, which are the coding platform
and data processing in Table 6, model structure and performance metrics in Table 7, and
TinyModel conversion and deployment in Table 8.

Table 6. Coding platform and data processing for LSTM and Model from EI.

Element For LSTM Model For Model from Edge Impulse

Model building platform TensorFlow Edge Impulse

Free version of platform No limitation on data size and training time but keep
confirming the work in progress Limited data size and training time

Library Keras [23] Keras [23]
Data preprocessing In same platform Out of Edge Impulse



Sensors 2022, 22, 5174 17 of 20

Table 7. Model structure and performance metrics.

Element LSTM Model Model from Edge Impulse

Model Type Sequential Sequential
Model structure Based on Neural networks block Based on Neural networks block.

Model build up Customized by a developer
There is a proposal of standardized

inbuilt model which could be
customized.

Training time for same dataset Long Short

Regression performance metrics To be defined by the developer Defaulted as MSE and can be customized
in Expert mode.

Outputs representation Customized by the developer depending
on the metrics to be presented Defaulted and limited

Activation To be defined and mostly ReLu for
regression model (Keras standardized)

Defaulted as ReLu and can be
customized in Expert mode

Ordinary model building simplicity Depends on the experience of the
developer

Standardized inbuilt model may perform
well on the data and in case of

improvement, it is easy even for less
experienced developer

Regression output Single Value Class
Overfitting possibility Much Less

Model Train loss (MSE) 0.0295 0.11 on validation dataset
Model Test loss (MSE) 0.0092 0.11

Model performance R2: 77% Accuracy: 99.87%

Table 8. TinyModel conversion and deployment.

Element LSTM Model Model from Edge Impulse

Converting the ordinary model to
TinyModel Using TensorFlow Lite Inbuilt conversion

TinyML device required memory Not assumed Both RAM and ROM (flash) memory are
estimated for a given edge device.

Latency of the TinyModel on IoT device Not assumed
Estimated by Edge Impulse platform.

Latency equals to 1 ms in our case
Cortex-M4F—64 MHz)

Microcontroller for edge deployment On Choice: in this case Arduino Nano
BLE Sense is chosen

On Choice: in this case Arduino Nano
BLE Sense is chosen

Summarizing the comparisons in Tables 6–8, both models performed well on data
with minimum losses and a slight difference in losses from one model to another. In con-
trast, through comparing the models building up to TinyModel processes, LSTM requires
significant experience in coding and requires much more training time than the Edge
Impulse model. Edge Impulse limits the user to customizing their own detailed graph-
ical presentations, but it is much more user friendly and easier for people with limited
programming skills. Coming to the deployment on edge, Edge Impulse provides some
estimated information, such as required device memory and processing latency, which
is not given by the TensorFlow Lite platform. From the deployment simulation, refer-
ring to latency, LSTM may also reflect the higher power consumption than TinyModel_EI.
Hence, TinyModel_EI is much easier to develop and a more suitable real-time model for
deployment than TinyLSTM.

5. Conclusions

The RNN models, specifically its LSTM, have been appreciated in the literature based
on their ability to perform well on sequential problems. Looking to the RUL in the era of
IoT-based predictive maintenance on the edge, LSTM development until its TinyModel
deployment on the edge is compared to the new vibrant model from Edge Impulse designed
to support the machine learning model on the edge. Both models are designed, trained,



Sensors 2022, 22, 5174 18 of 20

and tested using the real-time data collected from industrial complex equipment with the
purpose to assess and adopt a suitable and easiest model for real-time predictive maintenance
applications on edge.

Considering the impact of each component of the equipment on the overall health of
complex equipment, the Fuzzy Logic Expert System, which is based on human expertise,
is utilized to mark the maintenance priority level of the equipment by combining different
states from its different components and predefined rules to detect its different health levels.
The fuzzy output is used to compute the actual RUL for model training and testing.

