ﬁ Sensors

Article

Vibration-Based Damage Detection Using Finite Element
Modeling and the Metaheuristic Particle Swarm
Optimization Algorithm

Ilias Zacharakis

check for
updates

Citation: Zacharakis, I.; Giagopoulos,
D. Vibration-Based Damage
Detection Using Finite Element
Modeling and the Metaheuristic
Particle Swarm Optimization
Algorithm. Sensors 2022, 22, 5079.
https://doi.org/10.3390/522145079

Academic Editor: Andrzej Katunin

Received: 12 May 2022
Accepted: 5 July 2022
Published: 6 July 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Dimitrios Giagopoulos *

Department of Mechanical Engineering, University of Western Macedonia, Bakola and Sialvera,
50100 Kozani, Greece; izacharakis@uowm.gr
* Correspondence: dgiagopoulos@uowm.gr; Tel.: +30-2461-56751

Abstract: The continuous development of new materials and larger and/or more complex structures
drives the need for the development of more robust, accurate, and sensitive Structural Health
Monitoring (SHM) techniques. In the present work, a novel vibration-based damage-detection
method that contributes into the SHM field is presented using Metaheuristic algorithms coupled
with optimal Finite Element Models that can effectively localize damage. The proposed damage-
detection framework can be applied in any kind of detailed structural FE model, while requiring
only the output information of the dynamic response of the structure. It can effectively localize
damage in a structure by highlighting not only the affected part of the structure but also the specific
damaged area inside the part. First, the optimal FE model of the healthy structure is developed using
appropriate FE model updating techniques and experimental vibration measurements, simulating the
undamaged condition. Next, the main goal of the proposed method is to create a damaged FE model
that approximates the dynamic response of the damaged structure. To achieve this, a parametric
area is inserted into the FE model, changing stiffness and mass to simulate the effect of the physical
damage. This area is controlled by the metaheuristic optimization algorithm, which is embedded in
the proposed damage-detection framework. On this specific implementation of the framework, the
Particle Swarm Optimization (PSO) algorithm is selected which has been used for a wide variety of
optimization problems in the past. On the PSO’s search space, two parameters control the stiffness
and mass of the damaged area while additional location parameters control the exact position of the
damaged area through the FE model. For effective damage localization, the Transmittance Functions
from acceleration measurements are used which have been shown to be sensitive to structural damage
while requiring output-only information. Finally, with proper selection of the objective function,
the error that arises from modeling a physical damage with a linear damaged FE model can be
minimized, thus creating a more accurate prediction for the damaged location. The effectiveness of
the proposed SHM method is demonstrated via two illustrative examples: a simulated small-scale
model of a laboratory-tested vehicle-like structure and a real experimental CFRP composite beam
structure. In order to check the robustness of the proposed method, two small damage scenarios are
examined for each validation model and combined with random excitations.

Keywords: damage detection; damage localization; vibration-based; model-based; FE model
updating; metaheuristic algorithms

1. Introduction

Over the last years, there has been an increasing rate of adoption of Structural Health
Monitoring (SHM) systems due to the increasing development of new materials and larger
and more complex structures. Moreover, this rate can be attributed to other factors as
well, such as the cost of traditional maintenance, inspection, and monitoring procedures
that are also prone to human error and are time-consuming. Preventive maintenance is
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vital for planning cost-effective solutions to preserve existing structures, to delay future
deterioration, and to maintain and improve their functionality. A fault or damage on
operating structures may cause sudden changes in their responses leading to potentially
severe economic and human losses (e.g., operation disruption, injuries, fatalities, etc.).
As Doebling, Farrar and Prime [1] have mentioned, this increasing interest is not only
attributed to economical and time-saving factors, but also to major failures on structures in
the past that resulted in the loss of lives. Damages may occur either due to sudden extreme
load events (such as strong winds and earthquakes) or due to variable operational loading
and environmental effects (e.g., fatigue due to heavy vehicle traffic and corrosion due to
environmental conditions). Therefore, it is essential to identify and detect damage at an
early stage to maintain the safety and integrity of structures. The use of structural health
monitoring (SHM) systems on a regular basis is critical to achieve early damage detection,
avoid unpredicted failures, and perform cost-effective maintenance planning.

The vibration-based approach is a subcategory of SHM methods that rely on the
fact that structural damage will affect the dynamic characteristics of a structure. The
recent trends show an increasing interest in the use of Machine Learning (ML) for SHM
systems [2-7]. Other methods that rely on Bayesian probabilistic techniques have also been
presented in the past [8,9]. The proposed method, however, takes another approach which
is based on experimental vibration measurements and FE models. There is no need to
acquire large datasets in order to train a Machine Learning model. The only requirement is
the development of an optimal FE model, which has a high correlation with the dynamic
responses of the physical structure.

The proposed method adopts the model updating technique using optimization
algorithms. Similar methodologies have been developed in the past, even before 2000,
by various researchers [1,10-13]. These previous methodologies relied on simplified FE
models, most of them using beam elements and a large number of optimization parameters,
such as the stiffness of each element to locate the damage in truss-like structures. The
simplified models have the advantage of low computational costs. The most recent works
followed this approach, such as Chou and Ghabousi [14] using Genetic Algorithms in 2D
truss structures. Jafarkhani and Masri [15] have used the CMA-ES evolutionary algorithm
coupled with a simple FE Model of a reinforced concrete bridge to detect the location
and quantify the damage, while Ding et al. [16] used the Artificial Bee Colony (ABC)
algorithm in a 2D truss structure. Zenzen et al. [17] used the Bat optimization algorithm on
beam-like and truss structures. Cancelli et al. [18] used the Particle Swarm Optimization
(PSO) algorithm in order to locate damage on a pretension concrete girder. The authors of
the above-mentioned literature used only simplified FE models with beam elements for
truss-like structures. On the other hand, Nicknam and Hosseini [19], Vo-Duy et al. [20],
and Baghi [21] have incorporated FE models with plate elements into their procedures to
detect damage. Two review articles [22,23] can give a broader view to the reader on the
specific subject, mentioning in more detail the algorithms that have been used, different
metrics, strategies, and methods.

One common characteristic of all the above-mentioned literature is the working princi-
ples of the model-updating procedure in order to locate damage in a structure. Researchers
of these past works have employed optimization algorithms with a large number of search
parameters, e.g., by updating the stiffness of each element or groups of elements of the
complete structure simultaneously. This has lead to a change of the global stiffness matrix.
At the end of the procedure, the updated stiffness matrix revealed the difference of each
element stiffness and, thus, the damage could be located and/or quantified. The disad-
vantage of this methodology is seen when considering a large and complex finite element
model. It might consist of 2D and 3D elements, where the number of parameters increases,
resulting in a dramatic increase in the cycles of each optimization algorithm required for
the final result. This leads to a parallel increase of the computational cost.

The approach presented in the following sections has the advantage of a fixed number
of search parameters (dimensions of the search space), thus, only the computational cost of
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the FE model itself affects the performance between different structures. This is achieved
by changing only a submatrix of the stiffness and mass matrices to identify the damage.
More specifically, a parametric area is inserted into the FE model changing stiffness and
mass to simulate the effect of the real damage in a physical structure. This area is controlled
by the metaheuristic optimization algorithm, in this case, the Particle Swarm Optimization
(PSO) algorithm [24], that is embedded in the proposed damage-detection framework.
The framework uses four (4) locational parameters along with two (2) more parameters
controlling the material properties of the specific damaged area. The parameters, six (6) in
total, can be reduced only if the structure is expanding at a specific axis or plane. A similar
approach has been also demonstrated by Gomes et al. [25], where the authors altered the
material properties only locally, meaning that only a submatrix of the stiffness matrix was
changing during the optimization procedure. Their experimental setup consisted of a single
Carbon Fiber Reinforced Polymer (CFRP) composite plate while using Genetic Algorithms
(GA) and modal analysis to localize the damage.

