
Citation: Espinosa Peralta, P.; Luna,

M.A.; de la Puente, P.; Campoy, P.;

Bavle, H.; Carrio, A.; Cruz Ulloa, C.

Performance Analysis of Localization

Algorithms for Inspections in 2D and

3D Unstructured Environments

Using 3D Laser Sensors and UAVs.

Sensors 2022, 22, 5122. https://

doi.org/10.3390/s22145122

Academic Editor: Sindhuja Sankaran

Received: 29 April 2022

Accepted: 2 July 2022

Published: 7 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Performance Analysis of Localization Algorithms for
Inspections in 2D and 3D Unstructured Environments Using 3D
Laser Sensors and UAVs
Paul Espinosa Peralta 1 , Marco Andrés Luna 1 , Paloma de la Puente 1 , Pascual Campoy 1,* , Hriday Bavle 2 ,
Adrián Carrio 1,3 and Christyan Cruz Ulloa 1

1 Centro de Automática y Robótica (CAR), Universidad Politécnica de Madrid (CSIC-UPM),
28006 Madrid, Spain; paul.espinosa.peralta@alumnos.upm.es (P.E.P.); marco.lunaa@alumnos.upm.es
(M.A.L.); paloma.delapuente@upm.es (P.d.l.P.); adrian.carrio@dronomy.es (A.C.);
christyan.cruz.ulloa@alumnos.upm.es (C.C.U.)

2 Automation and Robotics Research Group, Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg, 1855 Luxembourg, Luxembourg; hriday.bavle@uni.lu

3 Dronomy, Paseo de la Castellana 40, 28046 Madrid, Spain
* Correspondence: pascual.campoy@upm.es

Abstract: One of the most relevant problems related to Unmanned Aerial Vehicle’s (UAV) au-
tonomous navigation for industrial inspection is localization or pose estimation relative to significant
elements of the environment. This paper analyzes two different approaches in this regard, focusing
on its application to unstructured scenarios where objects of considerable size are present, such as a
truck, a wind tower, an airplane, a building, etc. The presented methods require a previously devel-
oped Computer-Aided Design (CAD) model of the main object to be inspected. The first approach is
based on an occupancy map built from a horizontal projection of this CAD model and the Adaptive
Monte Carlo Localization (AMCL) algorithm to reach convergence by considering the likelihood field
observation model between the 2D projection of 3D sensor data and the created map. The second
approach uses a point cloud prior map of the 3D CAD model and a scan-matching algorithm based
on the Iterative Closest Point Algorithm (ICP) and the Unscented Kalman Filter (UKF). The presented
approaches have been extensively evaluated using simulated as well as previously recorded real flight
data. We focus on aircraft inspection as a test example, but our results and conclusions can be directly
extended to other applications. To support this assertion, a truck inspection has been performed.
Our tests reflected that creating a 2D or 3D map from a standard CAD model and using a 3D laser
scan on the created maps can optimize the processing time, resources and improve robustness. The
techniques used to segment unexpected objects in 2D maps improved the performance of AMCL.
In addition, we showed that moving around locations with relevant geometry after take-off when
running AMCL enabled faster convergence and high accuracy. Hence, it could be used as an initial
position estimation method for other localization algorithms. The ICP-NL method works well in
environments with elements other than the object to inspect, but it can provide better results if some
techniques to segment the new objects are applied. Furthermore, the proposed ICP-NL scan-matching
method together with UKF performed faster, in a more robust manner, than NDT. Moreover, it is
not affected by flight height. However, ICP-NL error may still be too high for applications requiring
increased accuracy.

Keywords: UAV; 3D sensor; particle filter; localization

1. Introduction

Nowadays, industrial inspections using UAVs are common. In the last years, they
have significantly improved in terms of flexibility, efficiency, less cost, etc., but more
advances are necessary. Additionally, some of them are executed in dangerous and difficult
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environments for humans. Several tasks are executed in buildings [1], industries [2,3],
power grids [4–6], agriculture areas [7–10], solar plants [11], and wind turbines [12,13].
Therefore, the development of autonomous robotic systems has become one of the most
critical challenges in reducing human intervention in different types of missions.

Localization in these circumstances is often hard: the chosen method or algorithm
must solve common problems such as initial positioning and kidnapping. During an
autonomous inspection task, the dynamic nature of many unstructured environments is
one of the major issues: objects can change their position, and new objects may appear in
the scene. Updating the initial map for each new mission usually requires a lot of time and
resources. In this context, the estimation of the robot pose considering the uncertainty in
the sensors data and the vehicle dynamics within an unstructured environment is widely
studied. A preliminary analysis of the best components must be performed to get good
results and robust task execution.

This work’s main contribution is to adapt and analyze two different localization
techniques for inspecting relevant objects in unstructured environments, which can help
address most typical problems present in inspection scenarios. The first technique, based
on AMCL, focuses on 2D localization, while the second technique, based on ICP and UKF,
focuses on 3D localization. For each approach, a map is created in advance by different
means. This article also studies different initialization options and convergence parameters.
Conclusions from our experiences and results are drawn and highlighted in the article.

This paper is structured as follows: Section 2 collects and summarizes information
from similar articles; in Section 3 procedures and algorithms are introduced. Then, the
experimental setup, hardware, and results follow in Section 4, while the discussions are in
Section 5. To conclude, Section 6 summarizes the main findings.

2. Related Work

Simultaneous Localization and Mapping (SLAM) [14] deals with the challenge of
creating a map of an unknown environment and performing localization on that map at the
same time. Robust SLAM methods are now available for mapping static, structured envi-
ronments of limited size. However, performing SLAM in dynamic, large, and unstructured
environments is still an open problem [15], so new methods are developed every year in
order to gain more efficiency. Avola et al. [16] proposed a SLAM algorithm that provides
the traveled route as well as the flight height by using both a calibration step and visual
features extracted from the acquired images. The authors of [17], for instance, use two
SLAM approaches, based on a 2D laser sensor and a monocular camera, to obtain logarith-
mic efficiency, compensating for the errors coming from them. Besides high computational
cost, another important problem when applying online SLAM during task execution is
robustness: it is less robust than localization on a previously validated map. Another
approach [18] proposes a stereo SLAM method for UAVs to improve the robustness in
rotating and motion scenes using two strategies, based on image quality and motion state.