The evaluation and deployment simulation results from both models proved the good
performance with slight regression loss of 0.01 and 0.11, respectively, for the LSTM and
the model from Edge Impulse. Since both models perform well on real-time data, the
adoption of the best model is based on the overall process from model build-up, up to its
deployment on the edge and information on TinyModel deployment. The deployment on
the edge is much easier for the Edge Impulse platform compared to LSTM, as LSTM is built
using TensorFlow, requires an experienced developer, takes a significant amount of time to
develop, and requires TensorFlow Lite for the conversion to a TinyModel version; therefore,
we recommend the adoption of TinyModel from Edge Impulse in the era of automated and
continuous real-time predictive maintenance.

To extend this work, the various conditional parameters from different components of the
equipment shall be observed to have fully continuous monitoring of the equipment RUL.

Author Contributions: Conceptualization, I.N.M.; Data curation, I.N.M.; Methodology, I.N.M.;
Software, I.N.M.; Supervision, M.Z., A.U., J.R. and M.R.; Visualization, I.N.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is financially supported by the African Center of Excellence in Internet of Things
(ACEIoT), University of Rwandas.

Data Availability Statement: The data used to support the findings of this work are available from
the fist author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
EI Edge Impulse
IoT Internet of Things
LSTM Long Short-Term Memory
MSE Mean Squared Error
PdM Predictive Maintenance
RNN Recurrent Neural Networks
RUL Remaining Useful Life
TF TensorFlow
TinyML Tiny Machine Learning

References
1. Ran, Y.; Zhou, X.; Lin, P.; Wen, Y.; Deng, R. A Survey of Predictive Maintenance: Systems, Purposes and Approaches. arXiv 2019,

arXiv:1912.07383.
2. Lee, J.; Wu, F.; Zhao, W.; Ghaffari, M.; Liao, L.; Siegel, D. Prognostics and health management design for rotary machinery

systems—Reviews, methodology and applications. Mech. Syst. Signal Process. 2014, 42, 314–337. [CrossRef]
3. Aydemir, G.; Acar, B. Anomaly monitoring improves remaining useful life estimation of industrial machinery. J. Manuf. Syst.

2020, 56, 463–469. [CrossRef]
4. Xia, T.; Song, Y.; Zheng, Y.; Pan, E.; Xi, L. An ensemble framework based on convolutional bi-directional LSTM with multiple time

windows for remaining useful life estimation. Comput. Ind. 2020, 115, 103182. [CrossRef]
5. Wang, B.; Lei, Y.; Li, N.; Yan, T. Deep separable convolutional network for remaining useful life prediction of machinery. Mech.

Syst. Signal Process. 2019, 134, 106330. [CrossRef]

http://doi.org/10.1016/j.ymssp.2013.06.004
http://dx.doi.org/10.1016/j.jmsy.2020.06.014
http://dx.doi.org/10.1016/j.compind.2019.103182
http://dx.doi.org/10.1016/j.ymssp.2019.106330


Sensors 2022, 22, 5174 19 of 20

6. Wu, Y.; Yuan, M.; Dong, S.; Lin, L.; Liu, Y. Remaining useful life estimation of engineered systems using vanilla LSTM neural
networks. Neurocomputing 2018, 275, 167–179. [CrossRef]

7. Li, H.; Zhao, W.; Zhang, Y.; Zio, E. Remaining useful life prediction using multi-scale deep convolutional neural network. Appl.
Soft Comput. J. 2020, 89, 106113. [CrossRef]

8. Sikorska, J.Z.; Hodkiewicz, M.; Ma, L. Prognostic modelling options for remaining useful life estimation by industry. Mech. Syst.
Signal Process. 2011, 25, 1803–1836. [CrossRef]

9. Ayvaz, S.; Alpay, K. Predictive maintenance system for production lines in manufacturing: A machine learning approach using
IoT data in real-time. Expert Syst. Appl. 2021, 173, 114598. [CrossRef]

10. Alipour, M.; Mohammadi-Ivatloo, B.; Zare, K. Stochastic Scheduling of Renewable and CHP-Based Microgrids. IEEE Trans. Ind.
Inform. 2015, 11, 1049–1058. [CrossRef]

