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Abstract: It is important to find signals of interest (SOIs) when operating sonar systems. A threshold-
based method is generally used for SOI detection. However, it induces a high false alarm rate at a
low signal-to-noise ratio. On the other side, machine-learning-based detection is performed to obtain
more reliable detection results using abundant training data, costing intensive time and labor. We
propose a method with favorable detection performance by using a hidden Markov model (HMM)
for sequential acoustic data, which requires no separate training data. Since the detection results from
HMM are significantly affected by the random initial parameters of HMM, the genetic algorithm
(GA) is adopted to reduce the sensitivity of the initial parameters. The tuned initial parameters
from GA are used as a start point for the subsequent Baum–Welch algorithm updating the HMM
parameters. Furthermore, multiple measurements from arrays are exploited both in determining the
proper initial parameters with GA and updating the parameters with the Baum–Welch algorithm. In
contrast to the standard random selection of the initial point with single measurement, a stable initial
point setting by the GA ensures improved SOI detections with the Baum–Welch algorithm using the
multiple measurements, which are demonstrated in passive and active acoustic data. Particularly, the
proposed method shows the most confidential detection in finding weak elastic surface waves from
target, compared to existing methods such as conventional HMM.

Keywords: sonar signal detection; hidden Markov model; genetic algorithm

1. Introduction

Sonar systems with arrays comprising multiple sensors have been used to detect sig-
nals of interest (SOIs). However, various noises from vessels, submarines, and fish schools,
etc., exist in the ocean and are measured by the sensors along with the SOIs. Therefore,
detection methods are required to discriminate the desired signals from the noises.

Threshold-based detection schemes such as energy detection [1] or constant false alarm
rate (CFAR) detection [2] are generally used in finding the SOIs. In energy detection, the
energy of measured data is compared with a predefined threshold value. CFAR detection
is a scheme that uses an adaptive threshold based on the relationship between a specified
cell (sample under test) and adjacent auxiliary data. The threshold-based detections do not
require prior information regarding the marine environment and exhibit low computational
complexity. However, the detection performance is inferior in low signal-to-noise ratio
(SNR) owing to the simple decision rules for SOIs. Hence, sophisticated detection methods
using algorithms from machine learning (ML) have been proposed [3–6].

Owing to technological developments, various ML schemes have been applied in
detecting the SOIs passively or actively [3–7], which treat the SOI detection as classification
problems. To distinguish a target from a clutter in active sonar systems, a perceptual-based
signal features from the human auditory system are exploited [3]. To suppress interference
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from background noise in recognizing underwater sound signals, a denoising autoencoder
are used with random forest [4]. Furthermore, signal detection methods using various
convolution neural networks have been used actively [5–7]. Although ML-based detections
or classifications have remarkably enhanced performance, they require abundant training
data for a given task, which have time and labor costs.

A hidden Markov model (HMM), a ML algorithm, has been applied widely to speech
and text recognition with sequence data [8–11]; it estimates hidden states (or hidden
information) of samples in the sequence data by using probabilities (HMM parameters)
explaining the hidden states, which are extracted from the given data themselves. HMM
has been applied to sequential data measured by radar and sonar systems to detect the
corresponding target signals (i.e., SOIs) [12–14]. For a track-before-detection strategy in
noisy environments, HMM was used for radar target detection to avoid the usage of
threshold-based detection [12]. In bioacoustics, the vocalizations of Bryde’s whales were
automatically identified by using HMM, which enables the SOI detection even when ship
noise interfering with the whale sounds is present [13]. In [14], to enhance detection
performance in passive sonar data, a pregrouping of acoustic signals (i.e., samples are
preliminarily clustered into “signal” and “noise”) was incorporated with HMM.

In the current study, we attempt to detect SOIs in sonar data such as scattered signals
from targets with low false alarms using limited measurements. Thus, we propose an HMM-
based detection requiring no separate training data. Since the detection results from HMM
are significantly affected by random initial parameters of HMM, a genetic algorithm (GA) is
utilized to reduce the sensitivity of the initial parameters to the detection [15]. Furthermore,
multiple measurements from array are exploited in the HMM-based detection to enhance
accuracy and stability in finding the SOIs within sonar data. Section 2 presents problems in
underwater signal detection and describes the parameters in the HMM. In Section 3, the
proposed scheme using the HMM is explained comprehensively. The detection performance
of the proposed scheme is investigated using synthetic passive and real active sonar data
(Sections 4 and 5). Finally, the conclusions are provided in Section 6.