Focusing on localization on a given map, several sensors or techniques may be com-
bined with increased performance in some applications, but all of them have advantages
and disadvantages. One of the most widely used pose estimation algorithms is the Extended
Kalman Filter (EKF) [19]. It uses previous state information, control inputs, and sensor
measurements. In [20], the authors present a work that uses a Global Position System (GPS)
together with an Inertial Measurement Unit (IMU). Others, such as Mourikis et al. [21],
combine visual characteristics from an omnidirectional camera and IMU data. The main
limitation of this kind of method is the dependence on the initial position.

When the observation and state models are highly nonlinear, the UKF [22] is preferred
since this filter calculates the pose using nonlinear models, resulting in a more accurate
estimation than the EKF. In this regard, Ref. [23] made a comparison between UKF and EKF
applied to low-cost sensors and very noisy measurements. Among the localization tech-
niques that use nonlinear solutions for 3D environments, others are based on scan matching
methods such as the Iterative Closest Point algorithm (ICP) and its variations [24–26], and
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others employ the Normal Transformation Distribution (NDT) [27–29], and some works,
such as [30], use manifold Gaussian processes (mGPs) with geodesic kernel functions for
mapping surface information to get potential spatial correlations and plan informative
paths online in a receding horizon manner.

The Markov method [31] may be used when the initial pose is unknown. It works well
with very noisy data, reducing ambiguities. This technique has some variants, including
grid localization [32], where the map is divided into a grid, and each cell represents the
occupancy probability. Another efficient and simple technique is Monte Carlo localization
(MCL) [33]. This technique can solve global localization problems. Its principle is based on
a particle filter distributed over the entire map with an estimated probability value. When
the algorithm converges, the particle cloud’s size decreases. A variant called Adaptive
Monte Carlo Localization (AMCL) [34] changes the number of samples over time instead
of using a fixed-size particle cloud. This technique consumes less computational resources,
is efficient, accurate, and able to solve the kidnapped robot problem. In this context,
Xu et al. [35] proposed a hybrid localization method based on WiFi fingerprints and AMCL,
Javierre et al. [36] combined a laser sensor and an omnidirectional camera, and [37] used a
2D/3D laser sensor with an ellipsoidal energy model.

For robot-assisted visual aircraft inspection, multiple approaches can be found in the
literature, such as mobile platforms [38] or fixed cameras [39]. These methods simplify
or avoid the localization problem, but their installation and operation could be more
difficult than other solutions. Teleoperated climbing robots are able to perform autonomous
inspections [40], but their navigation requires inputs from an operator. Other solutions
present autonomous wheeled robots [41] and autonomous UAVs [42,43].

3. Methodology

In this work, we have chosen aircraft inspection as a test example because it takes place
in an unstructured environment and aircraft positions may be different in each parking
lot. Furthermore, the airplane geometry has several characteristics to be recognized, and
the inspector UAV may take off from different positions. For this work, an open 3D CAD
airplane model was used. We focus on aircraft inspection, but the selected methods and
procedures would be similar in other inspection tasks, and other UAV models would also
serve the same purpose. In addition, we have performed an inspection on a truck to test
our methodology and compare the data acquired.

3.1. Maps

A map of the environment and an octomap (Figure 1a) [44] were built from the
CAD model so as to test the performance of the algorithms. The octomap constitutes a
probabilistic representation used to model unknown areas. It is efficient because it uses a
tree structure called octree. Each node in an octree represents the space in a cubic volume,
defined as a voxel. This volume is recursively subdivided into eight sub-volumes until a
given minimum voxel size is reached.

An occupancy grid map [45] was built as a 2D map. It represents the environment as a
block of cells, either occupied or unoccupied with some probability. To build this map, the
octomap was projected into a horizontal plane (Figure 1b). The algorithm iterates over all
octree leaves and marks the 2D map cells accordingly.

Another way to obtain a 3D map comes by applying SLAM. We selected a graph
SLAM [46] algorithm, which uses a graph whose nodes correspond to the robot’s poses at
different time points and whose edges represent constraints between the poses (Figure 1c).
Once such a graph is constructed, the map can be computed by finding the nodes’ spatial
configuration that is most consistent with the measurements modeled by the edges.
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(a) (b) (c)
Figure 1. Kind of maps to be used. (a) Three-dimensional Occupancy grid Map (Octomap).
(b) Two-dimensional Occupancy grid Map. (c) Graph SLAM map.

3.2. 2D Localization

Localization in 2D is performed by means of the AMCL [47] algorithm. A particle filter
integrates a robot motion model, an observation model, and an adaptive algorithm that
adds random particles based on its convergence; Figure 2 and Video S1 show an example
of the algorithm performance. The following relation can summarize it:

X = f (Xt−1, Ut, Zt, m) (1)

where:

• X , current set of particles.
• Xt−1, the previous set of particles.
• Ut, last motion and odometry measurements.
• Zt, last laser rangefinder measurements.
• m, max number of particles.

In addition, there are several aspects to consider, such as:

• Motion kinematics: e.g., differential or omnidirectional.
• Uncertainty of the robot odometry, which determines the error in translation α1, α2 or

rotation α3, α4, α5.
• Observation model: e.g., beam model or probability field model.
• Measurements errors: e.g., measurement noise zhit, unexpected objects zshort, object

detection failures zmax, unexplained random noise zrand.
• Number of random particles, defined by the probabilities of long-term αslow and

short-term α f ast measurements.

Figure 2. Example of 2D localization using AMCL algorithm (red), 2D laser Scan (green) and an
Occupancy grid map (black).