11. Li, X.; Ding, Q.; Sun, J.Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng.
Syst. Saf. 2018, 172, 1–11. [CrossRef]

12. Benkedjouh, T.; Medjaher, K.; Zerhouni, N.; Rechak, S. Remaining useful life estimation based on nonlinear feature reduction and
support vector regression. Eng. Appl. Artif. Intell. 2013, 26, 1751–1760. [CrossRef]

13. Celikmih, K.; Inan, O.; Uguz, H. Failure prediction of aircraft equipment using machine learning with a hybrid data preparation
method. Sci. Program. 2020, 2020, 8616039 . [CrossRef]

14. Zhang, X.H.; Kang, J.S. Hidden Markov models in bearing fault diagnosis and prognosis. In Proceedings of the 2010 Second
International Conference on Computational Intelligence and Natural Computing, Wuhan, China, 13–14 September 2010; Volume 2,
pp. 364–367.

15. Thanasis Kotsiopoulos, Panagiotis Sarigiannidis, Dimosthenis Ioannidis, Dimitrios Tzovaras. Machine Learning and Deep
Learning in smart manufacturing: The Smart Grid paradigm. Comput. Sci. Rev. 2021, 40, 100341. [CrossRef]

16. Thanasis, J.; Ma, Y.; Zhang, L.; Gao, R.X.; Wu, D. Deep learning for smart manufacturing: Methods and applications. J. Manuf.
Syst. 2018, 48, 144–156.

17. Zhou, Y.; Hefenbrock, M.; Huang, Y.; Riedel, T.; Beigl, M. Automatic Remaining Useful Life Estimation Framework with
Embedded Convolutional LSTM as the Backbone. Lect. Notes Comput. Sci. 2021, 12460, 461–477.

18. Li, J.; Li, X.; He, D. A Directed Acyclic Graph Network Combined With CNN and LSTM for Remaining Useful Life Prediction.
IEEE Access 2019, 7, 75464. [CrossRef]

19. Elsheikh, A.; Yacout, S.; Ouali, M.S. Bidirectional handshaking LSTM for remaining useful life prediction. Neurocomputing 2019,
323, 148–1456. [CrossRef]

20. Yu, Y.; Hu, C.; Si, X.; Zheng, J.; Zhang, J. Averaged Bi-LSTM networks for RUL prognostics with non-life-cycle labeled dataset.
Neurocomputing 2020, 402, 134–147. [CrossRef]

21. Compare, M.; Baraldi, P.; Zio, E.T. Challenges to IoT-Enabled Predictive Maintenance for Industry 4.0. IEEE Internet Things J. 2020,
7, 4585–4597. [CrossRef]

22. Advanced ML for Every Solution. Available online: https://www.edgeimpulse.com (accessed on 30 May 2022).
23. About Keras. Available online: https://keras.io/about/ (accessed on 30 May 2022).
24. Niyonambaza, I.; Zennaro, M.; Uwitonze, A. Predictive maintenance (Pdm) structure using internet of things (iot) for mechanical

equipment used into hospitals in Rwanda. Futur. Internet 2020, 12, 224. [CrossRef]
25. Bekar, E.T.; Nyqvist, P.; Skoogh, A. An intelligent approach for data pre-processing and analysis in predictive maintenance with

an industrial case study. Adv. Mech. Eng. 2020, 12, 1–14. [CrossRef]
26. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
27. Mihigo, I.N.; Zennaro, M.; Uwitonze, A. Enhancing the Priority for the Maintenance Activities of the Hospitals’ Mechanical

Equipment Using the Fuzzy Expert System. In Proceedings of the 13th EAI International Conference, AFRICOMM 2021, Zanzibar,
Tanzania, 1–3 December 2021; pp. 170–181.

28. Baban, M.; Baban, C.F.; Moisi, B. A Fuzzy Logic-Based Approach for Predictive Maintenance of Grinding Wheels of Automated
Grinding Lines. In Proceedings of the 23rd International Conference on Methods and Models in Automation and Robotics MMAR
Miedzyzdroje, Poland, 27–30 August 2018; pp. 483–486.