Besides the fixed number of the search space dimensions, the proposed method also
has the advantage of requiring only output experimental data, while the input excitation
does not have to be recorded. This is achieved with the use of the Transmittance Functions
(TFs) [26] as a measure of comparison between the physical structure and the FE Model.
Compared with other metrics, such as the Power Spectral Density (PSD), the TFs have
shown to be prone to structural damage [27] and they can be easily calculated between two
different acceleration signals without any information about the input excitation. Other
promising metrics also exist in the literature, such as the spectral kurtosis [28], while based
on the literature it is mostly used in structures with rotating components.

A valid concern in any model-based damage-detection method is the accuracy of
the FE model to simulate the dynamic response of the real structure. A wide variety of
existing optimization algorithms can provide a solution to this problem and improve the
accuracy of the FE model. For example, the above-mentioned optimization algorithms,
which were configured for the damage-detection problem, can be applied successfully in a
model-updating scheme to minimize the error between a real-world structure and an FE
model. In order to develop the optimal FE model for the use of the proposed method, the
Covariance Matrix Adaptation—-Evolution Strategy (CMA-ES) algorithm [29] was selected
that has been applied successfully at FE updating problems [30,31] in the past with linear
and non-linear FE models. Transmittance Functions are also used in this work to obtain
the optimal FE model, i.e., the FE model of the healthy structure is updated in an attempt
to minimize the error between the obtained numerical Transmittance Functions and the
experimental Transmittance Functions.

The proposed damage-detection framework can be applied to complex structures
consisting of multiple parts and different materials. The core of the framework consists of a
properly configured metaheuristic algorithm while a requirement to apply the framework
is an accurate FE model of the structure. When damage occurs on a physical structure
some non-linear local behaviors might appear and while the framework is using only linear
behavior on the modeled materials it can overcome some small non-linearities within limits.
Additionally, this implementation can be applied in detailed FE models that might contain
beam, shell, and solid elements. As it was also mentioned [32], these types of damage-
detection systems do not need to locate and /or quantify the damage with extreme accuracy.
As such, the size of the inserted damaged area on the optimal FE model does not represent
the exact size of the damage, but, rather, contains the damage on the physical structure.
This size may vary depending on the size or the complexity of the structure but also on the
extent of the damage, which can be observed by the experimental measurements.

In conclusion, in comparison with similar past research, the novelty of the proposed
method relies upon the following. First, it is a model-based damage-detection method
using vibrational measurements with output-only information. Second, it can be applied to
detailed FE models of any shape and structure with multiple parts and different materials.
And, third, with a properly configured optimization algorithm, only a fixed number of six
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optimization parameters are needed to locate the damage in any structure with accuracy
using a detailed FE model.

The presentation of this work is organized as follows. Section 2 describes the meta-
heuristic optimization algorithms which are used in the context of this work and their
implementation on the SHM method. Section 3 presents the background of the proposed
damage-detection methodology with the use of optimization algorithms coupled with
an FE model and experimental measurements. Furthermore, the use of Transmittance
Function is presented, which is used as a metric of comparison between the real-world
structure and the FE model. The choice of the objective function is also discussed which is
a significant step for the successful application of the proposed methodology. Following on,
the effectiveness of the proposed methodology is validated in Section 4 via two illustrative
examples. First, a simulated small-scale model of a laboratory-tested vehicle-like structure,
and, second, a real experimental CFRP composite beam structure. In the first validation
example, two damage cases are examined, one with an inserted crack and one with an
added mass, while the accuracy of the delivered predictions is explored using simulated,
noise-contaminated data, as well as modally reduced models. In the second example, a real
experimental CFRP composite beam structure is presented, developing, first, an optimal FE
model from experimental measurements of the healthy structure. Similar damage scenarios
were examined, one with a small added mass and one with a local reduction of stiffness
on the CFRP beam. The robustness of the proposed method is achieved by using random
excitations. The final results demonstrate that the proposed damage-detection framework is
highly promising, as the damage prediction was successfully performed on both structures
with the location of the physical damage always within the predicted damaged area. Finally,
the conclusions are summarized in Section 5.

2. Metaheuristic Algorithms

In this paper, two metaheuristic algorithms are used for different purposes. The
first step is to develop an optimal Finite Element Model that can accurately describe the
dynamic response of the examined structure in the frequency range of interest. For this
task, the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) algorithm is used
to finely tune the structure’s model in conjunction with experimental measurements from
the healthy structure. The core of the damage-detection framework uses the Particle
Swarm Optimization (PSO) algorithm with proper variable selection in conjunction with
experimental measurements from the damaged structure, as will be presented in the
following sections.

The current FE model-updating procedures in the context of this work are employed
and tested with linear FE models. While the optimization problem itself has linear contin-
uous search parameter boundaries, other algorithms can be used for both tasks but with
proper selection. While, for the first task, it is not trivial to select an optimization algorithm
that provides an FE model-updating scheme, for the second task, a more careful selection
of algorithm is needed. For example, both CMA-ES and PSO can perform in the presented
damage-detection framework in a simple single-part model. But, in a more complex model
consisting of multiple parts and multiple materials, the CMA-ES could not perform as
intended due to its selection and sampling mechanism.

2.1. Covariance Matrix Adaptation—Evolution Strategy (CMA-ES)

The CMA-ES [29,33] is a general-purpose population-based, stochastic, and derivative-
free algorithm. In the past, it has been applied successfully to FE updating problems
with linear and non-linear FE models [30,31,34] and has demonstrated rapid convergence
capabilities, especially when searching for global optimum values. A brief explanation of
CMA-ES main steps can be found in Algorithm 1.
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Algorithm 1. Main steps of CMA-ES algorithm.

1. Initialize distribution parameters

2. While termination criterion is not met do

3. Sample population from the multivariate normal distribution

4. Evaluate the objective function for each parameter set

5. Update the multivariate normal distribution based on a percentage (50% in this case) of the best
parameter sets

6. End

7. The optimal solution is found for the parameter set that corresponds to the minimum
objective function

A free distribution of the CMA-ES algorithm is used in the present work. It is im-
plemented within I14U framework [35] based on a state-of-the-art task-parallel library for
clusters, called TORC [36]. This library is designed to provide unified programming and
runtime support for computing platforms that range from single-core systems to hybrid
multicore-GPU clusters and heterogeneous grid-based supercomputers.

Let 8 € R be a set of parameters that describe the corresponding Finite Element Model.
In this case, this set includes the material properties and damping ratios of the examined
structure. Consider g(¢) being the model prediction, given the values of the parameter set
0, while y corresponds to the dynamic experimental measurements. The objective functions
for this task, that CMA-ES is called to minimize, can be formulated as the sum of the
normalized sum of square errors .

18 271:1 (81‘]‘@—%]‘)2

2
i=1 271:1 (¥ij)

As the transmittance functions being used for the damage-detection framework,
g(8), y correspond to the FE model’s and experimental Transmittance Functions with
the subscript j to state the frequency step and i the Transmittance curve. The total number
of Transmittance Functions is n that includes all the combinations (unique only) between
the acceleration sensor measurements in their respected axis, while m is the total number
of frequency steps.

At the end of this task, the parameter set § that corresponds to the minimum of
Equation (1) is used to describe the optimal Finite Element Model. It must be noted that to
acquire the optimal Finite Element Model other measurements, such as acceleration in the
time domain or FRFs, can also be used.