Nowadays, there is no general method other than calibration or trial and error to set
the parameters of motion model noise, measurement model noise, and particle decay rate.
Assigning values without any previous experience is very complicated.

The motion model selected in this work corresponds to Omnidirectional dynamics ,
typical of UAV’s motion (DJI Matrice 100 and hummingbird UAV). The DJI Matrice 100 has
very accurate odometry samples, and the error is minimal, so the values related to the noise
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of the motion model are small. The error values in simulated odometry sensors mounted
on the Hummingbird UAV were based on the default values.

The observation model is the Probability field measurement model because of its lower
computational cost and its smooth error distributions. It is also known that the Velodyne
laser sensor does not present many errors in terms of reflection, maximum distance, and
loss of object detection. The main source of error is the measurement noise itself, so zhit
should have a large value, zrand a small value, and zshort; zmax much smaller. The AMCL
simulation test parameters are given in Appendix C, and those of AMCL real flights are
presented in Appendix D.

AMCL estimates only the position of x and y, and the z-coordinate is always set to
zero because the algorithm assumes that all objects are on the horizontal surface. Therefore,
flights must be performed at some horizontal and vertical distance from the aircraft to
guarantee that the 3D laser detects complete point clouds which present a correct projection.
The horizontal distance between the UAV and the aircraft is between 2 and 3 m, depending
on the inspection trajectory (Figure 3). Moreover, some flights at various altitudes were
performed to find the best altitude.

Several flights were executed. The take-off position and the initial uncertainty were
random because we wanted to test how the system would work with arbitrary large errors
in the initial pose estimation. Trajectories with the smallest error were selected, and covari-
ance values given by AMCL cov_x, cov_xy, cov_y were recorded, as well as the number of
occupied cells observed by the laser. These values give an indication of convergence and
error. These results were used in real flights to determine a convergence position in the
future; it could be used as an initial position to execute another inspection task.

Figure 3. Proposed inspection trajectory (green). Three-dimensional CAD model (cyan).

3.3. 3D Localization

Three-dimensional localization is performed by adapting the algorithm presented
in [29] for NDT and IMU data with UKF. The algorithm used in this work replaces the
proposed scan-matching techniques: NDT, ICP, and Generalized ICP by nonlinear ICP [48].
Figure 4 and Video S4 show an example of the algorithm’s performance.

The algorithm is based on three stages:

• Subsampling: Reduction of the number of points in the sample using Voxel grid filter
and Pass-through Filter techniques [49] to optimize processing time.

• Pose estimation with nonlinear ICP: Based on the ICP technique presented in [50]. It
takes as inputs a source and a target point cloud matched under the nearest-neighbor
criterion. Singular Value Decomposition (SVD) is applied to obtain an estimate of the
transformation matrix that aligns them. This process is repeated until a termination
criterion is met, removing outliers and redefining the correspondences.
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• Unscented Kalman Filter-based localization: This is an improvement of EKF for
application to highly nonlinear systems. This approach uses the unscented transform
to take a set of samples called sigma points, which are propagated by nonlinear
functions and used to calculate the mean and variance. Unlike EKF, UKF eliminates
the need for a Jacobian, facilitating calculations on complex functions.

Figure 4. Example of 3D localization using nonlinear ICP algorithm (white), 3D laser Scan (green)
and a 3D Occupancy grid map (red).

To obtain the 3D pose, the algorithm takes as inputs: the 3D point cloud map of the
environment, the previous state including position and orientation, LIDAR sensor data,
and IMU data together with linear and angular velocities. The result is the 3D pose. First,
the map and LIDAR sensor data are subsampled. Next, pose estimation is performed based
on the IMU linear and angular accelerations within a defined time frame. These data are
used in the filter prediction stage; then, the scan matching algorithm performs the pose
estimation by aligning the map point cloud and the sensor point cloud. This estimation
will be used for the filter correction stage.

The pseudocode for this solution is presented in Algorithm 1 :

Algorithm 1: Localization 3D ( Xt−1, Vt, ∆qt, 3D_sensor_points, 3D_map)

1 simple_map = subsampling (3D_map);
2 while True do
3 simple_3D_points = subsampling(3D_sensor_points);
4 Xt = (pt−1 + vt−1 ∗ ∆t, qt−1 ∗ ∆qt; vt−1) UKF prediction;
5 (pobs

t , qobs
t ) = ICP_NL(simple_map; simple_3D_points) ;

6 (pt, qt) = (pobs
t , qobs

t ) UKF correction
Result: Xt

To test the performance of the ICP-NL and NDT algorithms in simulation, the trajectory
of Figure 3 was executed at different heights, and the ATE and convergence time was
calculated. In addition, the coincidence between the 3D laser sensor point cloud and the
generated 3D map is qualitatively verified in simulation and real data, and the deviations
between the estimated 3D position and the real position are also observed.

4. Results

Initially, we specify the software and hardware used, as well as the metric to determine
the trajectory estimation errors. Then the 2D localization results in simulation and real
flights, and finally, the 3D localization results.

4.1. Software

This work was developed by using the popular Robot Operating System (ROS) [51]
and Gazebo [52] simulation tools, which help create simulations of robotic applications
in three-dimensional indoor and outdoor environments. The Aerostack framework [53],
which allows developers to design and test control architectures for aerial robotic systems,
was also extensively used. Rotors [54] provided the simulation of UAVs and localization
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sensors. Figure 5 shows the complete software system used to perform the localization task
in simulations and in real flights.

Figure 5. Proposed system architecture for simulations and real flights.

4.2. Hardware

About the actual UAV assembly, the hardware components used in simulation flights
are as follows:

• Personal Computer (PC) Intel core i7 2.70 GHz, 4 Gb RAM.
• Hummingbird UAV provided by Rotors (Figure 6a).
• Odometry measurements from a configurable odometry sensor (see Appendix A for

configuration details).
• Velodyne VLP16 3D laser sensor [55] provides a point cloud with 300,000 points per

second and ±3 cm accuracy, 100 m range, 360° horizontal and 30° vertical field of view
(see Appendix B for setting other parameters). Due to computational limitations in
the simulation, we worked with 5120 points per second.

