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Abstract: The modeling and compensation method is a common method for reducing the influence of
thermal error on the accuracy of machine tools. The prediction accuracy and robustness of the thermal
error model are two key performance measures for evaluating the compensation effect. However, it
is difficult to maintain the prediction accuracy and robustness at the desired level when the ambient
temperature exhibits strong seasonal variations. Therefore, a year-round thermal error modeling and
compensation method for the spindle of machine tools based on ambient temperature intervals (ATIs)
is proposed in this paper. First, the ATIs applicable to the thermal error prediction models (TEPMs)
under different ambient temperatures are investigated, where the C-Means clustering algorithm
is utilized to determine ATIs. Furthermore, the prediction effect of different numbers of ATIs is
analyzed to obtain the optimal number of ATIs. Then, the TEPMs corresponding to different ATIs in
the annual ambient temperature range are established. Finally, the established TEPMs of ATIs are
used to predict the experimental data of the entire year, and the prediction accuracy and robustness
of the proposed ATI model are analyzed and compared with those of the low and high ambient
temperature models. The prediction accuracies of the ATI model are 20.6% and 41.7% higher than
those of the low and high ambient temperature models, respectively, and the robustness is improved
by 48.8% and 62.0%, respectively. This indicates that the proposed ATI method can achieve high
prediction accuracy and robustness regardless of the seasonal temperature variations throughout
the year.

Keywords: CNC machine tool; thermal error; ambient temperature interval; model robustness

1. Introduction

In the machining process, changes in the internal and external heat sources such
as motor operation, friction, cutting heating, and environmental temperature result in
thermal errors, which represent 40–70% of the total errors of machine tools [1,2]. With the
development of high-precision CNC machine tools, the influence of thermal errors on the
tool performance is gradually becoming dominant [3]. To reduce such influence on machine
tools, there are two main approaches. The first approach is to establish the analytical model
and then to simulate and analyze thermal error laws. Although numerical analysis is
promising to compensate for thermal errors, it is extremely difficult for the numerical
method to build an exact structural model in practice and simulate the thermal deformation
of machine tools because of complicated deformation processes. Alternatively, software
compensation methods are commonly used to reduce the influence of thermal errors on
the accuracy of machine tools [4]. In this method, temperature sensors are first installed
on various locations of a machine, and a thermal error prediction model is established
based on the temperature information collected from those sensors. Then the established
model is embedded into the CNC system to realize thermal error compensation in real-time.
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Such a method, which is generally established by selecting relevant temperature-related
variables and designing an appropriate modeling algorithm, offers high prediction accuracy
and robustness [5].

First, the selected temperature variables are commonly called temperature-sensitive
points (TSPs) in the literature. Currently, the most common TSP-selection algorithm is
fuzzy clustering combined with the grey correlation degree algorithm [6–9]. The algorithm
mainly involves classifying temperature variables and selecting one variable from each
class as a TSP that has the greatest correlation with the thermal error. Based on the concept
of this algorithm, researchers have proposed the rough set theory combined with the
grey correlation degree algorithm [10] and fuzzy clustering combined with the correlation
coefficient algorithm [11] to select the TSPs. Second, the algorithms commonly used to
establish the thermal error prediction model (TEPM) include the multiple linear regression
algorithm [6,12,13], time series algorithm [14,15], neural network algorithm [7,8,10,13], and
support vector machine algorithm [16,17].

Recently, researchers have further studied the thermal error modeling algorithm of
CNC machine tools [18–22] to improve the accuracy and robustness of thermal error predic-
tion. However, the thermal error data in these studies had very small variations of ambient
temperature, and the influence of ambient temperature was rarely considered. Unfortu-
nately, their models perform poorly when the ambient temperature changes significantly,
where the ambient temperature has a non-negligible influence on the thermal error model-
ing and compensation [1,12]. In fact, a significant change in the environmental temperature
would lead to changes in the law of thermal deformation of the key parts of a machine tool.
To verify this observation, we conducted the analysis of variance (ANOVA) of different
sets of spindle thermal error data throughout a year. The results indicated a significant
difference between the spindle thermal error laws under different ambient temperatures,
i.e., the spindle thermal error law of a machine tool changes significantly with the ambient
temperature. Thus, the constructed TEPMs from previous studies are difficult to use in
accurately predicting spindle thermal errors over a wide range of ambient temperatures. In
this regard, Zhang et al. [23] and Li et al. [24] used the finite element method to study ther-
mal deformation laws of machine tools under the condition of time-varying environmental
temperature. This method can be used to obtain the accurate thermal deformation of a
machine tool under different ambient temperatures. However, it is a complex method, and
the established model is not universal. More recently, Liu et al. [25] constructed thermal
error models on both sides of a segment point of the ambient temperature. However, they
only considered one segment point in their model and did not investigate the optimal
number of segment points. Therefore, there exists a research gap, and the existing literature
lacks a methodology that systematically analyzes the influence of ambient temperatures on
the predictions and provides high accuracy and robustness performances.