)

2.2. Particle Swarm Optimization (PSO) Algorithm

The Particle Swarm Optimization (PSO) algorithm is employed as the core of the
damage-detection framework. It is a population-based algorithm that belongs to the sub-
area of Swarm Intelligence in the Computational Intelligence category. It was initially
introduced by Kennedy and Eberhart [24,37], while it was inspired by the social behavior
of animals, such as a flock of birds, and it was initially presented as a method for contin-
uous optimization, such as optimizing the weights of a neural network. Because of its
effectiveness and the fact that it was based on a very simple concept while requiring only
basic mathematic operations, a large number of variants have been introduced over the
years, such as the Inertia Weight PSO [38], Fully Informed PSO [39], Adaptive PSO [40],
Adaptive Hierarchical PSO [41], Comprehensive Learning PSO [42], Evolutionary PSO [43],
and even hybrid optimization schemes, such as GA-PSO [44] which is a mixture of Genetic
Algorithm and the PSO.

For the present work, the simple initial variant of the PSO [24] has been implemented in
Matlab, which also takes into consideration the Inertia Weight [38]. The initial swarm of the
PSO is consisting of the generated particles/population (parameter set) of the optimization
algorithm. On any given iteration the objective function is calculated for each particle. As
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will be described in more detail later, the behavior of each particle during the optimization
is influenced by all or a portion of the other particles of the swarm. In order to control this
behavior, two different versions of the algorithm have been proposed [37]. The first is the
GBEST version, in which the best solution from all particles is influencing the velocities
of all the other particles. The second, which is the one used in this work, is the LBEST
version. In the LBEST version, the velocity of each particle is affected by the inertia, its own
personal best value, and, instead of the global best value (GBEST), it is affected by the best
solution from a number of its nearest particles (neighborhood).

Consider a continuous k-dimensional search space, where k represents the number of
variables to be used for the evaluation of the objective function G, G : RF — R. At first, the
initial swarm (population), Pop = {p1, p2, ..., pn}, which consists of n number of particles,
pi € Rk fori=1,2,...,n,is created randomly from a uniform distribution. Each particle p;
can be described by its position vector x!, x; € R, for the given time step t, and its velocity
vector v}, v; € RK. As was mentioned, the particle is affected by its own personal best value
of the objective functions, so let pbestf, pbestf € R¥, be the vector that remembers the set of
parameters that correspond to the minimum value of the objective function that the particle
i has found.

The particle’s velocity is also affected by its neighborhood best values (local best
values), considering N (N < n) to be the number of neighborhood particles, or, better, to be
a fraction of n. In case N = n (or in the case N is a fraction of n, N = 1) then the GBEST
version of PSO is used. Again let bestf, l bestf € Rk, be the vector that remembers the set of
parameters that correspond to the minimum value of the objective function that has been
found from all the particles that are contained inside the neighborhood of particle i.

When the evaluation of the objective function is completed for every particle, the
velocities and positions are updated according to the following rules:

'z)f+1 =W - Uf —+ C1- Rl(i,i) . (PbEStf — xf) “+cCo - Rz(i,i) . (lbestf — xf) (2)
Inertia Cognitive Social
it =yt 4ot ®3)

where w is the inertia weight and c1, ¢, are the acceleration coefficient which are all defined
prior to the start of the algorithm and, in this variation of PSO, do not change during the
optimization. R1, R2 are two k x k diagonal matrices with diagonal elements sampled at
each iteration from a uniform random distribution with values from 0 to 1.

From Equation (2), it is clear that the Inertia term carries the particle into its previous
direction, the Cognitive Part is the force that pulls the particle towards its personal best
position and the Social Part is the force that drags the particle towards the best positions
known from its neighborhood particles [45].

The inertia weight and acceleration coefficients, {w, c1, cz} € R, are chosen prior to
the start of the optimization and greatly affect the ability of the algorithm to find the global
best solution and the computational cost until the termination criteria are met. The values
used for the PSO’s internal parameters are referred in Table 1. While these values have
been found to be applicable to the current problem other configurations could also exist.

Table 1. PSO Parameters.

Inertia weight, w = 0.97 Acceleration Coefficients, ¢c; = ¢ = 1.49
Neighborhood, N = 0.25 (Fraction of n) Stall Iterations = 20
Termination Tolerance =1 x 100 Population, n = 100 x k *

* where k is the number of variables. While this general rule is followed, regarding the application of the
damage-detection framework it must be noted that in very complex (with multiple parts and multiple materials)
structures and small amounts of damage that have minimal effects on dynamic responses it is advised that a larger
population be used. This can be tested with a benchmark test on the specific structure simulating the damage and
using FE Model (healthy) to FE Model (damaged) comparison.
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The objective function, G, that is used for the damage-detection framework is pre-
sented with details in Section 3, which follows. Algorithm 2 is summarizing the main
steps of the Particle Swarm Optimization algorithm. It must be noted that the algorithm
allows for parallel evaluation of the objective function for all particles at the current cycle.
This task was implemented in Matlab taking advantage of multi-core and multi-thread
capabilities of modern processors while minimizing the execution time until termination.
The computer that was used hosts two (2) Intel® Xeon® Gold Processors 6130 (22 M Cache,
3.70 GHz) with 16-cores and 32-threads, resulting in a total number of sixty-four (64) logical
(virtual) cores and 128 GB of RAM, on the Linux Ubuntu 18.04 Operating System which is
distributed by Canonical, London, UK.

Algorithm 2. Main Steps of the PSO Algorithm.

. Set w, 1, ¢p, n and variable bounds

. Randomly generate the initial swarm while enforcing the variable bounds
. While termination criterion is not met do

. for each particle i do

. Evaluate the objective functions

.if G(p!) < G(pbest;) then pbest; < p!

. Ibestt = min(pbest;eighbors)

. Update velocity, Equation (2)

. Update position, Equation (3), while enforcing the variable bounds

10. End for

11. End while

12. The optimal solution is found as the parameter set that corresponds to the minimum
objective function

O 00 NI ON U1 = W IN -

3. Damage-Detection Framework
3.1. Description of the Proposed Damage-Detection Framework

Consider a healthy real-world structure that could be described by S and let ./ be
the corresponding Optimal FE Model.
In general terms, the relationship between the real structure S and the Optimal FE
Model . could be described as:
M=8 + e1 (4)

When damage occurs at the real-world structure the Equation (4) can be transformed as:
M gam = Sgom +e2 = M +dM =8 +dS + e, (5)

where S, and A 4,,,, represent the damaged real-world structure and the corresponding
damaged FE Model that approximates the response of the structure as closely as possible.
Additionally, parameters eq, e represent the error between the real-world structure and the
FE Model. Parameter e; at Equation (4) represents the error between the FE Model and the
real-world structure at their healthy states, while parameter e, at the damaged state. When
damage occurs, such as a crack, in the physical structure, there is always the possibility of
creating a nonlinear behavior locally. For the present work, a damaged linear FE Model
was created to approximate the dynamic behavior of the damaged structure and, thus, the
two parameters (¢, e3) are not equal.

The proposed damage-detection framework is using optimization algorithms with
proper set-up and only output measurements (accelerations) to find the d_/ that is highly
correlated with dS. While dS can be described as the change in the structure, since the
healthy experimental measurement, or, in other words, the damage on the structure, d_# is
the change that the Optimal FE Model, .#, must make to better describe the S 4,,,. Due
to the modeling error, d_# is never exactly equal to dS but it is the closest approximation
possible while using a linear FE Model. In this framework, d.# includes the location
of the damaged area and an approximation of the change of material properties at this
area in terms of Elastic modulus and density. These material properties cannot quantify
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the damage due to modeling errors, but they can provide some insight to the type of the
damage, e.g., loss of stiffness in case of a crack.

In other words, the proposed framework searches for local changes at the material
properties of the FE Model while trying to find the parameters that better describe the
dynamic experimental measurements. The accuracy of the location depends on the accuracy
of the Optimal FE Model compared with the healthy structure.

The equation of motion, Equation (6), can be used to describe the Optimal Finite
Element Model (_#) of the examined structure.

Mi + Ci + Kx = F (6)

where F is the external excitation and x, x, x represent the acceleration, velocity, and dis-
placement vectors, M, C, K are the Mass, Damping, and Stiffness matrix, accordingly, and
so the model can be fully described by .# (M, C, K). Assuming that damage in a structure
will affect the Mass and Stiffness matrices, the major target is to find the appropriate dM
and dK that results in the corresponding d.# and so the . 4, that approximates the
damaged structure S j,,,.

