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Abstract: The paper analyses the autonomy of a wireless body sensor that continuously measures
the potential difference between two proximal electrodes on the skin, primarily used for measuring
an electrocardiogram (ECG) when worn on the torso. The sensor is powered by a small rechargeable
battery and is designed for extremely low power use. However, the autonomy of the sensor, regarding
its power consumption, depends significantly on the measurement quality selection, which directly
influences the amount of data transferred. Therefore, we perform an in-depth analysis of the
power consumption sources, particularly those connected with the Bluetooth Low Energy (BLE)
communication protocol, in order to model and then tune the autonomy of the wireless low-power
body sensor for long-term ECG monitoring. Based on the findings, we propose two analytical models
for power consumption: one for power consumption estimation in idle mode and the other one for
power estimation in active mode. The proposed models are validated with the measured power
consumption of the ECG sensor at different ECG sensor settings, such as sampling rate and transmit
power. The proposed models show a good fit to the measured power consumption at different ECG
sensor sampling rates. This allows for power consumption analysis and sensor autonomy predictions
for different sensor settings. Moreover, the results show that the transmit power has a negligible
effect on the sensor autonomy in the case of streaming data with high sampling rates. The most
energy can be saved by lowering the sampling rate with suitable connection interval and by packing
as much data as possible in a single BLE packet.

Keywords: Bluetooth Low Energy; ECG; wireless sensor; power consumption; autonomy estimation

1. Introduction

With the advancement of electronics and constant densification of microchips, the
development of small and extremely low-power wireless sensors became possible. The
energy consumption of wireless body area network (WBAN) sensors is an important factor
to be considered in the design phase. For practical reasons, WBAN sensors are generally
powered by small batteries with limited overall size and dimensions. Therefore, the
available energy is mostly a very limited resource. The available energy can be increased
and device lifetime prolonged using different techniques for energy harvesting from radio
frequency (RF) energy, thermal energy, solar energy, and mechanical energy [1].

Different technologies suitable for low-power wireless sensor communications were
developed during the past years. In 2003, IEEE defined a technical standard for low-rate
wireless personal area networks (LR-WPAN)—IEEE 802.15.4—which focuses on low-cost
and low-speed communications enabling the emergence of upper-layer communication
protocols such as ZigBee, 6LoWPAN, Thread, WirelessHART, MiWi, ISA100.11a, and
others [2,3]. Next, the LoRa Alliance introduced LoRa (Long Range) low-power wide-area
network technology enabling long-range (more than 10 km) transmissions with low-power
consumption but also very low bit rates and throughput capabilities. Finally, the Bluetooth
Special Interest Group (SIG) introduced a backward incompatible extension of the standard
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Bluetooth technology with Bluetooth Low Energy (BLE), enabling novel applications in
health care, fitness, and home entertainment industries.

BLE, a proprietary wireless interface, is often selected mainly due to its general
ubiquity in modern personal mobile devices. Unlike all the other previously mentioned
communication technologies, BLE is the only one readily available in nearly every new
smartphone, tablet or smart watch. The main advantages of using standardized and widely
spread technology are great availability, standardized communication interfaces, great
amount of support available in the community, etc. Despite the ever-present possibility of
creating slightly better wireless communication technology regarding the power efficiency
per transferred information, the greater availability in consumer devices, and consequently
lower price, outweigh small differences in performance.

One particular example that we focus on in this paper is the energy consumption
of a miniature smart wireless ECG sensor, which is an important topic when providing
long power autonomy in the scope of a framework for long-term ECG monitoring [4],
e.g., to discover rarely occurring anomalies in ECG, which often do not occur within
30- or less-second ECG measurements routinely performed within primary health care.
In combination with a ubiquitous smartphone with BLE connectivity and a large storage
capacity, the hardware requirements for ECG sensors are minimal, making the device viable
for mass production with a relatively low price. We were able to analyze such a device,
which was recently introduced into the local health-care system.