2. Problem Description

Here, an HMM-based detection scheme is proposed to detect SOIs with less false
alarms and without separate training data by exploiting sequential acoustic data with
pre-established probability models in the HMM. The conventional HMM is modified to
accommodate multiple measurements from an array, which enhance the detection accuracy
and robustness by correlated SOIs over sensors in the array.

The HMM has been widely adopted in speech and text recognition involving sequen-
tial data [8–11]. In the HMM framework, samples in the sequential data have hidden states,
which are estimated from observed signals. Sonar data can be sequenced based on the
regularity of the SOIs, and the HMM can be applied to underwater acoustic signal detection
using time-domain sonar data after quantization is performed. Two states exist in sonar
data, i.e., signal and noise states.

Figure 1 shows the structure of the HMM. The HMM (or probability models in the
HMM) can be expressed as θ = [π, A, B], where π, A, and B are the initial state distribution,
transition matrix, and emission matrix, respectively. The initial state distribution, π,
indicates the probability distribution over the states at the initial time. The states, as
time progresses, are connected by the first-order Markov chain [16], and their transitions
are represented by the transition matrix A (relevant to dotted line), whose element (i, j)
represents the probability of the state changing from the ith state at the present time to
the jth state at the next time. The probability of a specific observation at a certain state
(emission probability) is represented by emission matrix B (relevant to dashed line). The
sizes of the transition and emission matrix are M×M and M× N , respectively, when the
number of states is M and the values in sonar data are quantized with N (in the current
study, M = 2 and N = 150).
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Figure 1. The structure of the HMM. The HMM explains observations ot by using three probability
models. An initial state distribution π is the probability distribution over the states at the initial time.
The state change (marked with dotted line) is accounted for by the first-order Markov chain, and the
previous state affects the present state. An observation at a specific time appears probabilistically,
which depends on the state (marked with dashed line). HMM finds the optimal probability models
for observations (Baum–Welch algorithm), which are subsequently used to identify the hidden states
with the observations (Viterbi algorithm).

In the HMM framework, optimal probability models (also, referred to as optimal
parameters) are obtained with best explaining the observations by the Baum–Welch al-
gorithm in HMM [17] (θ∗ = argmax

θ

P(o|θ)). Then, the hidden states are revealed by the

Viterbi algorithm, which uses the estimated parameters with observations as follows [18,19]:
argmax

q
P(q|o, θ∗). From the perspective of detection, the SOIs are identified by samples

possessing the “signal” state.
During parameter estimation using the HMM, the Baum–Welch algorithm was used

to determine θ∗ from randomly selecting the initial values. However, the estimates strongly
depend on the initial values owing to local optimal points; HMM-based detection results
for the same data can be different owing to the random initial values differing along with
the applications of HMM. Hence, several studies have been conducted to determine the
appropriate initial values for the parameters [14,15,20,21]. In relevant studies pertaining to
the detection of underwater SOIs [14], k-means and pre-grouping were used to derive the
proper initial values instead of the random ones. This detection scheme is referred to as
expectation-maximization (EM)-Viterbi Algorithm (VA) as in [14]. Although the EM-VA
provides an accurate detection of SOIs in environments containing transient noise, its per-
formance degrades when ambient noise is present, as discussed in Section 4. Furthermore,
when multiple SOIs exist, SOIs having magnitudes similar to or less than the magnitude of
noise are overlooked by the EM-VA.

In the EM-VA [14], a single measurement (acoustic data at a single sensor) was used
as observation. In the sonar system, multiple measurements can be acquired by sensor
arrays. Unlike previous studies using HMM [14,22,23], here, multiple measurements were
exploited not only to determine the reliable initial values using the genetic algorithm
(GA) but also to update parameters using the Baum–Welch algorithm; these are described
comprehensively in the following section.