In real flights, we used:

• Manifold Intel i7 1.8 Ghz, 2 GB RAM.
• DJI Matrice 100 UAV (Figure 6c).
• Odometry measurements were provided by a sensor fusion algorithm [56] that merges

the onboard DJI sensors: Altimeter, Velocity and IMU, plus the 3D Light Detection
and Ranging (LIDAR) IMU.

• 3D LIDAR Ouster OS1-64, providing a point cloud with 327,680 points per second
and ±1 cm accuracy 100 m range, 0.3 cm resolution, 360° horizontal and 45° vertical
field of view.

In both setups, we used the Airbus A330 3D CAD model [57] to build the prior maps.
The teleoperation flights and trajectory tracking were controlled by Aerostack.

(a) (b) (c) (d)

Figure 6. Components used in the simulation (a,b), and real flights (c,d). (a) Velodyne sensor and
Hummingbird UAV. (b) Aircraft Airbus A330 model. (c) Three-dimensional LIDAR Ouster and DJI
Matrice 100 UAV. (d) Airbus A330 [58].

4.3. Error Metric

The Absolute Trajectory Error (ATE) is a measure to check that the solution to a bench-
mark problem is valid. ATE is applicable in algorithms for robot trajectory estimation.
It measures the difference between the ground-truth position and the robot’s estimated
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position at the same instant in time. Further, it should be noted that the robot pose’s
orientation component is not considered [59,60]. In this work, ATE is only computed in
simulation environments due to a lack of ground-truth data in real environments.

ATE =

√
1
n

n

∑
i=1

T2
i (2)

where:

• Ti, is the magnitude of the Euclidean distance along the horizontal plane between the
estimated and ground-truth poses at frame i.

• n, number of frames.

4.4. 2D Localization

To build the 2D occupancy grid map, a 3D CAD model in Digital Asset Exchange
(DAE) format for Gazebo was imported (Figure 7a). An octomap of the environment was
created with a 0.1 m voxel resolution (Figure 7b), and then it was projected on a horizontal
flat plane to make a 2D occupancy map with a 0.1 m cell resolution (Figure 7c).

Subsequently, this map was modified by an external script to obtain the image’s
edges. This could improve the algorithm’s performance because the black pixels represent
an occupied area on the map. When comparing the map with the laser measurements,
the algorithm could incorrectly interpret the internal occupied cells and give a wrong
estimation of the position. The new 2D map is shown in Figure 7d.

(a) (b) (c) (d)

Figure 7. 2D occupancy grip map creation process. (a) Airbus A330 Gazebo Model. (b) Octomap
generated with 0.1 cm voxel resolution. (c) Octomap horizontal projection. (d) Modified 2D occupancy
grip map.

4.4.1. Simulation Tests

Regarding localization performance, the AMCL parameters were calibrated in the
simulation to verify the result’s quality. When the UAV takes off, the particle distribution is
very sparse, as shown in Figure 8a. As the UAV advances, the particle distribution gets
more compact, as shown in Figure 8b. When the UAV keeps flying longer, the algorithm
converges, and the 2D laser scan matches the map, as shown in Figure 8c. For a complete
visualization, please refer to Video S1.

To find the best flight altitude in combination with the inspection trajectory (Figure 3)
and 3D laser scan configuration (range [0.1, 100] meters; horizontal and vertical field of view
respectively, [−360, 360] degrees, [−15, 15] degrees) 20 flights were executed in simulation
at each altitude. Table 1 shows the result, where 5 m corresponds to the altitude with the
lowest ATE. Therefore, 5 m is the altitude executed in all simulated flights to evaluate 2D
performance.
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(a) (b) (c)
Figure 8. AMCL convergence process. Two-dimensional laser scan (blue), AMCL particle cloud
(red). (a) UAV takes off, particles are distributed all over the map. (b) UAV moves forward, particle
scattering begins to decrease The 2D laser scan does not match the map. (c) AMCL converges, particle
scattering is small, and the laser data matches the map.

Table 1. Calculation of ATE at different altitudes for 20 simulated flights.

Altitude (m) 3 4 5 6 7 8

Mean ATE (m) 0.3460 0.3287 0.3127 0.3376 0.4077 2.1437

To evaluate the performance, 81 different flights were tested. The proposed initial
error was three meters maximum for each axis reference (x,y). Each flight starts at a random
initial position taken from the inspection trajectory (Figure 3) and presents an initial error
not always smaller than three meters, so in some cases, the algorithm may not converge.
Table 2 presents the average, minimum, and maximum ATE errors. Figure 9 presents the
trajectory with the lowest error, and Figure 10 the trajectory with the highest error; in this
case, the algorithm does not converge because the initial covariance is smaller than the
error in the initial position.

Table 2. Calculation of minimum, maximum, and average ATE for 81 simulated flights.

Tests ATE Min (m) Ate Max (m) Mean ATE (m)

81 0.18 5.63 0.34

(a) (b)
Figure 9. (a) AMCL simulation test with the lowest ATE. AMCL (blue), ground-truth (green), take-off
position (blue circle), error (red). (b) AMCL errors.

Table 3 shows the initial position and the ground truth (GT) position, with the maxi-
mum and minimum ATE. When the difference between the GT and AMCL pose is large,
the algorithm starts from erroneous estimates. If the initial covariance is large enough
regarding the error in the initial position, the algorithm should converge.
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(a) (b)

Figure 10. (a) AMCL simulation test with the highest ATE. AMCL (blue), ground-truth (green),
take-off position (blue circle), error (red). (b) AMCL errors.

Table 3. Initial positions for lowest and highest ATE trajectories.