Energy consumption in battery-powered wireless sensors is important because of its
impact on the sensor’s operating time. Having a model to estimate the energy consumption
based on the sensor’s activity patterns and workload can help engineers to develop energy-
efficient applications and obtain quick estimations without thorough testing with actual
devices. It can also help the end user or technician to obtain a good estimate of the expected
device operating time according to the device settings. These are the reasons for energy
consumption modeling in wireless sensor networks (WSNs) being an active research topic.
Energy consumption models have been proposed and evaluated for various communication
protocols in WSNs [5–8], also including BLE [9–11]. However, actual sensor uptime and
power consumption are affected by many parameters that are difficult to be generalized to
all available connectivity solutions and implementations. Power consumption depends
on the actual implementation of the communication solution, such as the physical RF
implementation, power management, and the most important factor: the actual software
running on a wireless sensor device.

Having in mind the above said, in the paper, we demonstrate how a general model
can be put in place and evaluated for a special case of low-power sensor for long-term
ECG monitoring. Moreover, in this paper, we also shortly illustrate the task of providing
guidelines for further development of the ECG sensor, based both on the experience
gathered from real-life usage of the sensor and on the analysis of the production version
of the sensor circuitry. The real-life experience was gathered from volunteer users [12]
and from health-care centers [13]. In particular, the contributions of the paper can be
summarized as follows:

• We perform an in-depth analysis of the power consumption sources, particularly
those connected with the BLE communication protocol, in order to model and then
tune the autonomy of the given wireless low-power body sensor for long-term ECG
monitoring. Power consumption estimations are the basis for the sensor autonomy
estimation and we thoroughly analyzed the sensor from this angle.

• Based on the findings, we propose analytical models that enable the power consump-
tion estimations for all wireless operating modes of the ECG sensor. The proposed
models are validated with the measured power consumption of the ECG sensor at
different ECG sensor settings, such as sampling rate and transmit power.

• The resulting models and autonomy estimations enable the engineers to find the
optimal wireless ECG sensor settings to optimize the autonomy as well as the hardware
of future sensor revisions, given the possible scenarios of sensor use.
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The paper is organized as follows. In the next section, the related work from the area
of modeling and analyzing energy consumption models is overviewed. In that section,
the wireless body sensor for continuous ECG measurements is described as well. Fol-
lowing this, in Section 3, we present the sensor’s operating modes important for power
autonomy estimation, including also energy consumption measurements during those
modes. The power consumption models are presented in Section 4. Their validation and
sensor autonomy analysis subsequently follow in Section 5. The paper concludes with a
critical summary of the presented results, limitations of the work, and recommendations
for increased autonomy of wireless sensors.

2. Background and Related Work

In this section, the related work regarding energy consumption modeling in wireless
sensor networks is initially presented, including models and consumption analysis for
various communication protocols, such as LoRaWAN and BLE. After that, we present the
background and the related work of the considered wireless ECG sensor, focusing of its
design and its intended use.

2.1. Energy Consumption Modeling in Wireless Sensor Networks

Energy consumption modeling in WSNs is an active research topic. The authors in [14]
have proposed a combination of the coordinated duty cycle algorithm (CDCA) and net-
work coding to reduce the energy consumption and improve the transmission reliability in
WBAN. They introduced a mathematical model for energy consumption, which was evalu-
ated and compared with the actual implementation using simulations. The authors in [15]
proposed a routing approach based on the energy consumption equalization within the
sensor device. They developed both realistic and theoretical models for estimating the
energy consumption of their proposed routing algorithms and proved its efficiency in
minimizing the overall energy consumption. The authors in [5] proposed an extensive
analytical energy consumption model and derived the load-balanced optimal routing con-
figuration that maximizes network lifetime. In [16], the authors proposed a simple energy
model for WSNs and demonstrated the significant reduction in energy consumption when
limiting the frequency of network synchronization events by reducing the duty cycle. The
authors in [6] developed a sensor lifetime energy model and evaluated the effects of the
duty cycle on the expected energy consumption. They compared their model with the
standard STEM-B model. Their model demonstrates that, by increasing the duty cycle,
the energy consumption increases proportionally. These publications proposed energy
consumption models for complex WSNs where many sensor devices are, in contrast to BLE
connections, connected in multihop topologies.