3. HMM Calibration and Parameter Adjustment Using Multiple Measurements

The Baum–Welch algorithm is sensitive to the initial values of the parameters, and
its estimations strongly depend on the initial values. To determine the appropriate initial
values, multiple measurements from arrays in the sonar system are used to ensure accurate
and robust SOI detection. The detection process, which involves various algorithms, is
illustrated in Figure 2. First, the initial values for the HMM, which exhibit the most effec-
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tively the observations of multiple measurements in terms of probability, are determined
using the GA (Section 3.1). Next, the parameters in the calibrated HMM are adjusted by
the Baum–Welch algorithm using multiple measurements (Section 3.2). Finally, the hidden
states are derived for the multiple measurements using the Viterbi algorithm, and they
indicate the SOIs.

Figure 2. Block diagram of detection process in hidden Markov model (HMM). Multiple measure-
ments were exploited to determine the best initial values for the HMM parameters using the genetic
algorithm. They were updated with the Baum–Welch algorithm using the multiple measurements.
Then, hidden states of the multiple measurements were revealed via the Viterbi algorithm using the
HMM parameters.

3.1. Initialization: Calibrating HMM

We used a GA, which is inspired by the natural selection process, to estimate the
initial values of the parameters. The GA is a representative scheme for solving optimiza-
tion problems, where genes (candidates for the solution) in a population at the current
generation produce genes in a population at the next generation using crossover, mutation,
and selection (evolution) to approach the solution [24]. In particular, mutation in the GA
prevents a solution from being a local optimum.

In the current study, genes in the GA are parameters with distinct values (θp
g , where

the subscript g and superscript p indicate the gene and generation numbers, respectively),
and the appropriate initial values for the measurements are determined by evolving θ

p
g

in the GA. The criterion for the appropriateness is calculated using the fitness function
Pp

g = lnP(o|θp
g), where o = [o1, ..., oT ] is observed in the time domain, ot is a quantized

acoustic signal vn, and T is the total number of observations with a signal length. P(o|θp
g) is

the likelihood function, which stochastically explains the observation based on the specified
parameters and is calculated using the forward or backward algorithm in the Baum–
Welch algorithm. In this study, the forward algorithm was adopted for the calculation
with probability P(o1, ..., ot, qt = sm|θ), which was obtained from αt(m′) = bm′(ot =
vn)∑M

m=1 αt−1(m)am,m′ . qt is the observed state at time t and is one of the state types sm (i.e.,
“signal” or “noise”; hence, M = 2); am,m′ ((m, m′) element of the transition matrix) and bm′

(ot = vn) ((m′, n) element of the emission matrix) are the probabilities of state transition
from state m to state m′ and the observation of ot = vn at state m′, respectively.
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A new gene was created for the next population by selectively using θ
p
g among the

current population; θ
p
g with a high probability was used preferentially. This process was

repeated until a terminal condition was satisfied.
The signals received at the sensor array contain the SOIs. Hence, the parameters for

the measurements are expected to be the same. The shared parameters were estimated to
increase the detection accuracy and robustness, and the fitness function for the single mea-
surement was modified to accommodate the multiple measurements with the assumption
of their stochastic independence. A product of likelihood functions for the measurements
was used for the fitness function [15], as follows:

Pp
g =

K

∑
k=1

lnP(o(k)|θp
g) (1)

The superscript k in parenthesis represents the measurement number; K represents
the total number of the measurements, which is the same as the number of sensors in the
arrays. The optimal values from the GA using (1) are the initial values for the parameter in
the HMM, which is referred to as the calibrated HMM herein.

3.2. Parameter Adjustment Using Baum–Welch Algorithm with Multiple Measurements

Optimal parameters (θ∗) were derived using the Baum–Welch algorithm [17], which
uses the parameters from GA (θ0) as a starting point. The Baum–Welch algorithm has an
iterative loop composed of an expectation (E) step and a maximization (M) step. Hidden
variables from the E-step are used to update old parameters in the M-step, and they are
denoted as follows [17]:

γt = P(qt = sm|o, θq), (2)

ξt(m, m′) = P(qt = sm, qt+1 = sm′ |o, θq), (3)

where θq is the parameter after q iterations; the superscript indicates the iteration number.
γt and ξt are the probabilities of state sm at time t, and the joint states of sm at time t and
sm′ at time t + 1 for o and θq, respectively.