Different from the existing methods [9,18,19] that have not considered the ambient
temperatures in their models, the main aim of the research in this paper is to systematically
investigate the influences of different ambient temperatures on thermal error prediction.
The objective of this paper is to provide a thermal error modeling method, which takes
ambient temperatures into consideration, so that the prediction accuracy and robustness
can be further improved. To fill the aforementioned research gap, in this paper, we propose
a year-round thermal error modeling and compensation method for the spindle of machine
tools based on ambient temperature intervals (ATIs). Specifically, first, the ATIs applicable
to the TEPMs are investigated based on experimental data collected over an entire year.
Second, the C-means clustering algorithm is utilized to determine the ATIs. The influence
of the number of ATIs on the prediction effects is further analyzed to determine the optimal
number of ATIs. Then, the TEPMs are established with the optimal number of ATIs in
the annual ambient temperature range. Finally, the prediction effects of the established
TEPMs based on ATIs are analyzed and compared with those of the low and high ambient
temperature models using the annual experimental data. As a result, the proposed method
has two main contributions: (1) Different from the simple segmentation in [25], the C-means
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clustering algorithm is embedded and generic to find the number of ATIs; (2) the proposed
method based on the selected ATIs performs better than the models that do not consider
ambient temperatures in terms of both prediction accuracy (over 20% improvements)
and robustness (over 48% improvements). The proposed method provides an important
reference for thermal error modeling and compensation for CNC machine tools in a large
ambient temperature range, and it is of great significance for promoting the development
and precision of intelligent manufacturing.

The remainder of this paper is organized as follows. Section 2 introduces the modeling
algorithms used in this study. In Section 3, an analysis of the experimental data collected
over one year is presented, including the significance test of thermal error difference and the
mutual prediction effect analysis of the annual experimental data. Section 4 first introduces
the overview of the proposed modeling and compensation method based on the ATIs, and
then it provides the details of determining ATIs based on the C-Means clustering method
and selecting the optimal number of ATIs; it finally analyzes the prediction effects of the
proposed ATI method. Section 5 draws the conclusions along with their applications and
discusses the future scope of the study.

2. Thermal Error Modeling Algorithms

The thermal error modeling theory generally includes TEPM establishment and TSP
selection algorithms. Principal component regression (PCR) [26], ridge regression [20], and
partial least squares [27,28] are the common partial regression algorithms that can effectively
suppress the influence of collinearity between input variables. Based on our preliminary
studies, we used the PCR algorithm to construct the TEPM and the correlation coefficient
algorithm to select the TSPs, which are introduced in Sections 2.1 and 2.2, respectively.

2.1. Thermal Error Prediction Model (TEPM) Establishment Algorithm

Principal component analysis transforms a group of correlated variables into a group
of linearly uncorrelated variables using orthogonal transformation, where the transformed
variables are called principal components. Then, the principal components are further used
as independent variables to establish the regression model.

In this study, temperature data were assumed as X =
(
x1, x2 . . . xp

)
, where p represents

the number of temperature variables. The specific steps for establishing the thermal error
PCR model are as follows.