One of the widespread technologies for low-power WSNs is LoRaWAN, with its
unique narrow-band modulation which enables low-power, low-rate and long-range
narrow-band communications. The authors in [7] proposed an extensive energy con-
sumption model for LoRaWAN Class A sensor node devices. They evaluated all aspects of
device activity and energy consumption during the signal processing, energy consumption
while receiving response, energy consumption while in sleep mode, etc. They also con-
sidered the microcontroller unit (MCU) frequency as a parameter in the proposed energy
consumption model. By using the proposed energy consumption model, they analyzed
the impact of all LoRaWAN communication parameters on the energy consumption. They
compared the sensor node autonomy for three hypothetical LoRaWAN scenarios. Next,
modeling solution comes in [8], where the authors proposed energy consumption models
for LoRaWAN Class A devices for current consumption estimation, device lifetime estima-
tion, and energy cost of data delivery estimation. The models were developed based on
measurements made using the actual LoRaWAN devices. The authors in [17] proposed a
simple battery lifetime prediction model based on the measurements for LoRaWAN Class
A and Class C devices by measuring average power consumption for varying payload
sizes and spreading factors. The authors in [18] proposed a simple simulation model for
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estimating the autonomy of biomedical sensors in body sensor networks (BSN). The models
consider different operating modes of MCU and radio.

A widespread technology that enables low-power WSNs is the BLE technology that
is already available in a vast majority of modern smart devices (smart phones, tablets,
smart watches, and computers). The omnipresence of BLE technology enables its quick
adoption in consumer-oriented battery-powered low-power wireless devices. The authors
in [19] presented BLE communication stack in detail including all communication layers,
parameters, and stack behavior. They performed some performance evaluation tasks such
as latency, energy consumption, and maximum piconet size and throughput using the
CC2540 BLE radio chip. the authors in [9] proposed energy consumption models for
opportunistic sensor data collection with BLE technology. They suggested two energy
consumption models for different BLE approaches: an advertisement-based approach
and connection-based approach. For each of the approaches, they measured average
current consumption using the Bluegiga BLE121LR BLE platform. They derived analytical
models by introducing BLE connectivity parameters and provided a detailed evaluation
of proposed models considering the main BLE parameters. They derived the sensor node
lifetime models for both cases, models for data collection efficiency in terms of energy
consumed per collected data bit, and discussed the influence of bit error rate (BER) on all
considered performance parameters. The authors in [10] conducted an in-depth analysis
of BLE power consumption, particularly for estimation of discovery latency and energy
consumption of both scanner and advertiser during a discovery process. The models
were developed and validated for the BLE112 BLE chipset. If the user wants to use their
models for other BLE chipsets, all platform-dependent parameters should be possible to
adapt according to the selected BLE platform. They made the proposed model publicly
available in the form of a software library. The authors in [20] presented their work
with quantitative analysis for assessing the energy consumption of BLE advertisement
procedures. The analysis includes a mathematical model for the device discovery dynamics
and device performance evaluation under various BLE parameter settings. In [11,21],
the authors focused on developing an analytical model and simulations for discovery
probability, influence of parameter selection on discovery latency, and energy metrics of
the discovery process.

2.2. Wireless ECG Sensor

The wireless ECG sensor investigated in this paper is certified as a Class IIa medical
device and is intended for long-term continuous personal cardiac monitoring [4]. It has
been available on the market since 2016 under the trademark Savvy ECG (http://savvy.si/,
accessed on 29 April 2022). Physically, the sensor is small (dimensions: 130 × 35 × 14 mm)
and light (weight: 21 g). It acts as a body gadget that can be worn on the skin by attaching
it with two standard self-adhesive electrodes (Figure 1). Its outer shell is made of a
waterproof and biocompatible plastic material. The device primarily measures differential
surface electrical potential (ECG) between the proximal electrodes—a signal denoted as
differential lead or differential ECG [22]. Experiments have shown that the optimal distance
between the electrodes, which ensures satisfactory signal-to-noise ratio as well as minimal
discomfort for the user, is around 8 cm [22] of flexible connection between the electrodes.
This flexible part in combination with the snap fasteners that attach to the electrodes make
the sensor adjustable for positioning and resilient to the movements of the user.

The hardware of the sensor implements the measurement functionality as follows:
The first conversion of the measured quantity is made with an analog circuitry, including
preamplifier and analog filters, that takes the input signal and converts it to appropriate
voltage levels. Afterwards, the signal is passed to the MCU that converts the analog input
signal into digital by sampling it with a predefined frequency and stores the samples into
a memory buffer for further transfer. The samples are next transmitted in bulk by the
MCU over a standard SPI (Serial Peripheral Interface) to the chip with a radio transceiver.
The signal is then wirelessly transferred to a personal digital assistant (PDA), such as a

http://savvy.si/
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smartphone or a tablet, by using a custom wireless protocol built on top of the BLE. The
selected BLE radio for the sensor is the nRF8001 module by Nordic semiconductor, which
supports Bluetooth 4.0 low-energy specifications. On the PDA, the data is stored and
visualized in real time [23]. The ECG sensor represents a peripheral device in terms of BLE
device classification, whereas the main device for ECG sample collection, i.e., the PDA, is
called a central device.