When applying the Baum–Welch algorithm with a single measurement, the parameters
are updated using the hidden variables as follows [17]:

π
q+1
m = γ1(m), 1 ≤ m ≤ M (4)

aq+1
m,m′ =

∑T−1
t=1 ξt(m, m′)

∑T−1
t=1 γt(m)

, 1 ≤ m ≤ M, 1 ≤ m′ ≤ M, (5)

bq+1
m (vn) =

∑T
t=1 Iot=vn γt(m)

∑T
t=1 γt(m)

, 1 ≤ m ≤ M, 1 ≤ n ≤ N, (6)

where π
q+1
m , aq+1

m,m′ , and bq+1
m (vn) are elements of the initial state distribution, transition

matrix, and emission matrix at q + 1 iterations, respectively. Iot=vn is an indicator function,
which equals one when ot = vn. Otherwise, it is zero. T is the signal length of observation
(or measurement) o. The initial state distribution of (4) is obtained from γ1. The transition
probability of (5) is a conditional probability that accounts for the state changing from the
mth state at the present time to the m′th state at the next time. It is the ratio of the sum of
joint probabilities of sm at time t and sm′ at time t+ 1 to the sum of probabilities of sm at time
t; the sums are conducted in the time domain. The emission probability of (6) conforms
to its definition (i.e., the probability of a specific observation quantity vn at state sm) by
counting γt(m) with the observation ot matching vn among all γt(m). Equations (2)–(6) are
used repeatedly until the parameters converge or the iteration reaches a predefined number.
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To exploit the commonality (i.e., the shared parameters) of the multiple measurements
from the array, the parameters are updated during the iterations of the Baum–Welch
algorithm as follows [17]:

π
q+1
m =

1
K

K

∑
k=1

γ
(k)
1 (m), 1 ≤ m ≤ M (7)

aq+1
m,m′ =

∑K
k=1 ∑T(k)−1

t=1 ξ
(k)
t (m, m′)

∑K
k=1 ∑T(k)−1

t=1 γ
(k)
t (m)

, 1 ≤ m ≤ M, 1 ≤ m′ ≤ M, (8)

bq+1
m (vn) =

∑K
k=1 ∑T(k)

t=1 Io(k)t =vn
γ
(k)
t (m)

∑K
k=1 ∑T(k)

t=1 γ
(k)
t (m)

, 1 ≤ m ≤ M, 1 ≤ n ≤ N, (9)

Hidden variables γ
(k)
t and ξ

(k)
t are calculated using the kth measurement o(k) in the E-step;

T(k) is the signal length of o(k) and is set as a constant of T in the current study. Equations
(7)–(9) are obtained by modifying (4)–(6) with an additional summation over the spatial
domain based on multiple measurements by the array. The initial state distribution of
(7) is the average of γ

(k)
1 over the spatial domain. Similar to (5) and (6), the transition

probability of (8) is the ratio of the sum of the joint probabilities ξ
(k)
t (m, m′) and the sum of

the corresponding marginal probabilities γ
(k)
t (m); the sums are conducted in the space and

time domains. The emission probability of (9) is calculated by counting γ
(k)
t (m), with the

observation ot matching vn among γ
(k)
t (m).

Multiple measurements from the array are beneficial to the HMM because they provide
additional samples that are in proportion to the number of sensors for estimating the
conditional probabilities, as shown in (7)–(9). The probabilities from rich data are more
reliable and result in stable and accurate signal detections.

Next, the hidden states for each measurement are revealed using the Viterbi algo-
rithm [18,19], based on observations as well as shared parameters θ∗ from the Baum–Welch
algorithm. ŝ(k), which comprises hidden states as time progresses at the kth measurement,
is derived using the Viterbi algorithm by maximizing P(q(k) = s(k)|o(k), θ∗); it indicates the
SOIs in the measurement. The suggested process is abbreviated as the GA-HMM.