1. Normalize the original data X =
(
x1, x2 . . . xp

)
to obtain X∗ =

(
x∗1 , x∗2 . . . x∗p

)
. The

standardized formula for this is as follows:

x∗i = xi−E(xi)√
Var(xi)

(i = 1, 2, . . . p), (1)

where original data xi is the temperature information on variable i collected from sensor
i, and those sensors are installed in various locations of the machine tool, which will be
shown later in Figure 1 and Table 1. In addition, E(xi) and Var(xi) are the expected value
(average) and the variance of the xi, respectively. Principal components Zi can be obtained
from the eigenvalues and corresponding eigenvectors of a correlation coefficient matrix P
of the original data X =

(
x1, x2 . . . xp

)
:

Z1 = e11 ∗ x∗1 + e21 ∗ x∗2 + . . . + ep1 ∗ x∗p
Z2 = e12 ∗ x∗1 + e22 ∗ x∗2 + . . . + ep2 ∗ x∗p

. . .
Zp = e1p ∗ x∗1 + e2p ∗ x∗2 + . . . + epp ∗ x∗p

, (2)

where ei =
(
ei1, ei2, . . . , eip

)T is the eigenvector of the correlation coefficient matrix P, and
each entry (Pi,j) of the matrix P can be calculated as follows:
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Pi,j =
Cov

(
xi, xj

)√
Var(xi)Var

(
xj
) ,

where i = 1, 2, . . . p, j = 1, 2, . . . p, and Cov
(
xi, xj

)
is the covariance between xi and xj.

Note that all elements of the main diagonal of P (namely when i = j) have the value of one
since the covariance of xi with itself is Var(xi).
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Table 1. Installation sites and measurement functions of temperature sensors.

Sensors Installation Site Function

T1~T5 Front bearing of Spindle Bearing temperature measurement
T7,T8 Spindle motor Spindle motor temperature measurement
T6,T9 Spindle box Spindle box temperature measurement
T10 Machine frame Ambient temperature measurement

2. Calculate the cumulative contribution rate Vg of the ith principal component; the
formula is as follows:

Vg = ∑
g
i=1 λi/∑

p
i=1 λi(g = 1, 2, . . . p), (3)

where λi is the eigenvalue of matrix P corresponding to eigenvector ei. In this study, the
principal components with a Vg of more than 95% were selected as TSPs to avoid a loss
of information.

3. Normalize the original data of thermal error y using Equation (1) to obtain y∗ and then
establish the regression model between y∗ and the selected principal components:

ŷ∗ = â1Z1 + â2Z2 + . . . + âgZg, (4)

where â1, . . . , âg are the coefficients of the regression model. Specifically, vector

â =
(
â1, . . . , âg

)T can be obtained by calculating ZTZ−1ZTy∗, where Z =
(
Z1, . . . , Zg

)
,

since both Z and y∗ are known. Please note that the intercept is not included here since all
data are centered with mean 0 by normalization.

4. Substitute the formula of each principal component in Equation (2) into regres-
sion Equation (4) to obtain the regression equation between standardized variables
x∗1 , x∗2 . . . x∗p and dependent variable y∗:

ŷ∗ = β̂1x∗1 + β̂2x∗2 + . . . + β̂px∗p, (5)

where β̂i =
(
â1, . . . , âg

)(
ei1, . . . , eig

)T for i = 1, 2, . . . p. The regression model between the
original variables can be obtained from the relationship between estimated parameter β̂i in
Equation (5) and the original data regression model estimated parameter b̂i:



Sensors 2022, 22, 5085 5 of 16

ŷ = b̂0 + b̂1x1 + b̂2x2 + . . . + b̂pxp, (6)

where the relationship between β̂i and b̂i is as follows.
b̂i = β̂i ∗

√
Var(y)√
Var(xi)

b̂0 = E(y)−
p
∑

i=1
b̂i ∗ E(xi)

(7)

2.2. TSP Selection Algorithm

As the PCR algorithm can suppress the influence of collinearity between input vari-
ables, the temperature variables did not have to be classified to reduce the correlation
among the TSPs. We used Pearson’s correlation coefficient to determine the relationship
between the temperature variable and thermal error. The temperature variables with high
correlation coefficients were selected as the TSPs. The equation of the Pearson correlation
coefficient is as follows:

ρxiy = Cov(xi ,y)√
Var(xi)Var(y)

, (8)

where ρxiy is the correlation coefficient between the ith temperature variable xi and the
thermal error y. Cov(xi, y) is the covariance between xi and y. Var(xi) and Var(y) are the
variances of xi and y, respectively. The equations are as follows:

Cov(xi, y) = ∑n
k=1(xi,k−E(xi))(yi−E(y))

n−1 , (9)

Var(xi) =
∑n

k=1(xi,k−E(xi))
2

n−1 , (10)

where n is the number of observations/samples in the data.