To achieve this goal a population-based metaheuristic algorithm is used, in this case,
the Particle Swarm Optimization, properly configured for this specific task. The PSO
handles the task to search for the optimal solution through the entire search domain. This
domain includes a total of six parameters with the first two representing the percentage
change of the Elastic Modulus and Density, { pg, pp € R : (0, UB]}, where UB is the selected
upper bound while when pg, pp = 1 the material properties remain the same. The other
four parameters control a parametric damaged area that is inserted into the FE Model and
moves into the complete three-dimensional space. More specifically, this area is controlled
by its central element. Let L(P, X, Y, Z) be the vector describing the central element of the
damaged area where P,{P € R : [0,1]}, represents the part of the FE Model in a multi-part
structure and X, Y, Z, {X,Y,Z € R : [0,1]}, corresponding to the local coordinates for the
central element expressed as a fraction of the dimension of the specific part chosen by P.

After this selection, the framework starting from the central element starts to expand
this area in all directions until it reaches a specific number of elements or a specific radius.
The size of the area could also be added as a parameter for the optimization algorithm
while in the cases examined in the following sections this is not implemented. In cases
where the examined structure includes parts with a large difference in size it would be
recommended to add the extra parameter.

For a better explanation of the selection process, consider a two-part model, with
different dimensions and materials joined together, as shown in Figure 1.

LX1 LX2
~ Y=1 - ~
LY2
LY1| y=05
vY=0
X=0 X=0.5 X=1 )
X axis

W Part1 Part 2

Figure 1. Example of the damaged area center selection in two parts.
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Both parts have shell elements at the X-Y axis plane, the Z parameter does not affect
in this situation and will be set to zero (Z = 0). The P parameter is defined as:

_ 0<LP<05 — Partl @)
~ 05<P<1 — Part?2

The two centers (of the damaged area), highlighted in red, are both at the center of
each part and can be selected with the following definitions of L:

1. For the center at Part 1: L(P,X,Y,Z) — L(0.25,0.5,0.5,0)
19. For the center at Part2: L(P,X,Y,Z) — L(0.75,0.5,0.5,0)

It is obvious that because the X,Y,Z parameters are expressed as a fraction of the
selected part in both of the above cases, while they have the same value, the L value points
at different coordinates of the global coordinate system. Also, it can be seen in Figure 1
that X, Y, Z parameters are taking the same values regardless of the selected part and the
dimensions LY1, LX1, LY2, and LX2. If the first case is selected (Part 1), the creation of the
damaged area will be completed following the steps below. First, the framework extends the
damaged area to any dimension, as shown in Figure 2. For the purpose of this example, the
expansion is set to be in one “zone” of neighborhood elements. This makes it easy to create
damaged areas on any 3D FE model that uses either 2D shell elements or 3D solid elements.
Finally, the material properties of the damaged area are created. The framework was created
keeping in mind that a complex structure might consist of parts with different materials.

.
1
=1

Y=1 -
Y=0.5
Y=0

P
X=0 X=0.5 X=

[ rart1 [l Damaged Area

Figure 2. Expansion of the damaged area.

From the material of the part that is selected each time with the parameter P, the new
properties are calculated using the pg, pp with the following equations.

— —
Ejam = PE - Epart (8)
Dggm = pD - Dpart 9)

where the subscript dam is indicating the material properties (Modulus and Density) of the
damaged area and as part is the material properties of the selected Part from the parameter
P. The parameters pr, pp, as have been mentioned before, are inside the search domain and
controlled by the PSO.

It must be noted that 1—5> is expressed as a vector in case the material is not a standard
isotropic and might have moduli at other directions (such as a Carbon-Fiber Reinforced
Composite material). As such, every modulus is changed with the same factor, and this
allows the framework to be applicable at every structure regardless of how many different
materials are in use.
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It is noteworthy to mention that, while the locational parameters (P,X,Y,Z) have
a fixed bound range from 0 to 1, the material parameters have no specific upper bound.
Their value is highly dependent on the size of the inserted damaged area on the FE model
and the extent of the physical damage. Furthermore, the error between the FE Model and
the physical structure will affect the corresponding values of pg and pp. Assuming that
the size of the damaged area of the FE Model is appropriate compared to the larger parts
of the structure, an initial suggested range of both the material parameters would be no
larger than [0.1, 1.5]. In case the corresponding best values after the optimization have
reached the bounds, the damage-detection framework needs to restart with larger upper
bounds and/or with a larger damaged area for the FE Model. Such examples of restarting
the framework for larger parameter bounds are included in Section 4.

The above details are the result of extended laboratory testing and are suggested by the
authors to the researcher who might replicate the procedure. The researcher must keep in mind
that the parameters, such as the size of the damaged area, material parameter bounds, but also
the mesh of the FE Model, must be evaluated according to the examined structure.

The import, manipulation, and export of the FE Model were implemented in Matlab.
After the creation of the new FE Model containing the damaged area a commercial Finite
Element Analysis software is called to evaluate the model’s response, which, in this case,
the MSC Nastran was selected.

3.2. Transmittance Function

The Transmittance Function (TF) is expressed as the ratio of the Cross-Spectral (CSD),
Sys, over the Auto-Spectral Density (PSD), S;+, between two vibration response signals
calculated from Equation (10).

_ Sp(w) X (w)

Trsle) = Srr(w) B Xr(w)

Xs (@) (10)
xr

As x(w) is the Fourier transformation of the acceleration signal, with w to be the
frequency. Furthermore, the X" (w) is the complex conjugate of ¥(w) and subscripts 7, s
denote the degrees of freedom on the structure.

As the calculation of TFs does not require the measurement of the input excitation, a
change at the TF curve represents a change of the structural properties and is a sensitive
method to be used for damage detection [26,46].

If a g number of acceleration signals is used, then Equation (10) can be written as a
matrix of all possible combinations as:

1 Ty - Ty
T 1 Tog

T=|. ) ) (11)
Tg Tp - 1 -

It is not necessary for the complete matrix from Equation (11) to be calculated and
only unique combinations need to be used. In previous works in the literature that used
TFs on experimental measurements only, the sequential TFs were used for damage detec-
tion [26,47,48] that corresponded to the first upper diagonal of the T matrix from Equation
(11). For the context of this damage-detection framework, all the upper triangular part of
the T matrix is being used that contains all the unique combinations between the accelera-
tion signals. Moreover, at a structure expanding on all three dimensions in the general case
that triaxial accelerometers are used, three TF matrices are calculated that are axis-specific
on the global coordinate system of the structure. For example, if w is the number of triaxial
acceleration sensors then ¢ = 3 X w and the TF matrices for the X, Y, and Z axis (global
coordinate system) can be expressed as:
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1 Tfé oo TX 1 T1Y2 ... TY 1 lez ... TZ

X 1 Ti?gu T, 1 TiYZ ’ T4 1 T;Zw
T = : . :w T = : - T = : . (12)
' X ' ' Y Y 7 z
Tuﬂ TZUZ e wWXW Twl TWZ e 1 WwXwW TZUl TWZ wWXW

Of course, other configurations can exist if, for example, a mix of single-axis and
triaxial acceleration sensors are used, so, in this case, the TX, TY, TZ matrices are not
equal in dimensions.

The use of TFs allows the application of this framework to be applied without the
measurement of the input excitation and using only the output information. For the
corresponding FE Model, an excitation is needed, and the experimental excitation can be
used if it is available, but an artificial random excitation may also be used as it will not
affect its TFs.

3.3. Objective Function

A black box optimization scenario is employed where the goal is to minimize the
Objective Function, G : R — R where k is the search space dimension, and the only acces-
sible information is the Function’s values of evaluated search points [29]. Thus, choosing a
proper objective function is crucial to effectively apply the damage-detection framework.