(a) (b)
Figure 1. (a) Commercial version of the ECG body sensor. (b) The sensor placed on the charging dock.

The two electrical connectors of the sensor, additionally to connecting the electrodes
to perform measurements, are also used to plug the sensor on a battery charger. A charger
circuitry in the sensor detects when the battery charger is connected to the input snap termi-
nals and puts the sensor in charging mode. Moreover, the battery charger is implemented
as a charging dock designed to prevent reverse connection of the sensor on the charger.
Additional components of the sensor, contributing to preserving sensor’s energy, are: the
circuit breaker that isolates all the other circuits from the battery in order to minimize
power consumption when the sensor is stored for a longer period of time and the power
delivery circuitry used to lower the power usage while the sensor is not active by enabling
the MCU to selectively deliver power to other building blocks.

As a compromise among sustainable power consumption, acceptable measurement
quality, and acceptable bandwidth for most smartphones to handle, a moderate resolution
of 128 samples/s is used and enforced by the software, but the hardware allows for it to be
increased up to 1024 samples/s. The sensor has found its application in several areas in
medicine and in every-day life [4]. It has been demonstrated that the moderate-resolution
ECG is suitable for long-term personal cardiac activity monitoring, as well as for clinical
use, such as screening patients with a suspicion of irregular heartbeat [13], prospective
study of atrial fibrillation [24], and continuous remote monitoring of chronic obstructive
pulmonary disease (COPD) patients [25]. Furthermore, the sensor has also been used for:
abdominal fetal ECG monitoring, ECG monitoring in veterinary practice, on dogs, cats and
horses, biometric authentication, and heart rate variability (HRV) biofeedback assessment.
Its exceptionally lightweight design allows for unobtrusive use during sports activities or
during exhaustive physical work as well [26]. In addition to ECG, it has been demonstrated
that other features can also be extracted from the measured potential difference on the
body’s surface, such as muscle activity and respiration [22,27]. Moreover, the standard
12-lead ECG can be synthesized from the measurements from three sensors placed in
appropriate positions [28–30]. Lastly, the future addition of a temperature sensor and
accelerometer [22] promises to transform the next generation of wearable sensors to a truly
multifunctional design.

3. Sensor Operating Modes and Energy Consumption Measurements

The ECG sensor supports different operating modes to extend autonomy as far as
possible. In this section, all operating modes are described in detail. The operating
modes are later broken down to individual power consumption events. The individual
power consumption events are measured and analyzed in order to identify the important
parameters needed for power consumption modeling.
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3.1. Operating Modes

The wireless ECG sensor supports several operating modes to comply with the power
efficiency requirements imposed by its small size and battery operation:

• Shutdown mode
• Sleep mode
• Idle mode (disconnected mode): fast and slow advertising
• Active mode (ECG sampling).

In shutdown mode, all the electronic components on the wireless sensor board are
disconnected from the battery for maximal power conservation, particularly for storing
the device for longer periods of time. In particular, the device consumes fewer than
2 nA in shutdown mode, and this consumption is constant as there are no events in this
mode of operation. The ECG sensor exits the shutdown mode when it is connected to the
charging station.

When an ECG sensor is powered-on, it switches to idle mode, where it starts adver-
tising itself by periodically transmitting BLE advertising packets. First, it starts in a fast
advertising idle mode, where the BLE radio periodically transmits advertising packets.
After the fast advertising period is over, the ECG sensor switches to slow advertising idle
mode. The faster advertising rate during the fast advertising idle mode enables faster
discovery of the ECG sensor by the central device (e.g., smartphone), while the slow adver-
tising idle mode, on the other hand, enables a bit slower discovery of the ECG device while
also reducing the power consumption, thus significantly prolonging the sensor’s autonomy.