3. Experimental Setup and Data Analysis

Thermal error measurement experiments were conducted on a three-axis vertical
machining center for one year. In this section, an analysis of variance was performed on
each batch of the experimental data. Then, the correlation coefficient and PCR algorithm
were used to establish the TEPM. The prediction effects of the established models were
further analyzed to prove that it was difficult to maintain their robustness over a large
range of ambient temperatures.

3.1. Thermal Error Measurement Experiments

The annual thermal error experimental object was a Vcenter-55 three-axis vertical
machining center (Figure 1). The five-points measurement method was used for the
spindle thermal error measurement according to the International Standard “Test code for
machine tools—Part 3: Determination of thermal effects” (ISO 230-3:2020 IDT) [29]. Two
displacement sensors each were used for the X and Y directions, and another one in the
Z direction (Figure 2).

High-precision capacitance sensors were used to measure the spindle thermal error
and their measurement accuracy was 1 µm. Ten Pt resistance temperature sensors were
used to measure the temperature change at different positions of the machine tool. These
temperature sensors are used to measure the main heat sources of the machine tool, such
as spindle motor, spindle bearing, and so on. Ambient temperature is also measured by the
sensor located at the machine tool frame. The distribution of the 10 temperature sensors is
shown in Figure 1. The measurement accuracy of the temperature sensors was 0.1 ◦C, and
their installation sites and measurement functions are listed in Table 1.

According to the International Standard [29], the spindle of the machine tool should
idle at constant speed, and the worktable should reciprocate at a constant feed speed along
the X- and Y-axes. Temperature and thermal error data were collected every 5 min for
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more than 4 h. In the annual experiment, the spindle speeds were set to 2000, 4000, and
6000 rpm, and the feed speed to 1500 mm/min. Each batch of experiments was performed
after cooling the machine tool for 2 days.
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3.2. Experimental Data Analysis

A total of 46 batches of effective experimental data were collected over an entire year
and were sorted according to the initial ambient temperature recorded as K1–K46. Figure 3
graphically plots the temperature measurement results of the K1 experiment, which was
conducted in winter, with the lowest initial ambient temperature and K46, which was
conducted in summer, with the highest initial ambient temperature. As observed, the
temperature change curves of K1 and K46 have significant differences.
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Figure 3. (a) Temperature change curves of experimental batches K1; (b) temperature change curves
of experimental batches K46.

The thermal error curves of the 46 batches can be drawn similarly. Only the thermal
error curves of batches K1–K5 and K42–K46 could be drawn, due to the large volume of
data (Figure 4). Figure 4 reveals significant differences in the thermal error law between the
low and high ambient temperature experiments. The thermal error in the low temperature
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environment was larger because its gradient began to increase by a greater margin after the
machine tool had run for a certain time.
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According to the exploratory analysis of the experimental data, the initial ambient
temperature range was 4.1–32.2 ◦C, and the range of temperature increase in the ma-
chine tool was 5.9–16.8 ◦C. Figure 5 illustrates the temperature results of each batch of
experimental data.
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The degrees of freedom (DoF) of the three statistical parameters are 𝑑𝑓 = 𝑛 ∗ 𝑟 − 1, 𝑑𝑓ா = 𝑛 ∗ 𝑟 − 𝑟, and 𝑑𝑓஺ = 𝑟 − 1. 
2. F-test statistics. The statistics in step (1) were divided by the corresponding DoF to 

calculate the mean square of the sum of squares to eliminate the interference caused 
by different DoF. This will be conducive to the comparison of the sum of squares of 
the deviations of each group of data. Then, the ratio 𝐹 of the average of the squares 
of the inter-group deviations 𝑆஺ to the average of the squares of intra-group devia-
tions 𝑆ா was used to test the original hypothesis. 𝐹 = 𝑆஺ 𝑑𝑓஺⁄𝑆ா 𝑑𝑓ா⁄  (11)
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Figure 5. Statistical results of temperature changes of 46 batches of experiments.