ATE GT Initial
Pos (x,y) (m)

AMCL Initial
Pos (x,y) (m)

Initial Covariance
(xx,yy) (m)

Initial Error
(x,y) (m)

Min ATE 0.18 32.53, −27.83 32.91, −27.5 0.5, 0.5 −0.38, −0.33
Max ATE 5.63 33.72, −29 36.01, −26.56 0.5, 0.5 −2.29, −2.44

The execution of a short flight before starting the inspection can help improve local-
ization in these kindd of tasks, providing the resulting pose as the new initial position. It
reduces the uncertainty in the initial position and allows for correct position estimation and
a safe flight. Two types of trajectories have been defined in this work, a circular trajectory
(Figure 11b) and a squared trajectory (Figure 11a). A total of 91 flights were performed with
each trajectory and different initial positions (red point in Figure 11) along the inspection
trajectory (Figure 3). The analysis of the results indicates that the squared trajectory worked
best, with a mean ATE of 2.429 (m).

(a) (b)
Figure 11. Proposed initial flight (green), Aircraft (cyan), take-off point (red). (a) Squared path.
(b) Circular path.

To further analyze the results, the particle covariance matrix in the x and y directions
was obtained. We also logged the number of matches between occupied cells and 2D laser
scan points for those tests with an initial error lower than 0.3 m. Table 4 shows these values.
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Table 4. Relationship between the ATE, covariance in x and y directions, and matches of occupied
grids cells and 2D laser scan points.

Error between AMCL
and Ground Truth (m)

Mean
Covariance(x,y)

Mean
Occupancy Grip Map

Mean
2D Laser Scan

Mean Relation
Matches/Laser-Scan

<=0.3 0.0557 41,820 245,917.5 0.17005

We realized other simulations to compare the results. We created a 2D occupancy
grid map from a 3D CAD truck model using the same procedure explained in Section 4.4.
Figure 12 shows the different steps of the map-building process.

(a) (b) (c) (d)

Figure 12. Two-dimensional occupancy grip map creation process. (a) Truck Gazebo Model.
(b) Octomap generated with 0.1 cm voxel resolution. (c) Octomap horizontal projection. (d) Modified
2D occupancy grip map.

Thirty-six different flights were performed using the same aircraft simulation parame-
ters, each flight starting at a different point around the trajectory proposed in Figure 13.
Figure 14 shows the flight with the lowest error, and the first row in Table 5 shows the
initial parameters. In this case, there is a considerable AMCL pose estimation error at the
beginning, but when the UAV continues flying, the algorithm converges until reaching
some complicated truck place. Video S7 shows the full flight. Figure 15 shows the flight
with the highest ATE, and the second row of Table 5 shows the initial parameters. In this
flight, the initial error is the lowest. Even though AMCL does not converge along some
parts of the trajectory, most of the time, the algorithm estimates the correct pose.

The tests performed allowed data indicating when the algorithm converges to be
obtained. We take all the points of the flights with an error of less than 30 cm and calculate
the mean of the particle covariance matrix in x and y, the number of matches between
occupied cells, and the 2D laser scan point. Data can be seen in Table 6.

Figure 13. Proposed inspection trajectory (green). Truck 3D CAD model (cyan).



Sensors 2022, 22, 5122 12 of 26

(a) (b)
Figure 14. (a) AMCL simulation test with the lowest ATE. AMCL (blue), ground truth (green),
take-off position (blue circle), error (red). (b) AMCL errors.

(a) (b)

Figure 15. (a) AMCL simulation test with the highest ATE. AMCL (blue), ground truth (green),
take-off position (blue circle), error (red). (b) AMCL errors.

Table 5. Initial positions for lowest and highest ATE trajectories in truck inspections.

ATE GT Initial
Pos (x,y) (m)

AMCL Initial
Pos (x,y) (m)

Initial Covariance
(xx,yy) (m)

Initial Error
(x,y) (m)

Min ATE 0.86 20.66, 7.16 20.77 , 5.56 0.5, 0.5 −0.11, −1.6
Max ATE 1.4 −4.82, −5 −4.77, −4.6 0.5, 0.5 −0.05, −0.4

Table 6. Relationship between the ATE, covariance in x and y, and matches of occupied grid cells and
2D laser scan points in the truck inspection.

Error between AMCL
and Ground Truth (m)

Mean
Covariance (x,y)

Mean
Occupancy Grip Map

Mean
2D Laser Scan

Mean Relation
Matches/Laser-Scan

<=0.3 0.0115 18,037 76,847 0.2347

4.4.2. Real Tests

To collect data in a real environment, the UAV pilot performed several flights where
the object to inspect had relevant characteristics; in each flight, we recorded information
from the UAV such as altitude, velocity, IMU, and the point cloud provided by a 3D laser
in rosbag files. Then we played rosbag files with the same timestamp in all topics to get the
saved information.
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Three real, short flights were chosen before starting the inspection to check the algo-
rithm’s convergence. The proposed trajectories are shown in Figure 16. In real tests, stairs
are present in 3D laser scan data Figure 17a. Therefore, stairs were added to the initial 2D
occupancy grid map to better represent the environment in Figure 17b.

(a) (b)

(c)
Figure 16. Proposed trajectories for real flights. Take-off and landing point (red circle). (a) Path 1.
(b) Path 2. (c) Path 3.

(a)
(b)

Figure 17. Map update, stairs (red). (a) 3D Laser scan real data. (b) New occupancy grip map.

In the real flights, walls were not considered, and this had a negative effect on the
algorithm performance. To solve this problem, the first option was the method proposed
in [61], based on plane segmentation by means of RANSAC [62] and the implementation
available in the Point Cloud Library (PCL) [63]. Figure 18a shows the 3D Point Cloud and
the original conversion to a 2D laser scan; Figure 18b shows the wall segmentation and the
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projection to a 2D laser scan. The second option is to limit the 2D laser scan data in range
and angle of view, as shown in Figure 18c.

(a) (b) (c)

Figure 18. Wall removal. Three-dimensional LIDAR point Cloud (blue), 2D laser scan (red).
(a) Original 2D laser scan data and 3D LIDAR point cloud. (b) Wall segmentation by RANSAC
PCL. (c) Wall segmentation by limiting 2D laser scan data. Range [0.1, 15] meters, angular field of
view [−135, 135] degrees.