The central device acts as a BLE scanner device that listens for a few seconds for
connectable advertising packets containing the ECG sensor service identification; more
than one second is typically required, but five seconds is advised to ensure that the ECG
sensor can be discovered in its slow advertising mode. After the ECG sensor is discovered
by the scanner, the central device initiates a standard nonencrypted BLE connection with
the sensor. The ECG sensor then makes a transition to the active mode of operation: the
ECG sensor is connected to the central device and actively streams ECG measurements.

Following a successful connection attempt, the central device issues several commands
over a proprietary protocol defined on top of a client-writable GATT. GATT here stands for
Generic Attribute Profile, which is a protocol most commonly used with the BLE. Among
others, there are two commands that influence the sensor’s power consumption:

• Transmit (TX) power setting (options are 0 dBm, −6 dBm, −12 dBm, −18 dBm). The
default in our case is 0 dBm.

• Sampling rate selection, which is limited to values that divide 32,768. The default in
our case is 128 Hz.

If the ECG measurement is stopped by the user, then the central device triggers a
disconnect. In such an event, the sensor stops sampling and switches to idle mode. In case
the sensor battery is drained down to its minimum allowed voltage, the sensor disconnects
and switches to shutdown mode, from which it can only be awakened by its battery charger.
The last possibility is that the sensor moves out of the radio range and the connection
on both devices times out. In this case, the sensor also stops sampling and switches to
idle mode.

The focus in this paper is on the events consuming considerable amounts of energy,
i.e., events in idle and active mode. Therefore, in the following, these operating modes are
described in more detail regarding their power consumption profiles. First, we give details
about the measuring equipment used to obtain the power consumption measurements.

3.2. Measurement Equipment

To measure the power consumption of the wireless ECG sensor, we used the mea-
surement circuit presented in Figure 2. The power consumption is measured indirectly
by multiplying the measured current and battery voltage. The current is also measured
indirectly by measuring the voltage on a shunt resistor with resistance of Rm = 10Ω.
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For the analysis of current consumption during individual detectable events, a digital
sampling oscilloscope (DSO) Rigol DS1054 is used. With the DSO, we recorded a current
consumption envelope with high resolution, which enabled the separation of fine details
in the current consumption needed to define the analytical power consumption models.
We measured the difference between the start of an event and the end of the event on the
current profile in order to assess the duration parameter of the event. The DSO resolution
was very high—50 million samples per second, which is equal to a time resolution of
20 nanoseconds.

Figure 2. Schematic presentation of the current consumption measurement circuit.

For average power consumption analysis, we used the HP3478A benchtop digital
multimeter (DMM) with Resistor-Capacitor (RC) low-pass filter (resistance R f = 10 kΩ
and capacitance C f = 1000 µF). The RC filter improves the averaging by suppressing
high-frequency components in the measurement signal to prevent aliasing from the limited
DMM sampling frequency. According to the Nyquist–Shannon theorem, the sampling
frequency should be at least twice as high than the highest frequency component of the
measured signal in order to guarantee perfect reconstruction of the sampled (measured)
signal. Therefore, perfect signal reconstruction is possible for a signal with a bandwidth B
lower than half of the sampling frequency fs (B < fs/2).

Additionally, to obtain measurements for different TX power settings and sampling
rates, a Linux-based single-board computer (SBC) with BLE capability was used. The SBC
acts as a central device and exposes the options to set a desired connection interval as well
as a desired sampling rate.

3.3. Consumption Profiles in Active and Idle Mode

Two types of communication events are defined in the BLE specification: advertising
events and connection events. Figure 3 presents a short excerpt from one current recording
representing the active mode where individual activity events can be identified: connection
event, message-processing event, ECG sampling event, and system tick event. Among
all the detected events, both MCU and BLE radio are in sleep mode, with both of them
consuming almost no energy at all. Low current spikes near the noise floor represent
the MCU activity bursts. In the following subsections, we describe all possible energy
consumption modes that can be identified from the current profile recordings. Additionally
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to the active mode events, the consumption measurements for the advertising event in idle
mode and in the sleep mode are also described.

Figure 3. Current consumption profile recording in an active mode (i.e., while streaming
ECG samples).

3.3.1. Connection Event

During the BLE connection event, devices exchange all the data that was prepared
during the last time between two consecutive connection events. The number of messages
exchanged during one connection interval can differ, but for the given ECG sensor, most
connection events exchange the same amount of data. One example of a BLE connection
event current consumption profile recording is presented in Figure 4. The current profile
starts by the BLE radio wake-up procedure between 0.0 ms and 1.5 ms, followed by an RX
event from 1.5 ms to approximately 1.8 ms. Then, a TX event follows, which lasts until
approximately 2.75 ms, continuing with the BLE stack processing, and ending with the
transition of the BLE radio back into sleep mode.