3.3. Significance Analysis of Thermal Error Data

ANOVA [30] is mainly used to test the significance of the difference between the mean
values of two or more samples. According to the number of influencing factors, it includes
one-way, two-way, and multi-factors ANOVA. We used one-way ANOVA to test whether
the ambient temperature had a significant influence on the thermal error variation law of
the machine tool.

If we assume that there are r batches of thermal error experimental data under
different ambient temperatures and n thermal error measurement data in each batch
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of the experiment, then all the thermal error experimental data would be recorded as
yij(i = 1, 2, . . . , r; j = 1, 2, . . . , n). The thermal error average value of each batch was

yi = ∑
j=n
j=1 yij, and the thermal error average value of all batches was y = ∑i=r

i=1 yi. The basic
steps of one-way ANOVA are as follows.

1. Calculation of test statistics. The calculation formulas of the sum of squares of the
total deviation ST , the sum of squares of the intra-group deviation SE, and the sum of
squares of the inter-group deviations SA, respectively, are shown below.

ST =
i=r
∑

i=1

j=n
∑

j=1

(
yij − y

)2

SE =
i=r
∑

i=1

j=n
∑

j=1

(
yij − yi

)2

SA = n
i=r
∑

i=1
(yi − y)2

(11)

The degrees of freedom (DoF) of the three statistical parameters are d fT = n ∗ r− 1,
d fE = n ∗ r− r, and d fA = r− 1.

2. F-test statistics. The statistics in step (1) were divided by the corresponding DoF to
calculate the mean square of the sum of squares to eliminate the interference caused
by different DoF. This will be conducive to the comparison of the sum of squares of
the deviations of each group of data. Then, the ratio F of the average of the squares of
the inter-group deviations SA to the average of the squares of intra-group deviations
SE was used to test the original hypothesis.

F = SA/d fA
SE/d fE

(12)

3. Determine the significance. Test statistic F follows the F distribution with d fA and
d fE. The larger the value of F, the more inclined it is to reject the original hypothesis.
Therefore, the rejection domain of the test is as follows:

W = {F ≥ F1−α(d fA, d fE)}# (13)

where α is the significance level, and F1−α(d fA, d fE) is calculated through the F distribu-
tion table. If F ≥ F1−α(d fA, d fE), the thermal error data of each batch have significant
differences. Otherwise, the difference is not significant.

The p value of the test is obtained by the density function of the F distribution.

p = P(Y ≥ F) (14)

In general, if p ≤ 0.001, each batch of thermal error data is considered to be signifi-
cantly different; if p ≥ 0.05, the difference is not significant.

One-way ANOVA for the thermal error data in the Z direction of each batch was per-
formed following the aforementioned steps, and the results are summarized in Table 2. In
Table 2, Ss is the sum of squares of deviations, d f is the DoF, Ms is the mean square, F is the
statistic to be tested, p-value is the density function p of the statistic F to be tested in the F
distribution, and Fcrit is the critical value of the F statistic when the confidence level α = 0.001.

Table 2. ANOVA and significance test results.

Source of Difference Ss df Ms F p-Value Fcrit

Type 388,844 46 8640.978 113.5396 Close to 0 1.790356
Error 231,055.9 3036 76.10538
Total 619,900 3081
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According to the analysis results in Table 2, the value of F is significantly larger than
the critical value Fcrit of 1.79, with a DoF of (46, 3036), at the confidence level of p = 0.001.
Meanwhile, the p-value corresponding to F is close to 0, which is markedly less than
0.001, indicating that the ambient temperature has a very significant impact on the thermal
error data.

3.4. Analysis of Mutual Prediction Results with Annual Experimental Data

Each of the 46 batches of experiments was used to establish a TEPMs and predict the
remaining batches of experiments. Thus, the mutual prediction results of 46 batches of
experiments can be obtained. First, TSPs were selected for each batch of experiments with
the use of the TSP selection algorithm presented in Section 2.2. Two TSPs are selected for
each batch of experiments in this study with reference to [18]. The experimental data of
K1 batch are taken as an example to illustrate TMP selection. The correlation coefficient
between the thermal error and each temperature variable is calculated by Equation (8), and
the results are shown in Table 3.

Table 3. Correlation coefficient between temperature variable and thermal error of K1.