The first proposed trajectory was tested with a laser range limitation of 15 m and an
angular field of view restricted to [−135, 135] degrees. Figure 19 shows that the particles
are very spread at the beginning of the trajectory. When the UAV moves, the scattering
decreases, the laser matches the map, and the covariance in x and y decreases below the
desired values. In this case, 37 iterations were required to converge. Figure 20 shows
the results using wall segmentation for RANSAC PCL, which required 250 iterations to
converge, and Video S2 shows the complete flight.

(a) (b)
Figure 19. Convergence tests on Path 1 (Figure 16a) real flight with limited laser ranges. Three-
dimensional LIDAR point cloud (blue), 2D laser scans (red), AMCL particles (green). (a) UAV position
before algorithm convergence. (b) UAV position when the algorithm converged at 37 iterations.

(a)
(b)

Figure 20. Convergence tests on Path 1 (Figure 16a) real flight with RANSAC PCL segmenta-
tion. Three-dimensional LIDAR point cloud (blue), 2D laser scans (red), AMCL particles (green).
(a) UAV position before algorithm convergence. (b) UAV position when the algorithm converges
after 250 iterations.

Wall segmentation with RANSAC PCL tests has been performed following Path 2
(Figure 16b) and Path 3 (Figure 16c) because the trajectory is close to the nose of the aircraft,
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and the laser does not capture enough information of the whole environment. Figure 21
and Video S3 show the Path 2 result, which converged in 71 iterations. As for Path 3, the
results are shown in Figure 22. In this case, the algorithm was not able to converge, so the
trajectory is not good enough to achieve an acceptable initial position.

(a) (b)
Figure 21. Convergence tests on Path 2 (Figure 16b) real flight with RANSAC PCL segmentation.
Three-dimensional LIDAR point cloud (blue), 2D laser scans (red), AMCL particles (green). (a) UAV
position before algorithm convergence. (b) UAV position when the algorithm converges after 71
iterations.

(a) (b)
Figure 22. Convergence tests on Path 3 (Figure 16c) real flight with RANSAC PCL segmentation.
Three-dimensional LIDAR point cloud (blue), 2D laser scans (red), AMCL particles (green). (a) UAV
position before algorithm convergence. (b) The algorithm does not converge during the flight.

4.5. 3D Localization
4.5.1. Simulation Tests

The 3D map was built based on the graph SLAM algorithm presented in [27,64]. This
algorithm uses odometry obtained from NDT-scan matching and loop closure (detection of
an area that has already been mapped) with corrections based on GPS data. In this work,
this method was simplified by replacing the odometry based on scan-matching with the
robot’s real position obtained from the simulation environment, obtaining higher accuracy
in the map. Figure 23 below shows the 3D map obtained.

The NDT and ICP-NL algorithms have been compared to observe their performance
and differences. For this purpose, the ATE has been calculated for the flights performed.
The results are presented in Table 7. Figure 24 shows the main results, three stages of
operation: starting position, take-off, and navigation, were performed. The trajectories
painted in white represent the algorithm estimation, and the trajectories painted in green
represent the real movement.

The estimated initial position for the two cases differs by 5 m in x and y from the real
one. When using NDT, the algorithm tries to estimate a trajectory, but it fails to converge to
the actual pose (Figure 24b). In ICP-NL, the algorithm converges during take-off because
the sensor observes more points, and during navigation, the error remains low (Figure 24a).
For a complete visualization, please refer to Video S4.
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Figure 23. Aircraft 3D map generated by graph SLAM.

Table 7. Errors obtained in NDT and ICP-NL simulation tests.

Algorithm ATE

ICP-NL 0.68
NDT 289.93

(a) (b)
Figure 24. Position estimate by the algorithms Non-linear ICP (a) and NDT (b). Three-dimensional
graph SLAM map (red), position estimate by the algorithm (white), ground truth (green).

Additionally, several flights were performed by modifying the UAV flying height
between 3.5 and 8.5 m in order to study the influence on the results. We observed that
ICP-NL maintains its performance regardless of the altitude. On the other hand, NDT
works well in the last test altitudes because the higher the altitude, the better the aircraft is
observed, and hence the scan-matching algorithm performs better. Considering the initial
error established, the established convergence time is the time it takes for each method to
minimize the error in Euclidean distance to less than 1m. It was observed that the proposed
ICP-NL method was much faster at converging. The height errors and convergence times
are presented in Table 8.

Table 8. Aircraft simulation position estimation errors for ICP-NL and NDT algorithms for
different altitudes.

Algorithm Height (m) ATE (m) Convergence Time (s)

ICP-NL 3.5 0.7265 2.3
4.5 0.7077 2.8
5.5 0.7442 4
6.5 0.6857 3.1
7.5 0.6334 1.6
8.5 0.552 4.1

NDT 3.5 149.6588 181.4
4.5 511.6744 57.7
5.5 363.2043 103.3
6.5 133.5604 50.9
7.5 0.6597 7
8.5 1.6485 21.5

The simulated flight with the lowest ATE and the shortest convergence time, corre-
sponding to a height of 7.5 m, was taken as a reference. Figure 25a shows the trajectories
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generated by the ICP-NL algorithm and the ground truth. The two trajectories are prac-
tically overlapped along the whole path, and the ATE and ABS errors in Figure 25b are
within the margins allowed in the application. This method provides very good results in
the simulation. Figure 26 shows the flight with the highest error.

(a) (b)

Figure 25. ICP-NL simulation test with the lowest ATE. (a) Trajectories. ICP-N (blue), ground truth
(green), take-off position (blue circle), error (red). (b) ICP-N errors.

(a) (b)

Figure 26. ICP-NL simulation test with the highest ATE. (a) Trajectories. ICP-NL (blue), ground truth
(green), take-off position (blue circle), error (red). (b) ICP-N errors.