Figure 4 shows current profiles for 4 different TX power settings: 0 dBm, −6 dBm,
−12 dBm and −18 dBm. We can observe that the energy consumption during a connection
event for different TX power settings is different, which enables the designers to extend
the autonomy of the sensor in closer operating ranges by reducing the transmitter power
settings. The results of the energy consumption measurements for different TX power
settings are presented in Table 1.

Table 1. Energy consumption of BLE connection events for different TX power settings.

TX Power Setting [dBm] econn [µJ] std(econn) [µJ]

0 73.01 0.65

−6 68.92 0.77

−12 66.50 1.00

−18 65.48 0.47
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Figure 4. Current consumption profiles of BLE connection events for different TX power settings.

3.3.2. Message-Processing Event

Each time an ECG packet buffer in the MCU becomes full, the MCU transfers the
Application Controller Interface (ACI) packet to the radio for transmission. The message-
processing event looks very similar to a BLE connection event, except there is no RF
communication involved during the event. A communication controller inside the BLE ra-
dio processes the incoming ACI packet and updates the on-board BLE services accordingly
to prepare for information exchange during the next connection event. The transmitter
and the receiver stay in an idle mode during the ACI packet processing event. All the
activity in the nRF8001 radio is concerned with the BLE stack message processing and
preparation for transmission during the next nearest BLE connection event. The measured
mean message-processing event energy consumption emsg is 79.21 µJ with 0.64 µJ standard
deviation. An example of a message-processing event’s current consumption profile is pre-
sented in Figure 5. The BLE message-processing event begins with the BLE radio wake-up
procedure seen from 0.0 ms to about 0.3 ms, followed by a BLE stack processing between
0.3 ms and 3.5 ms, and ends with transition of the BLE radio back to sleep mode.
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nt
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Figure 5. Current consumption profile of a BLE message-processing event.

3.3.3. ECG Sampling Event

The ECG sampling is performed in equidistant ECG sampling events. The ECG sensor
uses a 32.768 kHz RTC (real-time clock) quartz oscillator as a high-precision reference clock
to minimize the jitter. The internal timer is set to regular interrupt intervals in accordance
with the ECG sampling frequency. At each interrupt, the MCU is awakened from sleep
mode and analog-to-digital (A/D) conversion is started. When the A/D conversion is
finished, the ADC triggers an interrupt routine, where a fresh A/D sample is added to the
existing ECG packet buffer, and then the MCU returns to sleep if the buffer is not full. If
the buffer is full, then MCU transfers the ECG packet buffer to the radio for transmission
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before returning to sleep. An example of an ECG sampling event is presented in Figure 6.
The ECG sampling event begins with the wake-up triggered by the ECG sampling timer,
followed by the ECG sampling procedure, and ends with the processing of the ECG sample
and the transition back to sleep mode.

The energy consumption of an ECG sampling event esample is calculated as a sum of
current consumption profile samples it multiplied by a sampling interval ∆t and battery
voltage Vbatt (Equation (1)). The measured mean energy consumption per ECG sampling
event is 2.78 µJ with 0.03 µJ standard deviation.

esample = Vbatt

T

∑
t=0

it × ∆t (1)
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Figure 6. Current consumption profile of an MCU ECG sampling event.

3.3.4. System Tick Event

The MCU uses a system tick timer for real-time event execution. A tick timer is
set for continuous operation with a predefined time interval based on a clock from the
32.768 kHz RTC quartz oscillator. Each time the tick interrupt is generated, the MCU
increases the tick counter and decreases the remaining time of tasks waiting for execution.
The measured mean energy consumption etick of the MCU system tick event with a period
of ttick = 0.133 ms is 1.85 µJ with 0.0 µJ standard deviation. An example of a current
consumption profile associated with an MCU system tick event is presented in Figure 7.
The current profile is actually a short burst of activity where the MCU wakes up after being
interrupted by the system tick timer, increases the value of the system tick counter, and
returns to sleep.
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Figure 7. Current consumption profile of an MCU tick event.
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3.3.5. BLE Advertising Event