Sensors T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Correlation coefficient 0.92 0.92 0.91 0.92 0.92 0.85 0.77 0.86 0.86 0.70

It can be observed from Table 3 that the correlation coefficients of T1 and T5 are the
largest, both of which are 0.92. Thus, T1 and T5 are selected as the TSPs, which are used to
measure the heating of the spindle motor. In the same manner, the TSPs of each batch of
experiments are selected, as listed in Table 4.

Table 4. Selection results of TSPs for each batch.

Batch K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

Results T1, T5 T1, T5 T1, T3 T1, T5 T1, T5 T1, T4 T1, T2 T1, T4 T1, T5 T1, T5
Batch . . . K38 K39 K40 K41 K42 K43 K44 K45 K46

Results . . . T1, T8 T1, T5 T1, T8 T1, T5 T1, T5 T1, T5 T8, T9 T1, T5 T1, T5

Based on the TSPs selection results, the TEPM of each batch of experiments was
established using the PCR algorithm in Section 2.1. For example, the TEPMs of K1 and K46
are as follows.

Z1 = 1.8767 + 1.8147T5 + 4.9211T1 (15)

Z46 = 2.1280 + 2.3108T1 + 9.6814T5 (16)

Furthermore, the prediction results of each TEPM were calculated. The predicted
residual standard deviation (Rsd) was used to represent prediction accuracy. The formula
of the predicted Rsd is as follows:

Rsd =

√
∑n

j=1(ŷj−yj)
2

n−1 , (17)

where yj is the jth measured thermal error value, and ŷj is the jth predicted thermal
error value.

Finally, the mutual prediction results of the 46 batches of experiments were calculated
and are presented in Figure 6, depicting the differences.

The mutual prediction accuracy is high when the ambient temperature is within a
certain range, as shown in Figure 6. However, when the ambient temperature exceeded a
certain range, prediction accuracy decreased; i.e., the robustness decreased. In addition, the
model based on experimental data under low ambient temperature has a better prediction
effect than the one based on the high-temperature data.
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When using a TEPM to predict the thermal error data under different ambient temper-
atures, the method can only maintain high prediction accuracy for data within a certain
ambient temperature range. We call this temperature range the “applicable ATI of TEPM”.
For each TEPM, experiment batches with an Rsd of less than 5 µm were grouped according
to the mutual prediction results presented in Figure 6. Then, the ambient temperature
range of these experiment batches was obtained as the applicable ATI of the prediction
model. Thus, the applicable ATI of the TEPM of experimental data from each batch was
obtained (Figure 7). The horizontal axis in the figure is the batch of the modeling data. The
vertical axis is the ambient temperature range. The blue dotted lines are the upper and
lower boundaries of all applicable ATIs. The upper and lower boundaries of the ATIs were
fitted as the red lines.
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Figure 7. Applicable ATIs of TEPMs of 46 batches of experiments.
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The applicable ATIs fluctuated by a margin due to some random factors, such as
measurement error. It is obvious that the established TEPMs have different applicable
ATIs. This proves the necessity of the proposed modeling method based on ATIs for
compensation through an entire year.

4. Thermal Error Modeling and Compensation Method Based on ATIs

To solve the problem of decreased thermal error prediction effects over the annual
ambient temperature range, we proposed a year-round thermal error modeling and com-
pensation method based on ATIs. In this section, an overview of the proposed modeling
and compensation method is first introduced in Section 4.1. In Section 4.2, the ATIs are
determined using the C-Means clustering algorithm and the optimal number of ATIs
is obtained based on the prediction results of TEPMs corresponding to the number of
ATIs. Finally, the prediction effects of the established models are analyzed based on the
experimental data collected over one year in Section 4.3.

4.1. Overview of the Proposed Method Based on ATIs

As the TEPM established by the experimental data under a fixed ambient temperature
can only maintain high prediction accuracy in its applicable ATI, it is necessary to establish
the corresponding TEPMs for different ambient temperature ranges, namely the modeling
and compensation method based on ATIs.