Like the 2D case, we evaluate the performance of the ICP-NL using the 3D CAD truck
model. The result of the 3D map using the graph SLAM approach is shown in Figure 27,
and Video S8 shows how a 3D map is built when the UAV is moving.

Figure 27. Truck 3D map generated by graph SLAM.

Based on previous results, only the ICP-NL approach was evaluated. Table 9 presents
the results at different heights.
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Table 9. Truck simulation position estimation errors for ICP-NL algorithms for different altitudes.

Algorithm Height (m) ATE (m) Convergence Time (s)

ICP-NL 2.5 0.3801 2.3
3.5 0.5552 2.8
4.5 0.5442 4
5.5 0.6857 3.1

Different flights were performed using the same aircraft 3D simulation parameters;
each flight started at a different initial position with an initial error of less than one meter.
Figures 28 and 29 show the flight with the lowest ATE, and Video S9 shows the pose
estimation by ICP-NL during the flight. Further, Figure 30 shows the flight with the
highest ATE.

Figure 28. Pose estimation by ICP-NL. Three-dimensional map (red), ground truth path (green),
ICP-NL path (blue).

(a)
(b)

Figure 29. ICP-NL simulation test with the lowest ATE. (a) Trajectories. ICP-N (blue), ground truth
(green), take-off position (blue circle), error (red). (b) ICP-N errors.

(a) (b)

Figure 30. ICP-NL simulation test with the highest ATE. (a) Trajectories. ICP-NL (blue), ground truth
(green), take-off position (blue circle), error (red). (b) ICP-N errors.
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4.5.2. Real Tests

To check the method’s effectiveness, tests were performed with real data as well, using
the same files (ROS rosbags) as in the AMCL algorithm tests. Figure 31a and Video S5
correspond to the trajectory of flight Figures 16a and 31b and Video S6 correspond to flight
Figure 16b. In Figure 31, the odometry trajectories have been represented in white. The
algorithm’s correct operation can be checked visually if the data captured by the sensor
overlaps with the reference map’s data and if the trajectory generated by the odometry is
close to the trajectory provided by ICP-NL. However, in this case, the trajectory estimated
by ICP-NL has many deviations, and the 3D map data does not match the 3D laser data.
The main cause of these errors when evaluating the real environment methods is assumed
to be the noise generated by the walls and other unexpected objects adjacent to the aircraft.

(a) (b)
Figure 31. Performance results of the 3D localization algorithm with real data. Position estimate by
the algorithm (white), 3D point cloud (green-yellow). (a) Path 1 test (Figure 16a). 3D graph SLAM
map (blue). (b) Path 2 test (Figure 16b). 3D graph SLAM map (red).

5. Discussions
5.1. 2D Localization

Using a static 2D map built from a standard CAD model has significant advantages
over developing SLAM algorithms to map the environment, as it can save time and
resources and provide enhanced robustness. Furthermore, using a 3D laser sensor for 2D
environments is very practical, can be cost-effective, and can produce really nice results, as
shown in this work.

Unexpected objects not present on the map can be segmented in a simple manner
by modifying the laser data range. These parameters must be optimized according to the
application and environment to obtain the desired results. Object segmentation can also be
performed by applying other typical point cloud processing algorithms, if necessary.

If the map contains objects with particular geometries or noticeable corners, the
detection of relevant features is evident. As more data are acquired, the filter will converge
easily. In this work, the wings’ intersection with the aircraft’s body and the corners of the
truck provides a unique feature. This area can be used to detect the relevant features. It
provides unique features and, therefore, the area around can be used as a take-off point for
the algorithm to converge faster.

When using AMCL, a considerable degree of uncertainty in the initial position is
admissible if safe navigation is guaranteed, as the algorithm can estimate the location
accurately after some time. For a flight to be robust and accurate, AMCL can be used
in two stages. The first one aims to determine its initial position with minimal error by
performing a specific trajectory and waiting for the algorithm to converge. The second
stage starts the desired flight considering the initial estimated position. As expected, the
lower error in AMCL initialization, the better the results in estimating the whole trajectory.
Further, AMCL can be used to determine a reliable initial position with little error for other
algorithms in which this information is critical, such as the EKF.
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The results obtained from the truck inspection show that the covariance XY, laser
data, and occupied cells are lower than the values from the aircraft inspection. Because
the 2D map created and the truck is smaller, the data obtained by each component has
less information.

5.2. 3D Localization

Regarding mapping, the graph SLAM changes applied for this work were adequate.
The obtained map had little noise, which helped rule out sources of error in the localization
algorithms execution. Additionally, the point cloud map could be sub-sampled to optimize
processing time. In the simulations, we observed some false positives in pose estimation.
Therefore, it is recommended to build the 3D map without using the floor in the world.

Despite the noise generated by elements other than the aircraft, we showed that a
map generated in simulation could be used for localization in a real environment with nice
results. However, it would be an exciting contribution to test the algorithms in an open
field or far from noisy elements to corroborate their better operation.

Overall, the proposed ICP-NL scan-matching method and UKF performed better than
NDT in the performed tests. Its behavior was robust, and its results were not affected
by parameters such as flight height. Moreover, its convergence time was relatively short
despite estimation errors at the initial position. However, the error may still be too high for
applications requiring increased accuracy.

NDT achieves high accuracy in the estimation of the x and y coordinates in some of
the flights. In the case of NDT, it works very well as long as the initial uncertainty does not
grow too much. Otherwise, it has significant costs to recover.

According to the performed tests, nonlinear ICP supports initial positions with a
more extensive range of uncertainty than similar algorithms such as NDT, ICP, and
Generalized ICP.

6. Conclusions
6.1. 2D Localization

Performing 2D localization on a pre-built map using a CAD model and a 3D laser
sensor is very practical. It saves resources and time, and the results are good.

Unexpected objects inside the environment may be deleted in a simple and fast manner
by imposing 2D laser range limitations. However, the results can be improved by using
PCL segmentation methods.