Although the parameters can be determined using the GA or Baum–Welch algorithm
separately, the two optimization schemes are used sequentially in SOI detection for a
superior estimation of parameters; the GA derives an unbiased initial point for the Baum–
Welch algorithm (Figure 3a), and a desired optimal point is subsequently determined from
the initial point (Figure 3b). The detection performance afforded by the Baum–Welch
algorithm alone is sensitive to the random initial values of the parameter (or random initial
point), which are updated consecutively using the Hill-Climbing [25,26] and hence can fall
into a local optimum point next the neighboring random initial point. Using only the GA
incurs a high computational cost for parameter convergence. Furthermore, noise hinders
the GA from converging near global optimal points. The parameters cannot converge even
after sufficient generations; hence, the detection performance based on the GA deteriorates.
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Figure 3. Parameters in HMM evaluated via sequential usage of GA and Baum–Welch algorithm:
(a) GA yielded unbiased initial point for Baum–Welch algorithm in subsequent stage; (b) Baum–Welch
algorithm yielded global optimal point from unbiased initial point.

4. Analysis of GA-HMM Using Synthetic Data

The detection performance of the GA-HMM was analyzed by comparing its detection
results with those of other schemes. The effects of the fine initial point from the GA were
demonstrated with synthetic data.

4.1. Numerical Environment

To analyze the GA-HMM, synthetic data were generated while considering the acoustic
signals measured using the sonar systems. Each synthetic datum with a signal length of 0.3 s
was discretized with a sampling frequency of 500 Hz and contained 150 samples (T = 150).
Here, the SOI in the synthetic data was a 50 Hz three-cycle sine wave comprising 30 samples,
and it was contaminated by additive white Gaussian noise (Figure 4a). Although the
starting point of the SOI did not affect the detection performance, the 50th sample of
the synthetic data was used as the starting point to ease the visual inspection of the
detection results.
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Figure 4. (a) Representative example of synthetic data with SNR of 8 dB. Detection results from
(b) EM-VA, (c) single-measurement Random-HMM, (d) single-measurement GA-HMM, (e) multiple-
measurement Random-HMM, and (f) multiple-measurement GA-HMM. The Interval for SOI is indicated
by vertical dashed lines. Symbols “o” and “x” represent “signal” and “noise” states, respectively.

Noise with various magnitudes were added to the clean synthetic to investigate the
detection performance according to SNRs. Additionally, different numbers of the synthetic
data were used for the detection to demonstrate properties of multiple measurements in
finding the SOI.

In the current study, an observation value of HMM is an absolute value of the acoustic
signal quantized with uniform intervals of 150 (N = 150) after normalization with its
absolute maximum. To obtain the fine initial point using the GA, 200 randomly gener-
ated parameters were used as genes in the first-generation population. A score for the
appropriateness was calculated for the genes using the fitness function presented in (1),
and the genes with high scores had a high probability of being selected for generating the
next genes with crossover. The probability of mutation was set to 0.01. The most feasible
parameter after 10 generations (p = 10) was used for the fine initial point. In the GA,
the transition probability between the same (or different) states had a lower (or upper)
bound of 0.5, owing to rare transitions between different states, which occurred at the
50th (from noise to signal) and 80th samples (from signal to noise) among 150 samples in
the simulation.

Subsequently, the Baum–Welch algorithm commenced from the fine initial points and
terminated when the parameters converged or the iteration reached a predefined number
(in this study, Q = 500).

The Viterbi algorithm, which is applied to the sequential samples in the observations
with estimated parameters, implies the states at the samples with a value of 0 or 1 (M = 2).
The variance of samples with the same state was calculated. The state with a higher (or
lower) variance was assigned to the “signal” state (or “noise” state) as in [14]; here, samples
with values of 0 and 1 correspond to the “noise” and “signal” states, respectively. Quantities
for the hyperparameters in the GA-HMM, including the quantization number and upper
and lower bounds, were determined empirically.
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4.2. Detection Performance Analysis of GA-HMM

Figure 4 shows representative examples of detection results obtained by the GA-
HMM, EM-VA, and Random-HMM; the HMM using a random initial point for the Baum–
Welch algorithm is referred to as the Random-HMM here in. The SOI is indicated by
vertical dashed lines. The SOI was detected under a harsh condition without using a
matched filter enhancing the SNR (passive sonar signal detection). Noise comparable to
the SOI (SNR = 8 dB) restricts the use of threshold-based detection schemes. Therefore,
sophisticated schemes were used. In this study, the GA-HMM and Random-HMM were
applied to perform detections using single or multiple measurements based on (1) and
(7)-(9). Meanwhile, the EM-VA used a single measurement to identify the SOI because it
cannot accommodate multiple measurements [14].