Figure 8 presents the flowchart of the proposed method that contains two processes.
First, in the modeling process, ATIs are divided and the ambient temperature correspond-
ing to each ATI is determined based on the C-Means clustering algorithm. Subsequently,
TEPMs are constructed for each determined ATI. In the compensation process, ATI would
be determined according to the initial ambient temperature value. Then, the corresponding
TEPM is invoked to predict the thermal errors. Finally, thermal error compensation would
be performed according to the predicted value. Thus, the high prediction accuracy and ro-
bustness can be realized for the thermal error within the annual ambient temperature range.
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4.2. Determination of the ATIs

The key to the success of the proposed modeling and compensation method is de-
termining ATIs reasonably. To achieve that, the C-Means clustering algorithm is utilized
to determine the ATIs. As the number of ATIs is not unclear, the prediction effects are
analyzed to obtain the optimal number of ATIs. In this subsection, the C-Means clustering
algorithm is first introduced and then the optimal number of ATIs is analyzed and obtained.

4.2.1. C-Means Clustering Algorithm

C-Means clustering is a typical algorithm for dynamic clustering. The ambient tem-
perature variables of 46 batches of experiments are clustered using the C-Means clustering
algorithm. According to the clustering results, the initial ambient temperature variation
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range of the ambient temperature variables of the same class is considered as one ATI. The
basic steps of dividing the ATIs based on the C-means clustering algorithm are as follows.

1. Given the number of clusters M and randomly selecting M initial cluster centers
C1, C2, . . . , CM

2. Calculate the distance from each ambient temperature variable to each cluster center,
and the calculation formula is as shown:

d(x, C) =
n
∑

k=1
|xk − Ck|, (18)

where x represents the ambient temperature variable, and n represents the number of
sample data in temperature variable.

3. Divide the ambient temperature variables closest to the cluster center into this cluster;
4. Recalculate cluster center according to the clustering results, that is, take the average

value of the ambient temperature variables belonging to the same cluster as the new
cluster center;

5. Repeat steps 2 to 4 until the cluster results remains unchanged or the maximum
number of iterations is reached;

6. Consider the initial ambient temperature range contained in the same class as one ATI.

For example, suppose the number of clusters is 4; then, the 46 ambient temperature
variables of the 46 batches of experiments are grouped into four classes, as shown in Table 5.
The demarcation of the two adjacent ATIs is calculated by averaging the boundaries of the
two adjacent initial ambient temperature ranges. For example, the demarcation of the first
and second ATI is (7.0 + 9.1)/2 ≈ 8.1.

Table 5. Clustering results with four clusters.

Class Results Initial Ambient Temperature Range ATI

Class 1 1–8 4.1–7.0 [4.1–8.1]
Class 2 9–23 9.1–14.5 (8.1–17.2]
Class 3 24–30 19.8–23.4 (17.2–24.0]
Class 4 31–46 24.6–32.2 (24.0–32.2]

The TEPM established by the experimental data at the ambient temperature at the left
end of the ATI is used as the TEPM of the ATI. In this way, the TEPMs corresponding to the
four ATIs in Table 5 can be obtained, as shown below.

Y1 = 1.8767 + 1.8147T5 + 4.9211T1 4.1 ≤ T0 ≤ 8.1
Y9 = 2.2417 + 2.2222T1 + 3.4832T5 8.1 < T0 ≤ 17.2

Y24 = 1.8492 + 1.8419T1 + 7.2712T5 17.2 < T0 ≤ 24.0
Y31 = 2.6280 + 2.7416T1 + 0.2192T5 24.0 < T0 ≤ 32.2

(19)

The coefficients in the regression models, as shown in Equation (19), are all positive,
which show that when the temperature rises, the thermal error increases as well. This is
consistent with the physical law in general. It is also noteworthy that all 46 batches of
data (only temperature information) are used as initial batches for determining the ATIs.
In practice, a general rule to reduce the number of initial batches is that it is suitable to
reduce the batches when the batches of experiments are conducted within a similar ambient
temperature interval, but reducing them is not suitable when they are conducted with
significant different ambient temperatures. As a result, the number of initial batches for
determining the ATIs can be reduced while the information contained in the data is not lost.
In addition, the number of initial batches (both temperature and thermal error information)
for modeling is the same as the number of ATIs, and the effects of different numbers of
ATIs on the performance will be investigated in the next subsection.
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4.2.2. Modeling Effect Analysis of Different Numbers of ATIs

The number of ATIs needs to be given before dividing the ATIs using the C-Means
clustering algorithm. Thus, the number of ATIs has an important influence on the prediction
effects. In order to obtain the optimal number of ATIs, the TEPMs of different ATIs are
established. Then, the established TEPMs are used to predict the experimental data of an
entire year. According to the prediction effects, the optimal number of ATIs can be obtained
using the elbow method.