The Pearson correlation coefficient is used to compare the experimental Transmittance
Functions and the corresponding FE Model Transmittance Functions. It is a measure of
the linear correlation between two sets of data and, as a normalized measure, it takes
values between —1 and 1. The Pearson Correlation Coefficient can be calculated from
Equation (13) for two equal-length sets of data, A and B, where N is the length of the data
sets and y, o are the mean value and standard deviation of each set, A and B, accordingly.

1 N /A — —
Pearson Correlation Coef ficient : p(A,B) = N1 ) ( la VA) <Bl > yB) (13)
iz A B

A value of p = 1 indicates that there is a perfect linear correlation between the two
data sets, while, on the other hand, p = —1 indicates a negative linear relationship and
p = 0 indicates that there is a nonlinear relationship between the two sets but without
providing any further details on their relationship.

In this minimization problem, the best available linear relationship is attempted to be
found between the Experimental Transmittance Functions and the FE Model Transmittance
Functions. So, the error of the Pearson Correlation Coefficient is used, or, as it has also been
mentioned as, the Pearson Distance [49], and it becomes obvious from the Equation (14)
that since the p has a range of [1, 1] the Pearson Distance has a range of [0, 2], with zero
to indicate the perfect linear correlation.

Pearson Distance =1 — p(A, B) (14)

Expressing now the Objective Functions, G, in the general form, at Equation (15), as the
mean value of all the Pearson Distances between the experimental measurements from the
damaged structure and the Optimal FE model. Where TFPEXP | TFFE are the Experimental
Transmittance Functions (damaged structure) and the FE Model’s Transmittance Functions,
while A is the total number of Transmittance Functions used withi=1, 2, ..., A.

i , 14

Objective Function, G = a {1 - p(TiDEXP, TIFE)} (15)
i=1

Damage, such as a crack in a part of a real structure, adds a discontinuity and it

might not be able to always be modeled with precision as a reduction in stiffness in a
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continuous area in an FE model. The use of the Pearson Coefficient is forcing an FE Model’s
Transmittance Function to take the shape of the damaged Experimental Transmittance
Function, but it under-estimates the magnitude difference that could be created due to
this discontinuity at the peaks of the curve. This is also the reason why the same objective
function is not used to obtain the optimal FE model and Equation (1) was used instead, as
the damping ratios may not be evaluated correctly by Equation (15).

The general idea in such optimization procedures is that the more information is
available the better the outcome. But in this case, the inclusion of “bad” information could
sometimes lead to a wrong estimation of the damage location. The limited-value range
of the Pearson coefficient can assist in an initial automated filtering of the information
(response signals, in this case). Before the framework is applied, the Optimal FE Model
must be evaluated and compared with the healthy structure. From the experimental
measurements of the healthy structure, one must compute the Transmittance Functions
and evaluate the Pearson coefficient with that of the FE Model. This way, the quality of the
optimal FE Model can be evaluated. From the complete set of Transmittance Functions, a
subset with the best correlation can be used while the remaining TFs will be disregarded.

The flow-chart of the entire proposed damage-detection framework along with the
model-update procedure is presented in Figure 3.

Model Update Procedure

]

L}

L}

:

L}

Model update procedure Optimal FE Model !
CMA-ES :

L}

1

Experimental Measurements
(Healthy Structure)

Nominal FE Model

Experimental Measurements
(Damaged Structure)

Keep only the TF functions with
Correlation Coefficient >= 0.9
between the FE Model and the

Healthy Structure

Optimal FE Model ‘
Repeat with larger bounds Sample the random initial
and/or larger area Parameters (Swarm Creation)

Experimental Measurements
(Healthy Structure)

—

|
[ Create damaged area
r * Y
Saio] - Call FEA to compute the dynamic
ample new parameters response
from calculated L )
velocities i
A 4 2

Calculate Transmittance
Functions and the Objective
Function

No l
Termination 2 Collect all the Global and

Criteria met? Personal Best Objective Function

Damage Detection Framework - PSO

\

Have the best values of Elastic
Modulus or Density reached the
bounds?

End
Parameters correspond to

minimum objective
function value correspond
to the Damaged Area

Figure 3. Flow-chart of the proposed damage-detection framework.
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For the present work, this limit is set to p > 0.9 (or else a Pearson Distance < 0.1),
meaning the subset of Transmittance Functions that will be used for damage-detection
framework will contain only the Functions of the Optimal FE Model with high correlation
(o > 0.9) with the initial Transmittance Functions of the healthy structure while all the
others will be rejected. This limit was set after evaluating different cases in a laboratory
environment and can change depending on the required accuracy of the framework or the
complexity of the structure.

4. Results and Discussion

To illustrate the effectiveness of the proposed technique for damage detection, two
applications are considered. The first employs a small-scale laboratory-tested vehicle
body-suspension system using simulated damage scenarios that present the general case of
application in complex structures consisting of multiple parts. The second one consists of
an experimental cantilever CFRP composite beam with glued aluminum connectors.

4.1. Application on Complex Structures. Simulated Small-Scale Laboratory-Tested Vehicle
Body-Suspension System

A small-scale vehicle model, shown in Figure 4, is used to demonstrate, first, the
effectiveness of the proposed methodology. This is a laboratory structure, designed to
simulate the frame structure of a vehicle on a small scale. Figure 4 presents the geometrical
dimensions of the frame subsystem alone. More details of the frame can be found in
previous published papers, see [50,51].

Suspension
Subsystem

Subsystem

Figure 4. (a) Dimensions of the frame substructure Optimal and (b) FE Model (OFEM) and Simulated
Experimental FE Model (SEFEM).
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In brief, the selected system comprises a frame structure with predominantly linear
response and high modal density, consisting of multiple parts, plus four (4) supporting
systems with linear or nonlinear actions. These supporting systems consist of a lower set
of linear discrete spring-damper units, connected to a concentrated mass, simulating the
wheel subsystems, as well as of an upper set of linear or nonlinear discrete spring-damper
(bushings) units connected to the frame and simulating the action of the vehicle suspension.
The current application is employed as a simulation-simulation scenario using artificial
damage. For consistency, as shown in Figure 4, the initial unchanged FE model will be
referred to as the Optimal FE Model (OFEM). To simulate a percentage of modeling error
from the Optimal FE Model, a second FE model was developed by remeshing and introducing
material uncertainties to OFEM. This model will be referred to as the Simulated Experimental
FE Model (SEFEM). As a result, the difference of the OFEM and the SEFEM in their healthy
state is detected in the discretization variability of the same FE model, developed with
different elements. The aim is to introduce and simulate additional modelling error between
the optimal FE model and a real-world experimental structure.

The Optimal FE Model (OFEM) consists of 7636 shell elements (7632 quadrilateral
and four triangular) for the main structure of the vehicle chassis and 592 hexahedral solid
elements for the four parts connecting the structure with the suspension subsystems. In the
current application the sets of wheel-suspension subsystems consist of linear spring-damper
units. It must be noted that using the Transmittance Functions this framework could be
applied even at non-linear wheel and suspension subsystems in a real-world structure. The
acceleration at the connection points between the suspension and the structure could be
measured and then applied as excitation at the optimal FE model without the existence of
the wheel and suspension subsystems [50].

The second FE model, which will be referred to as the Simulated Experimental FE
Model (SEFEM), was developed to simulate the healthy experimental measurements and
the damaged structure. In order to add modeling error between the SEFEM and the OFEM,
different mesh was used along with changed materials properties. The SEFEM consists of
11,128 shell elements (4512 quadrilateral and 6616 triangular) while the solid hexahedral
elements remained the same, at 592. The stiffness of all the springs of the wheel and
suspension subsystems were changed at the range of 3.5 to 10%, the Elastic Modulus was
changed at 6.6%, and the density was changed at 1.3%. The complete OFEM compared to
SEFEM in an enlarged area is shown in Figure 4.