When using the EM-VA, most of the samples in the synthetic data were identified
as the SOI by noise, and false alarms occurred, as shown in Figure 4b. Figure 4c,d show
the detection results obtained from the Random-HMM and GA-HMM based on a single
measurement. Many noise samples were misclassified as SOIs, increasing false alarm rates
(FAR) owing to some inappropriate initial values in Random-HMM. This problem was
mitigated using the GA-HMM, which determined the parameters using the fine initial
point. However, considerable false alarms remained. Therefore, multiple measurements
comprising 30 synthetic data were used, as shown in Figure 4e,f, to reduce false alarms. As
a result, the Random-HMM using multiple measurements achieved significantly reduced
the FAR of the SOI sample. On the other hand, the GA-HMM using multiple measurements
exhibited the highest recall with less false alarms, thereby demonstrating its superior
detection performance compared with the considered schemes.

Table 1 summarizes the recall, FAR, and computation time of the schemes based on the
average detection results for 100 trials at a fixed SNR of 8dB. In this study, recall is defined
based on the ratio of the number of correctly identified SOI samples to the total number
of SOI samples, and the FAR is defined based on the ratio of the number of misidentified
noise samples to the total number of noise samples. Although the EM-VA exhibited a high
recall, it incorrectly identified noise persistently. In particular, the noise near the SOI tended
to be identified as a “signal”, and it resulted in the highest FAR as shown in Figure 4b.
The Random-HMM using single measurement overlooks the SOI and misclassified noise
because of unstable detection from the random initial point; thus, it resulted in an inferior
recall and FAR. While these problems were alleviated using the single-measurement GA-
HMM, it still exhibited a considerable FAR. Therefore, all single-measurement schemes
exhibited unsatisfactory detection performance owing to excessive false alarms. Noise
could not be distinguished from the SOI, thereby resulting in high FARs in the scarce
measurement. Therefore, multiple measurements were used to mitigate these problems.

Table 1. Recall, false alarm rates, and computation time of the investigated schemes.

Scheme Recall False Alarm Rate Computation Time

EM-VA (single) 0.86 0.63 0.83 s
Random-HMM (single) 0.60 0.48 0.08 s

GA-HMM (single) 0.65 0.43 6.76 s
Random-HMM (multiple) 0.69 0.27 11.02 s

GA-HMM (multiple) 0.88 0.06 12.10 s

The considered schemes were implemented at a computer with an intel(R) Core
(TM) i9-9900K CPU, and the corresponding computational times were measured (Table 1).
Although the proposed scheme showed the hugest computational burden, it can be applied
to acoustic measurements during experiments and detect SOIs in semi-real-time, owing to
its computational time in the order of 10 s.

The multiple-measurement Random-HMM exhibited improved performance in terms
of both recall and FAR (moderate recall with significantly reduced FAR) because it exploited
the consistency of the SOI in the multiple measurements when updating the parameters
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and was less affected by erratic noise. Detection performance was significantly improved
by using multiple measurements to determine better initial points with GA and update
parameters with the Baum–Welch algorithm. As a result, the multiple-measurement GA-
HMM exhibited the highest recall and lowest FAR, indicating that most of the samples
were identified correctly.