29. Baban, M.; Baban, C.F.; Suteu, M.D. Maintenance Decision-Making Support for Textile Machines: A Knowledge-Based Approach
Using Fuzzy Logic and Vibration Monitoring. IEEE Access 2019, 7, 83504–83514. [CrossRef]

30. Kumar, E.V.; Chaturvedi, S.K. Prioritization of maintenance tasks on industrial equipment for reliability: A fuzzy approach. Int. J.
Qual. Reliab. Manag. 2011, 28, 109–126. [CrossRef]

31. Borjalilu, N.; Ghambari, M. Optimal maintenance strategy selection based on a fuzzy analytical network process: A case study on
a 5-MW powerhouse. Int. J. Eng. Bus. Manag. 2018, 10, 1–10. [CrossRef]

32. Andrew, A.; Kumanan, S. Development of an intelligent decision making tool for maintenance planning using fuzzy logic and
dynamic scheduling. Int. J. Inf. Technol. 2020, 12, 27–36. [CrossRef]

33. Gallab, M.; Bouloiz, H.; Alaoui, Y.L.; Tkiouat, M. Risk Assessment of Maintenance activities using Fuzzy Logic. Procedia Comput.
Sci. 2019, 148, 226–235. [CrossRef]

34. Jang, J.R. ANFIS: Adaptive Network-Based Fuzzy Inference System. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [CrossRef]
35. Fuzzy Logic—Controls, Concepts, Theories and Application: A Mamdani Type Fuzzy Logic Controller. Available online:

www.intechopen.com (accessed on 30 May 2022).

http://dx.doi.org/10.1016/j.neucom.2017.05.063
http://dx.doi.org/10.1016/j.asoc.2020.106113
http://dx.doi.org/10.1016/j.ymssp.2010.11.018
http://dx.doi.org/10.1016/j.eswa.2021.114598
http://dx.doi.org/10.1109/TII.2015.2462296
http://dx.doi.org/10.1016/j.ress.2017.11.021
http://dx.doi.org/10.1016/j.engappai.2013.02.006
http://dx.doi.org/10.1155/2020/8616039
http://dx.doi.org/10.1016/j.cosrev.2020.100341
http://dx.doi.org/10.1109/ACCESS.2019.2919566
http://dx.doi.org/10.1016/j.neucom.2018.09.076
http://dx.doi.org/10.1016/j.neucom.2020.03.041
http://dx.doi.org/10.1109/JIOT.2019.2957029
https://www.edgeimpulse.com
https://keras.io/about/
http://dx.doi.org/10.3390/fi12120224
http://dx.doi.org/10.1177/1687814020919207
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1109/ACCESS.2019.2923791
http://dx.doi.org/10.1108/02656711111097571
http://dx.doi.org/10.1177/1847979018776172
http://dx.doi.org/10.1007/s41870-019-00384-w
http://dx.doi.org/10.1016/j.procs.2019.01.065
http://dx.doi.org/10.1109/21.256541
www.intechopen.com


Sensors 2022, 22, 5174 20 of 20

36. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
37. TensoFlow Home Page. Available online: https://www.tensorflow.org/ (accessed on 30 May 2022).
38. Arduino. Nano Sense Ble. Available online: https://docs.arduino.cc/hardware/nano-33-ble-sense/ (accessed on 30 May 2022).

http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://www.tensorflow.org/
https://docs.arduino.cc/hardware/nano-33-ble-sense/

	Introduction
	Data Gathering and Processing
	Data Acquisition
	Data Preprocessing and Labeling Using Fuzzy Expert System
	Data Preprocessing
	Recall of Fuzzy Expert System in Predictive Maintenance
	Data Labeling (RUL) Using a Fuzzy Expert System


	Predictive Analytics Models (LSTM and Model from Edge Impulse)
	Long Short-Term Memory (LSTM)
	Predictive Analytics Model from Edge Impulse

	Results and Discussion
	LSTM Model Structure and Performance Metrics
	TinyModel
	Simulating the Deployment and Inference Creation
	Models' Comparison

	Conclusions
	References