The structure consists of 20 parts, as presented in Figure 5, having steel material properties
(E =210 GPa, v = 0.3, p = 7850 Kg/m?>). Parts 1-11 have a shell thickness of 2 mm, and
parts 13-20 have a thickness of 3 mm. Figure 5 also shows the six (6) measuring locations.

Base - Parts 13 to 20

Figure 5. Parts of the FE model (right) and acceleration measurement locations (left).
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At the current application, all three axes of acceleration measurement are taken into ac-
count, thus the complete Transmittance Function table is calculated, based on Equation (12),
keeping active all the parameters of the damage-detection framework.

Four (4) different transient displacement base excitations were applied at the wheel
subsystems in the vertical direction (Z-axis). The displacement excitations were artificially
created as a random signal that covered the range of all required frequencies with almost a
uniformly distributed power spectrum. The model was solved in modal transient response
analysis using the commercial software MSC Nastran. Furthermore, experimental measure-
ments usually contain a level of noise that may originate from different sources, such as the
testing hardware or environmental factors, thus, at the acceleration output signals of the
SEFEM a 10% noise was added.

From the six (6) locations of measurements, using all three (3) axes of the global
coordinate system, eighteen (18) acceleration time histories occur. As so, each of the
three (3) tables of Equation (12) have a dimension of 6-by-6 while from the thirty-six (36)
Transmittance Functions, included in each matrix, fifteen (15) are used that correspond to
the upper triangular part of the matrix containing only the unique combinations between
the measurement locations. Furthermore, the total number of TFs from all three axes is
forty-five (45), although, as discussed in Section 3.3, a limit must be applied between the
OFEM and SEFEM for the sake of location accuracy.

A Transmittance Function curve from the Optimal FE model (OFEM) must have a
correlation coefficient, based on Equation (13), higher or equal to 0.9 when compared with the
corresponding experimental Transmittance Function (SEFEM) at a healthy state. The calculation
of this correlation coefficient is being made prior to any damage on the experimental structure,
SEFEM on the present section. This step is ensuring that only TFs with high correlation
between the FE model and the experimental structure will be taken into consideration for
damage localization. Applying such a threshold, the effective TFs for the damage-detection
framework, are limited to thirty (30), while the remaining fifteen (15) do not meet the criterion
and are rejected. Two indicative results of rejected and accepted TFs are presented in Figure 6,
while the structure is examined at the frequency range of 0-110 Hz.

Transmittance Function 2-4 , X axis [Correlation Coef.=0.72 , Rejected |
T T T T T T T T

Magnitude [db]

_15-|- = - OFEM
—— SEFEM
|

1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 920 100 110
Frequency [Hz]

Transmittance Function 3-5, Z axis [Correlation Coef.=0.96 , Accepted]
T T T T T T T T

Magnitude [db]

0 10 20 30 40 50 60 70 80 920 100 110
Frequency [Hz]

Figure 6. Indicative TFs of the vehicle between the OFEM and SEFEM.
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Two damaged cases are examined. At the first (Case 1), a crack is opened at the SEFEM
at Part 6 of the structure, simulated with a split between specific elements. In the second
case (Case 2), a mass of 1 kg is added at Part 1 of the chassis that corresponds to 0.57% of
the total mass of the structure (174.7 kg). The two simulated damage cases of the SEFEM
are presented in Figure 7.

Figure 7. SEFEM damage Cases 1 and 2.

A cumulative comparison of the natural frequencies between the SEFEM and OFEM
is presented in Table 2. The effect of the introduced model error can be clearly observed in
terms of modal natural frequencies in healthy state, along with the respective frequencies of
the FE models used to simulate the damaged scenarios. The error from the damaged scenarios
is calculated as a per cent error from the SEFEM to express the effect of the damage.

Table 2. Comparison of the vehicle natural frequencies (Hz).

Modes OFEM SEFEM Error SEFEM Error from SEFEM Error from
Frequencies  Frequencies (%) Case 1 SEFEM (%) Case 2 SEFEM (%)
1 2.48 2.49 0.4 2.49 0 2.48 0.40
2 3.43 3.46 0.86 3.46 0 3.45 0.29
3 3.58 3.61 0.83 3.61 0 3.59 0.55
4 9.77 9.71 0.61 9.71 0 9.71 0
5 9.96 9.94 0.2 9.93 0.10 9.94 0
6 10.26 10.3 0.38 10.37 0.68 10.37 0.68
7 10.30 10.46 1.52 10.45 0.09 10.45 0.09
8 23.90 24.35 1.84 23.42 3.89 24.03 1.33
9 41.97 4291 2.19 40.42 5.93 42.78 0.30
10 43.03 43.33 0.69 42.7 1.46 43.03 0.69
11 49.87 50.23 0.71 49.89 0.68 50.10 0.26
12 60.42 60.68 0.42 60.13 0.91 58.65 3.35
13 70.28 70.39 0.15 68.93 2.07 68.72 2.37
14 72.66 72.37 0.4 71.68 0.94 71.75 0.85
15 84.97 85.05 0.09 84.72 0.38 82.97 244
16 88.69 89.02 0.37 88.07 1.07 88.04 1.10
17 105.17 107.74 2.38 107.08 0.62 105.36 2.26
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4.1.1. Case 1: SEFEM Crack Damage

Regarding the first case, the damage is inserted as splitting between the elements at
Part 6 near the connection point with Part 7 and Part 5, as can be observed in Figure 7. For
the damage-detection framework, the material parameters were set within the range of 0.1
and 1.5. The resulted damaged FE model can be observed in Figure 8 while, in comparison
with Figure 7, it is obvious that the damaged area (represented in red color) contains the
simulated crack opening of the damaged SEFEM. Furthermore, in Figure 8 a representation
of the locational parameters X, Z can be observed when Part 6 is selected.

_________________ 1 Z2=1
I R

Figure 8. Damaged FE Model of Case 1.

From the comparison of the TFs between SEFEM and the damaged SEFEM one can
observe that the damage affects a specific frequency range, which is something that is
expected as a similar pattern was observed in Table 2 at the comparison of the natural
frequencies. An indicative comparison from the 30 total TFs is presented in Figure 9 which
includes the TF, between locations 2 and 4 at the Z-axis, of the SEFEM, the damaged SEFEM
and the resulted damaged OFEM from the damage-detection framework. The material
parameters pg, pp that correspond to the best solution were found to have a value of 0.35
and 0.7, respectively. The part parameter (P), presented in Figure 10, resulted in a value
within the range of Part 6. The specific part extents only at the X—Z plane (global coordinate
system) while along the Y-axis its dimensions are negligible, as only the X, Z parameters
have an effect on the location of the damaged area within this part. Their values with the
resulted objective function value are presented in Figure 11.

Transmittance Function 2-4 , Z axis
T T T T

20 T ’ A T T T
= 10 - —
=
D
'g 0
= -10 -
= y

-20 {1 = - OFEM Damaged SEFEM SEFEM Case 1|

T T | T T | T 1 1
0 10 20 30 40 50 60 70 80 90 100 110

Frequency [Hz]

Figure 9. Comparison of TFs between the OFEM, SEFEM, and damaged SEFEM of Case 1.
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Figure 10. Case 1: Part parameter (P) versus the Objective Function values.

0.3 X Parameter - Objective Funtion
P B R | | T E T | R e e

0.1

Objective Funtion

<=
=)
e
-
=
~
=)
(5]
=)
=

0.5 0.6 0.7 0.8 0.9 1
X Parameter

0.3

Z Parameter - Objective Funtion
0.2

0.1

Objective Funtion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Z Parameter

| ) Function Evaluations ©  Best Solution |

Figure 11. Case 1: X and Z parameters versus the Objective Function values.