To investigate the detection performance of the schemes for various noise magnitudes,
synthetic data with various SNRs were generated. The recalls and FARs from schemes
were displayed according to the SNRs, as in Figure 5, where they were averaged over
100 trials at each SNR. At low SNR, EM-VA had high recall and FAR, and most of samples
were identified as “signal”. With the increment in the SNR, the false alarm significantly
reduced with lower recall by overlooking SOI samples more frequently. The other schemes
using single measurement resulted in increased recalls and decreased FARs as the SNR
increased. In particular, the initial point obtained using the GA improved the single-
measurement performance, which also improved as the SNR increased. The schemes based
on single measurement could not provide reliable detections (even at high SNRs) because
of their insufficient recalls (EM-VA and Random-HMM) or high FARs (GA-HMM and
Random-HMM). As shown previously in Figure 4, the multiple measurements improved
the detection performance by evaluating the conditional probabilities in (7)–(9) more
confidently. The recall (or FAR) of the multiple-measurement Random-HMM improved
gradually as the SNR increased and reached 0.75 (or approximately 0.2) at a high SNR
of 13. The detection performance improved considerably by the multiple-measurement
GA-HMM, whose classification accuracy was accelerated by the increase in the SNR and
became almost perfect at the appropriate SNR. Additional methods for obtaining fine initial
points such as the GA are important in HMM-based detection because the initial points
significantly affect the parameter estimation in the Baum–Welch algorithm of HMM.

Figure 5. Detection performance of scheme according to SNRs: (a) Recall; (b) FAR. Multiple measure-
ments consist of 30 synthetic data.

Figure 6 shows the detection results from the Random-HMM and GA-HMM ana-
lyzed based on the measurement number (sensor number in array) at a fixed SNR of 8 dB.
Although their performances improved in proportion to the measurement number, the GA-
HMM with a fine initial point exhibited superior accuracy in terms of detection regardless
of the measurement number. The GA-HMM exploited multiple measurements more effec-
tively than the Random-HMM because it used them in the Baum–Welch-algorithm-based
update as well as the GA-based initial point identification. The performance differences
increased until the measurement number reached 30. Despite the slow performance en-
hancement after 30 measurements, the multiple measurements afforded accurate and robust
SOI detection.
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Figure 6. Detection Performance of scheme according to measurement number at fixed SNR of 8 dB:
(a) Recall; (b) FAR.

5. Application of GA-HMM to Measured Acoustic Data

The feasibility of the multiple-measurement GA-HMM was investigated by analyzing
acoustic data from a water tank experiment, which included intense specular echoes and
weak elastic waves from shell targets (SOIs). The detection results for the real data were
compared with those obtained using the EM-VA and multiple-measurement Random-HMM.

5.1. Experimental Environment

An experiment for target scattering was conducted in a water tank with size of 35 m
(length) × 20 m (width) × 9 m (depth). A simple illustration of the water tank is shown in
Figure 7a, and its details are provided comprehensively in [27]. A 1 s long linear frequency-
modulated pulse signal with a bandwidth between 0.5 and 25 kHz from a transducer
impinged on the cylindrical shell target, and the scattered signal from the target was
measured using two hydrophones at different water depths (referred to as R1 and R2).
After applying a matched filter to the measured signals (pulse compression), a specific
time period of 1.5 ms, including the returns from the target (intense specular echo and two
subsequent weak elastic surface waves) was selected, as illustrated in Figure 7b, and the
corresponding observation size T was 150, with a sampling frequency of 100 kHz.

Figure 7. (a) Experimental environment; transmission signals are scattered by cylindrical shell and
are received by two receivers at different water depths. (b) Portion of acoustic signals at two receivers
after pulse compression (R1 and R2), which include intensive specular echoes and weak elastic
surface waves.
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The specular echoes from two measurements exhibited similar amplitudes and arrival
times (approximately 0.5 ms) and were insensitive to the depth difference. The elastic
waves, which exhibited distinct circumferential paths on the cylinder surface, were not
consistent with the measurements in terms of amplitudes and time delays. A slight gap
existed between the first elastic wave (approximately 0.8 ms) and the specular echo in
the R1 measurement. On the other hand, the first elastic wave (approximately 0.6 ms)
was immediately behind the specular echo and exhibited a small amplitude in the R2
measurement. The arrival times were confirmed by comparing the measured data with the
simulated data based on the same environment [27]. The second elastic waves in the R1
and R2 measurements arrived at approximately 1.3 and 1.5 ms, respectively. The detection
performance of the schemes was analyzed in terms of the identification of weak elastic
waves, as will be described in the following subsection.