As for the established TEPMs of ATIs, the mean and standard deviations [31] of the
Rsd of the 46 batches of experiments can be calculated as follows:

SM = 1
K

K
∑

k=1
Rsdk, (20)

SD =

√
∑K

k=1(Rsdk−SM)2

K−1 , (21)

where Rsdk is the Rsd value of the kth batch of experiments, and they can be calculated by
Equation (17). K = 46 is the total number of batches of the predicted experiments. SM and
SD are used to characterize the prediction accuracy and robustness of the model.

In this study, the number of ATIs ranges from 2 to 6 with a step size of 1. Then, the
prediction accuracy and robustness with different number of ATIs are calculated using
Equations (20) and (21). The calculation results are plotted in Figure 9 to visually show
the influence of the number of ATIs on the prediction effects. It can be observed from
Figure 9 that the prediction effects gradually improved as the number of ATIs increases.
Marked by the black circle in Figure 9, when the ATIs reaches four, the prediction effects
gradually stabilize. Therefore, the number of ATIs is determined as four according to the
elbow method. As a side note, the method in [25] with one segmentation point is only one
special case of our generic method when the number of ATIs is two.
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4.3. Prediction Performance Analysis with Annual Experimental Data

The TEPMs corresponding to 4 ATIs are shown in Equation (19), which are used to
predict the annual thermal error data. The low and high ambient temperature models Y1
and Y46 were also used to predict the annual thermal error data. The prediction results Rsd
of these three models were calculated and plotted in Figure 10. Note that Figure 10 is plotted
based on 46 batches of data, which were collected over an entire year, as mentioned before.
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Figure 10. Prediction results of the three models for the annual experiments.

As shown in Figure 10, the ATI model has higher prediction accuracy than the low
and high ambient temperature models. This is because the proposed year-round thermal
error modeling method not only takes the ATIs into consideration but also determines the
optimal number of ATIs to achieve better performance, which is a key difference from the
existing literature. Furthermore, the prediction results of three models are summarized
in Table 6. Table 6 reveals that the TEPMs established based on the ATIs exhibit high
prediction accuracy and robustness throughout the year. Further calculation showed that
the prediction accuracy of the proposed ATI model was 20.6% and 41.7% higher than
those of the Y1 and Y46, respectively, and robustness was improved by 48.8% and 62.0%,
respectively. In the thermal error compensation process, the TEPM corresponding to the
ATI could be invoked for prediction and compensation, according to the actual initial
ambient temperature.

Table 6. Prediction results of the three models (Unit: µm).

Model ATI Model Y1 Y46

Mean of Rsd 4.33 5.45 7.43
Standard deviation of Rsd 1.24 2.42 3.26

Mean of RsdStandard deviation of Rsd

5. Conclusions

In this study, the one-way ANOVA was first conducted to show that the ambient
temperature has a significant impact on the spindle thermal error data at a significant level
of 0.001. Therefore, a thermal error modeling and compensation method for spindle of
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machine tool based on ATIs was proposed in this paper. Based on the annual experimental
data, the ATIs applicable to the TEPMs were investigated, and the number of ATIs based
on the C-Means clustering algorithm was determined as 4. The prediction accuracy and
robustness of the proposed method were 4.33 µm and 1.24 µm, respectively, demonstrating
the high prediction accuracy and robustness of the method throughout the year. In addition,
the prediction accuracy of the proposed ATI model was 20.6% and 41.7% higher than those
of the Y1 and Y46, respectively, and robustness improved by 48.8% and 62.0%, respectively.
This study can serve as an important reference for machine tools of thermal error modeling
and compensation.

Obtaining the applicable ATIs is the basis of the proposed method. In fact, the number
of ATIs is related to the range of the applicable ATI of the TEPM, which must be determined
according to the actual scenario. Factors affecting the range of the applicable ATI, such as
the modeling algorithm and the machine tool itself, should be the focus of future research.
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