4.1.2. Case 2: SEFEM Mass Damage

The second damage case includes a mass added at Part 1 as a group of 20 concentrated
mass elements (CONM?2). The total added mass is equal to 1 kg which corresponds to
0.57% of the total mass of the structure which is 174.7 kg. The mass is added at the bottom
of Part 1 and, more specifically, at one face of the square hollow section beam. At first, the
material parameters at the damage-detection framework were set within the range of 0.1
and 1.5. Upon completion of the first execution, the material parameters have reached the
bounds making the result unreliable. During restart, the range was extended with an upper
bound of 5 without changing any other parameter. The task was completed successfully
with the best solution of the framework to create a damaged area that includes the area of
the added mass on the SEFEM. In Figure 12 the resulted damaged FE model of Case 2 can
be observed along with the locational parameter Z when Part 1 is selected.
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Magnitude [db]

Figure 12. Damaged FE model of Case 2.

The effect of the damage at the TF curve can be observed in Figure 13, where TF
between locations 4 and 5 at the Y-axis, of the SEFEM, the damaged SEFEM of Case 2 and
the resulted damaged OFEM from the damage-detection framework is presented. The
material parameters pg, pp that correspond to the best solution were found to have a value
of 3.02 and 3, respectively.

Transmittance Function 4-5, Y axis
T T T T

40 T T T T T
= = = OFEM Damaged
— SEFEM
20 - |— SEFEM Case 2
0
20 ! | ! I \ I | I ! L

20 30 40 50 60 70 80 90 100 110
Frequency [Hz]

Figure 13. Comparison of TFs between the SEFEM, damaged OFEM, and damaged SEFEM of Case 2.

The part selection parameter (P), as can be observed in Figure 14, corresponds to
Part 1 of the structure, while the Z parameter has a value of 0.006. Figure 15 presents the
corresponding best solution of the damage-detection framework. For testing purposes only,
this task was executed also with the upper bounds of the material parameters equal to 8,
but the result remained the same as in the case where the upper bounds were set at 5. While
the location of the damaged area is correct, it must be noted that the material parameters
do not quantify the damage and the corresponding best values might be different to what
was expected. It is noteworthy to say that, in this case, the Elastic modulus parameter is
higher than anticipated. This is attributed to model error between the FE model and the
“physical” structure, OFEM and SEFEM in this case. Furthermore, the manner of modeling
physical damage as a linear continuous area with different mechanical properties imports
additional error into the whole process.
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Figure 14. Case 2: Part parameter (P) versus the Objective Function values.
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Figure 15. Case 2: Z parameter versus the Objective Function values.

4.2. Experimental Application on a Cantilever CFRP Composite Beam

The use of composite materials has been growing in the last years in several industries,
such as aerospace, aviation, and automotive. Their brittle fracture when subjected to
impacts and their damage behavior in general is a complex research topic. There are cases
where damage in the material might not be easily located with a visual inspection, such
as delamination. Furthermore, in complex multi-part structures, it might be even more
difficult to locate the damage.

This type of material is non-homogenous, and its behavior is non-isotropic. The
following experimental set-up was chosen as a benchmark for the proposed method in
order to also test its abilities in this type of material.

The experimental set-up consists of a circular hollow section CFRP composite beam
with 1 m length and wall thickness of almost 1.72 mm including layers with winding
angles of 8° and 86°, as presented in Table 3. It was produced with the filament winding
method while at the beam’s ends custom-made aluminum connectors were glued using
two-component epoxy glue. One connector was fixed and the other was mounted with an
electrodynamic shaker using a rod with a diameter of 2 mm.

Table 3. CFRP Composite Beam Properties.

Layer . . e o
Orientation (+/—8°) (+86°) (+/—8°) (+/—8°)
Bea1?1 Internal 25 mm Length -
Diameter
Layer +/—8° 0.52 mm

Thickness +86° 0.16 mm




Sensors 2022, 22, 5079 21 of 28

Two triaxial accelerometers were used. Accelerometer 1 was placed at a distance
of 415 mm and accelerometer 2 at a distance of 980 mm, both measured from the fixed
end of the composite beam. The complete experimental set-up is presented in Figure 16.
The first step was to execute experimental measurements from the healthy structure to
develop an optimal FE Model. Random excitation was imposed by the electrodynamic
shaker along the Z-axis at a sampling rate of 5120 Hz. During the experimental process,
the signal of the imposed excitation was actually recorded and could be used as raw
data for the excitation of the FE Model. Nevertheless, measuring time histories of the
imposed excitation is unnecessary because Transmittance Functions needed to implement
the presented framework are computed using output-only response measurements.

980 mm
ZT

> A2 Al

N
v

475 mm

N

1000 mm |

&
<

Free End
Connector

Electrodynamic
Shaker

Figure 16. Complete experimental set-up of the CFRP composite beam.

The corresponding FE model is shown in Figure 17. In total 81,433 solid elements were
used for the aluminum joints, the steel base, the glue, and the steel thread that connects
the free end with the electrodynamic shaker, furthermore, 10,944 shell elements were used
for the CFRP composite materials as it is a thin-walled tube. A modal frequency response
analysis was selected.

Part 5: Aluminum joint
Isotropic material [E,p]

Part 3: Steel Base
Isotropic Material [E,p]

Part 4: Glue
Isotropic Material [E,p]

Part 1: CFRP tube
Orthotropic Material
(E;, E5, Gy, Pl

Part 2: Steel thread
Isotropic Material [E,p]

Figure 17. FE Model of the cantilever CFRP beam.

CMA-ES, as described in Section 2.1, was implemented to acquire the twelve (12)
parameters, accounting for the material properties of the Optimal FE Model. Transmittance
Functions were then used as a measure of fit between the experimental measurements and
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the FE model predictions. Equation (1) is adopted during this FE model update, at the
frequency range from 0-650 Hz. The updated material properties are shown in Table 4,
along with the bounds used for the optimization.

Table 4. Updated FE model material properties.

Part 1
Parameter Bounds Result
Modulus of Elasticity, Direction 1, E; [GPa] [97, 150] 108.1
Modulus of Elasticity, Direction 2, E; [GPa] [4.6,8.6] 8.061
In-plane Shear Modulus Gy, [GPa] [2.3,4.4] 4.387
Density, p[kg/m°] [936, 2184] 1860
Part 2 3 4 5
Parameter Bounds Result Bounds Result Bounds Result Bounds Result
Young's
Modulus E [199, 220] 201.5 [199, 220] 208.8 [0.55,1.7] 0.57 [61.0,75.9] 62.55
[GPa]
]?15272’3]‘7 [7457, 8242] 7890 [7457, 8242] 7790 [490, 1474] 513 [2430, 2970] 2440
A comparison of the experimentally identified natural frequencies with the Nom-
inal and Optimal FE model is presented in Table 5. Furthermore, a comparison of the
Transmittance Functions, TF 1-2 at the Z-axis, between the experimental measurements,
Nominal FE model, and the Optimal FE Model is presented in Figure 18. The Pearson
Correlation Coefficient between the optimal FE model and the experimental measurements
can be calculated by Equation (13) and is equal to 0.92 which passes the criterion (p > 0.9)
mentioned in Section 3.3.
Table 5. Comparison of the Experimental natural frequencies with the Nominal (before the model
update procedure) and Optimal Finite Element Model (after the model update procedure).
Mode Experimental Freq. (Hz) = Nominal FEM Freq. (Hz) Error (%) Optimal FEM Freq. (Hz) Error (%)
1 136.0 178.6 31.3 138.6 1.94
2 169.0 210.5 245 170.4 0.83
3 255.0 341.3 33.8 260.4 2.14
4 476.6 587.2 23.2 485.1 1.79
5 503.4 600.0 19.1 506.5 0.62

Magnitude [db]

Transmittance Function 1-2 , Z axis
[ I T

Experimental
Iy e Optimal FE v 7
= = = Nominal FE

100 200 300 400 500 600
Frequency [Hz]

Figure 18. Comparison of the Transmittance Function 1-2 between the experimental measurements,
the nominal FE Model and the Optimal FE Model.