The initial position used in AMCL could have a considerable degree of uncertainty.
Places with relevant features on the map should be used for the initial position to reduce
convergence time and improve the quality of localization.

The position estimated by AMCL can be used as an initial position for other algorithms.

6.2. 3D Localization

Applying sub-sampling methods to the point cloud can reduce the time to build a
map. To obtain higher accuracy in the 3D map, the robot’s real position may be fed to the
algorithm proposed by [27,64].

In our tests, the best results were obtained by the ICP-NL scan-matching method
together with UKF. It is a robust algorithm; flight height does not affect its performance, it
works well with an extensive range of uncertainty, and its convergence time is relatively
short. NDT had a good performance in pose estimation in x and y with a long-range of
uncertainty. However, in some cases, it presented failures, and the robot got lost.
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Supplementary Materials: AMCL test in aircraft inspection, Video S1: https://www.youtube.com/
watch?v=Uda-_YUio_8. AMCL test in real flight, Video S2: https://www.youtube.com/watch?v=
FJlMPQJkjQ4. AMCL test in real flight 2, Video S3: https://youtu.be/tWqs_0hfP-s. ICP-N and NDT
test in aircraft inspection, Video S4: https://www.youtube.com/watch?v=sm99JGC_RRo. ICP-NL
pose estimation in real flight, Video S5: https://youtu.be/nIe6f0lWN5Y. ICP-NL pose estimation in
real fligth 2, Video S6: https://youtu.be/ppRl1bkPFKs. AMCL test in truck inspection, Video S7:
https://youtu.be/kYRqHP-5KGM. Graph SLAM map creation, Video S8: https://youtu.be/tT7
vpYPzhsk. ICP-N test in truck inspection, Video S9: https://youtu.be/kumKJLJX75M.
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ROS Robot Operative System
DAE Digital Asset Exchange
URDF Unified Robot Description Format
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PCL Point Cloud Laser Library
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LIDAR Light Detection and Ranging
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Appendix A. Hummingbird Simulated Odometry Sensor

f i l e : / r o t o r s _ s i m u l a t o r / r o t o r s _ d e s c r i p t i o n /urdf/mav_generic_odometry_sensor . gazebo
mass_odometry_sensor = 0 .00001
measurement_divisor = 1
measurement_delay = 0
unknown_delay = 0 . 0
noise_normal_posi t ion = 0 0 0
noise_normal_quaternion = 0 0 0
n o i s e _ n o r m a l _ l i n e a r _ v e l o c i t y = 0 0 0
noise_normal_angular_veloc i ty = 0 0 0
noise_normal_posi t ion = 0 . 0 1 0 . 0 1 0 . 0 1
noise_normal_quaternion = 0 .017 0 .017 0 .017
n o i s e _ u n i f o r m _ l i n e a r _ v e l o c i t y = 0 0 0
noise_uni form_angular_veloc i ty = 0 0 0
enable_odometry_map= f a l s e
i n e r t i a ixx = 0 .00001 ixy = 0 . 0 ixz = 0 . 0 iyy = 0 .00001 iyz = 0 . 0 i z z = 0 .00001 [

kg m^2]
o r i g i n xyz =0.0 0 . 0 0 . 0 rpy =0.0 0 . 0 0 . 0

Appendix B. Velodyne VLP16 Simulated 3D Laser Sensor

update r a t e in hz = 10
samples = 512
minimum range value in meters = 0 . 9
maximum range value in meters = 130
noise Gausian in meters = 0 .008
minimum h o r i z o n t a l angle in radians = −3.14
maximum h o r i z o n t a l angle in radians = 3 . 1 4

Appendix C. AMCL Simulations Parameters

odom_model_type value=omni−c o r r e c t e d

laser_max_beams value =30
m i n _ p a r t i c l e s value =200
max_part ic les value =3000
kld_err value =0.05
kld_z value =0.99

odom_alpha1 value =0.2
odom_alpha2 value =0.2
odom_alpha3 value =0.8
odom_alpha4 value =0.2
odom_alpha5 value =0.2

l a s e r _ l i k e l i h o o d _ m a x _ d i s t value=2
l a s e r _ z _ h i t value =0.5
l a s e r _ z _ s h o r t value =0.05
laser_z_max value =0.05
laser_z_rand value =0.5
l a s e r _ s i g m a _ h i t value =0.2
laser_lambda_short value =0.1
laser_model_type value= l i k e l i h o o d _ f i e l d

update_min_d value =0.2
update_min_a value =0.5
resample_ in terva l value=1
t rans form_to lerance value =1.0
recovery_alpha_slow value =0.001
recovery_a lpha_fas t value =0.1

i n i t i a l _ c o v _ x x value =0.5
i n i t i a l _ c o v _ y y value =0.5
i n i t i a l _ c o v _ a a value =0.15
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Appendix D. AMCL Real Fligts Parameters

odom_model_type value=omni−c o r r e c t e d

laser_max_beams value =50
m i n _ p a r t i c l e s value =200
max_part ic les value =3000
kld_err value =0.01
kld_z value =0.8

odom_alpha1 value =0.3
odom_alpha2 value =0.3
odom_alpha3 value =0.05
odom_alpha4 value =0.05
odom_alpha5 value =0.3

l a s e r _ l i k e l i h o o d _ m a x _ d i s t value =0.5
l a s e r _ z _ h i t value =0.8
l a s e r _ z _ s h o r t value =0.05
laser_z_max value =0.05
laser_z_rand value =0.5
l a s e r _ s i g m a _ h i t value =0.2
laser_lambda_short value =0.1
laser_model_type value= l i k e l i h o o d _ f i e l d

update_min_d value =0.1
update_min_a value =0.1
resample_ in terva l value=1
t rans form_to lerance value =1.0
recovery_alpha_slow value =0.001
recovery_a lpha_fas t value =0.1

i n i t i a l _ c o v _ x x value =25
i n i t i a l _ c o v _ y y value =25
i n i t i a l _ c o v _ a a value =0.15
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