5.2. Detection Results of GA-HMM for Measured Acoustic Signals

Figure 8 shows the detection results from the EM-VA, the multiple-measurement
Random-HMM, and the multiple-measurement GA-HMM. While the EM-VA was applied
to the measurements individually, the Random-HMM and GA-HMM detected the SOIs
after the shared parameters over the measurements were estimated. In the EM-VA, k-
means and pre-grouping were applied to evaluate the initial values, and obtain a consistent
detection result for the same data. However, although the GA-HMM is less affected by
the random initial value used in GA, the detection of the GA- and Random-HMM varies
depending on the trials, even if the same data are used. Hence, the Random–HMM and
GA-HMM were applied to the measurements repeatedly, and the average of 100 detection
results were used. The value for the state of a certain sample in the measurements was
between 0 and 1, and a sample with a higher (or lower) number was likely to be the signal
(or noise). In this study, samples exhibiting values exceeding 0.7 and less than 0.3 were
classified as “signal” and “noise”, respectively. The remaining samples exhibiting values
between 0.3 and 0.7 were neither “signal” nor “noise” and were referred to as “unclear
samples”.

The EM-VA detected the specular echoes without unclear samples owing to the con-
sistent estimation, whereas it overlooked the weak elastic waves in both measurements.
Furthermore, the elastic waves having similar magnitudes with noise made the Random-
HMM using multiple measurements determine most samples as unclear samples, except
for some samples within the specular echoes, and it was detrimental to identifying the
SOIs. The GA-HMM using multiple measurements also suffered from detecting the weak
elastic waves. Particularly, the second elastic wave in the R2 measurement was misiden-
tified as “noise”. In the water tank experiment, acoustic signals were measured by two
hydrophones, and thus sparse measurements were used for the detection, which resulted
in the diminished detection performance, compared to those using the synthetic data. The
performance reduction could be mitigated by using additional measurements, which were
unavailable in the current study. However, the multiple-measurement GA-HMM showed
the best performance among the considered schemes. It significantly reduced the unclear
samples and detected the specular echoes and elastic waves most confidently; even unclear
samples locating between noise provided clues for the SOIs (e.g., the first elastic wave in
R2 measurement).

Among the considered schemes, the GA-HMM exhibited the best signal detection and
false alarm reduction in both the synthetic and measured data. Hence, the GA-HMM is
applicable to sonar signal detection when ML-based schemes are unavailable because of
inadequate training data.
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Figure 8. Detection results for signals measured by two receivers (R1 and R2). (a) Single-measurement
detection result of EM-VA for R1; (b) single-measurement detection result of EM-VA for R2; (c) average
detection result of multiple-measurement Random-HMM for R1; (d) average detection result of
multiple-measurement Random-HMM for R2; (e) average detection result of multiple-measurement
GA-HMM for R1; (f) average detection result of multiple-measurement GA-HMM for R2. Averaged
values of the states from multiple-measurement Random-HMM and multiple-measurement GA-
HMM are between 0 and 1. Samples exhibiting values exceeding 0.7 and less than 0.3 were classified
as “signal” and “noise,” respectively. The remaining samples exhibiting values between 0.3 and 0.7
were “unclear samples”. Symbols of “o”, “x”, and “4” represent “signal”, “noise”, and “unclear
samples,” respectively.

6. Conclusions

We proposed a novel HMM-based detection method to accurately identify signals
with a low FAR without requiring training data. However, the Baum–Welch algorithm
for parameter estimation in the HMM is sensitive to the initial point and the problem of
falling into the local optimum point often occur because of a random initial point. The GA
provided a proper initial point for obtaining a global optimal point and determined the
appropriate parameters by using the Baum–Welch algorithm with the initial point.

Furthermore, by using multiple measurements both in deriving the initial point with
GA and updating the parameters with Baum–Welch algorithm, SOIs are detected more
accurately and reliably; GA and multiple measurements improve the stability and accuracy
of SOI detection, respectively. Thus, the multiple-measurement GA-HMM displayed supe-
rior performance in passive and active acoustic data, which are from simulation and real
measurements, respectively. The detection results are compared with those from other de-
tection schemes such as EM-VA and Random-HMM. Particularly, inconsistent and unclear
detections from conventional HMM (single-measurement Random-HMM) are significantly
alleviated by the multiple-measurement GA-HMM at the cost of computational complexity.
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