On the current experimental set-up two damage Cases are examined as presented in
Figure 19. Case 1 includes an added mass of 22 g at a length of 700 mm from the fixed end
of the composite beam, with the damage corresponding almost 2% of the total structure’s
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mass (1098 g). Case 2 involves the local reduction of stiffness also at a length of 700 mm
from the fixed end of the beam. A compression machine was used in a three-point bending
scenario, which presses the damaged location with a total of 1.5 kN forcing the matrix of
the composite material to break and create multiple small cracks at the specific location, as
shown in Figure 19.

< S— L/| Damage Location| 1x

Figure 19. Cantilever CFRP composite beam damage cases.

Furthermore, rubber material was placed under the two points that hold the beam,
preventing unwanted damage at these points. Two presses were executed, one on the
upper side (same side with the accelerometers) and one on the opposite side (180° rotated),
both with the same force. After the damage was created small visible cracks could be
distinguished, while a slight, local only, deformation was present. In both cases, random
excitation was imposed by the electrodynamic shaker during the experimental procedure
and an artificial random excitation was generated as input for the Optimal FE Model.

4.2.1. Case 1: Added Mass Damage on CFRP Composite Cantilever Beam

On this specific structure, some parameters of the damage-detection framework de-
scribed in Section 3.1 are not needed to be included. Only one part is selected to be
inspected (the CFRP composite beam), so the P parameter is not used; moreover, as the
beam extends mainly at the X-axis compared to the other axes it eliminates the need to use
all the locational parameters. As a result, three parameters are used in total, i.e., the mate-
rial parameters pg, pp, and the X location parameter, while the damaged area introduced
into the model is a ring zone with 120 mm in length. The upper bound of the material
parameters was set to 2. However, the parameters reached the upper bounds and the
framework had to restart. The extended upper bound was set to 8 while the lower bound
was retained to 0.1.

The damage-detection framework found the best solution that corresponds at an
area with its center at X = 0.73, as can be observed in Figure 20, while the best material
parameters pg, pp have a value of 3.18 and 4.7, respectively. The point of added mass is
included in this area as presented in the final damaged FE model in Figure 20. Finally,
in Figure 21 a comparison of the TFs is presented between the experimental healthy,
experimental damaged measurements and the final damaged FE Model.
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Figure 20. Damaged FE Model along with the location parameter X versus the Objective Function
value of Case 1.
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Figure 21. Comparison of the Transmittance Functions 1-2 between the damaged and healthy
experimental measurements along with the damaged FE Model.

It is obvious that the added mass on the structure resulted in a shift of the peaks at
lower frequencies with the first curve’s peak of the healthy structure to be at a frequency of
159 Hz and shifted to 149.6 Hz for the damaged structure (5.9% change) and the second
peak at a frequency of 478 Hz at the healthy structure to be shifted at 457 Hz at the damaged
structure (4.3% change). The final damaged FE model has the first peak at 151 Hz, which is
a small difference from the 149.6 Hz of the damaged structure (0.93% difference) and the
second peak at 454 Hz that is also a small difference from the damaged structure at 457 Hz
(0.65% difference). It must be noted that it is not always possible for the magnitude of the
damaged experimental Transmittance Functions to be equal to the damaged FE Model
using this procedure, as was also explained in Section 3.3.

4.2.2. Case 2: Local Stiffness Reduction Damage on CFRP Composite Cantilever Beam

For the execution of the damage-detection framework, the lower bound of the material
parameters was set to 0.1. For the upper bound, considering the initial run and the small
difference between the healthy and damaged states, it was set to 1.5. Finally, the length of
the damaged area remained the same, as in the previous Section 4.2.1.

The damage-detection framework has found the best solution that corresponds at a
location parameter X = 0.665, Figure 22, while the material parameters pg, pp have a value
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of 0.3 and 0.7, respectively. The location of the damage lies within the corresponding area
of the damaged FE model, as seen in Figure 22.

700mm

X Parameter - Objective Function

| +  Function Evaluations © Best Soluti0n|

0.2

0.15

Objective Function

X Parameter

Figure 22. Damaged FE Model along with the location parameter X versus the Objective Function
value of Case 2.

The comparison between the experimental healthy, experimental damaged measure-
ments and the final damaged FE Model of Case 2 is presented in Figure 23.

Transmittance Function 1-2 , Z axis
T

25 T T T

Healthy Exp.
—— Damaged Exp.| |
= = = Damaged FE

20

Magnitude [db]
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-10 1 1 1 1 L} 1
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Figure 23. Comparison of the Transmittance Functions 1-2 between the damaged and healthy
experimental measurements along with the damaged FE Model.

The first peak of the experimental healthy state is at a frequency of 159 Hz while the
experimental damaged state has been shifted at 155 Hz (2.5% difference) while the second
peak is at a frequency of 478 Hz at the experimental healthy state which has been shifted
at the frequency of 469 Hz (1.88% difference) at the experimental damaged state. On the
other hand, the damaged FE model has its peaks almost in identical frequencies with the
experimental damaged measurements. In comparison with Case 1 at Section 4.2.1, the
damage of Case 2 has a smaller effect on the dynamic response for the structure.

5. Conclusions and Observations

A vibration-based damage-detection framework was presented using optimal finite
element modeling, metaheuristic algorithms, and experimental measurements. The primary
goal lies in facilitating an optimized vibration-based inspection strategy for the structures
by exploiting the value of monitoring information. As a starting point, an optimal FE
model is developed that can describe the dynamic response of the healthy structure with
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accuracy. The optimal FE model along with experimental vibration measurements of the
structure compose the inputs of the damage-detection framework, as an output of the
framework is a damaged FE Model which approximates the dynamic response of the
damaged real-world structure. For this purpose, a parametric damaged area is inserted at
the optimal FE model changing stiffness and mass to approximate the effect of the physical
damage. Upon convergence of the optimization procedure, the inserted area is highlighting
the damaged area of the structure.

The effectiveness of the proposed method and its potential for damage detection is
demonstrated via two illustrative examples, a simulated small-scale model of vehicle-like
structure and a real experimental CFRP composite beam structure. The robustness of the
proposed method is examined using two small damage scenarios for each validation model
and combined with random excitations.

The two examined structures introduce different types of difficulties. The first, vehicle-
like structure, exposes the framework to a complex multi-part structure. While the second,
CFRP composite beam, includes a material with complex damage mechanism and behavior.
Each examined case, two per structure, affected the dynamic response of the corresponding
structure in different forms and magnitudes. More specifically, the first examined structure,
the vehicle-like structure, has a maximum modeling error of 2.38% at the natural frequencies
compared with the healthy structure (simulated). The first damage case caused a maximum
shift in the natural frequencies of the healthy structure equal to 5.93% and 3.35%. Regarding
the second structure, the CFRP beam, the FE model had a maximum modeling error of
2.14% compared with the experimental structure. The first and second damage cases
resulted in a maximum frequency shift of 5.9% and 2.5%, respectively.

In conclusion, both examined cases included a maximum modeling error of 2.38 and
2.14% and the damage cases caused changes in the dynamic response of the physical
structures from 2.5 to 5.39%. The proposed damage-detection framework was able to
complete all four (4) cases successfully and find the affected area, as in all cases the damage
of the structure falls within the damaged area of the FE model.

The limitations of this method should also be addressed. The proposed method relies
on the accuracy of the FE model, as such the development procedure of the optimal FE
model should be a priority as it can determine the accuracy of the predicted damage
location. Furthermore, the framework is able to efficiently identify the damage location,
but it is not able to quantify it. The major reason is the initial discrepancy between the FE
Model and the physical structure. Future research could target the application on systems
that exhibit non-linear behavior, as well as to extend through a hierarchical structure to
problems of multiple faults.
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