During one BLE advertising event, the BLE radio transmits the advertising packet on
three consecutive advertising channels and listens for a short period on each channel for
possible requests for connection from a scanner device (initiator), which searches for the
available ECG sensors. We averaged the current consumption profiles for 10 advertising
events to suppress the effects of slight deviations between them. The energy consumption
of a BLE advertising event eadv can be calculated in the same way as for the ECG sampling
event—as a sum of all current consumption samples it multiplied by a sample time ∆t and
battery voltage Vbatt = 4.13 V (Equation (2)). The average measured advertising energy
consumption is 120.65 µJ with 2.43 µJ standard deviation. The resulting power consumption
profile is presented in Figure 8. The power (current) consumption profile begins with a
radio wake-up event ranging from 0.0 ms to approximately 1.8 ms, and the following
pattern from approximately 1.8 ms to approximately 3.7 ms represents three consecutive RX
and TX events on three different advertising channels. The last part of the BLE advertising
event represents the BLE stack processing and the transition to the radio sleep state.

eadv = Vbatt

T

∑
t=0

it × ∆t (2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [ms]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Cu
rre

nt
 [m

A]

Figure 8. Current consumption profile of an advertising event.

3.3.6. Sleep Mode

Among all the events, both the BLE radio and the MCU wait in either idle or sleep
mode, which are both power-saving modes. According to the official documentation,
the nRF8001 BLE radio consumes 2 µA in idle mode between connection or advertising
events [31]. The MSP430F2274 MCU consumes only around 1 µA in low-power mode 3
(LPM3), from where very quick transitions to an active mode are possible (fewer than
1 µs) [32]. The measured ECG sensor’s sleep current consumption in active mode Isleep_active
is 716 µA, which translates to Psleep_active = 2.957 mW at Vbatt = 4.13 V battery voltage. Dur-
ing the ECG sensor’s idle mode, the sleep current consumption Isleep_idle is 265 µA, which
translates to Psleep_idle = 1.095 mW at Vbatt = 4.13 V battery voltage. This measurement in-
cludes the current consumption of the entire sensor board with all analog circuits included.

4. Power Consumption Models

The proposed power consumption models describe two main operating modes of the
sensor: the idle mode and the active mode. In the idle mode, the sensor sends advertisement
packets at regular intervals to be discoverable by the PDAs for data acquisition. Active
mode, on the other hand, acts as a data collection mode where the MCU collects ECG
samples and forwards them to the BLE radio for transmission to the connected PDA.
The models are based on the parameters identified in the previous section, i.e, measured
during the events that constitute a certain mode, idle or active. The events are, however,
standard from the perspective of BLE specification. Different hardware and software
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implementations of BLE transceivers can have different event power profiles, but the
events are equal from the protocol perspective. The only requirement for another BLE
sensor platform to use the proposed energy consumption model is to measure the energy
consumption for the identified events previously.

4.1. Idle Mode Power Consumption Model

The proposed analytical power consumption model for the idle mode Padv is presented
in a mathematical form with Equation (3). Tadv is the advertising period for a selected
advertising mode: Tadv_ f ast for the fast advertising and Tadv_slow for the slow advertising.
Eadv is the total energy consumed during advertising events, Etick is the total amount of
energy consumed during system tick events, and Psleep is the power consumption during
sleep mode. Tsleep is the total sleep time of the ECG sensor during a Tadv period. eadv and
etick represent the energy consumption of the individual advertising and system tick events,
respectively, while tpadv and tptick are the periods of the advertising and system tick events,
respectively. tadv and ttick are the duration of the advertising event and the system tick
event, respectively.

Padv =
1

Tadv
(Eadv + Etick) +

1
Tadv

Psleep_idleTsleep

=
1

Tadv

(
Tadv
tpadv

eadv +
Tadv
tptick

etick

)
+

1
Tadv

Psleep_idleTadv

(
1 − tadv

tpadv
− ttick

tptick

)
=

eadv
tpadv

+
etick

tptick
+ Psleep_idle

(
1 − tadv

tpadv
− ttick

tptick

) (3)

This model gives us the average power consumption during a selected idle mode set-
ting: fast advertising or slow advertising. If we want to calculate the overall average power
consumption Pidle in the idle mode (combining fast and slow advertising), Equation (4)
should be used. Tadv_slow and Tadv_ f ast are slow advertising and fast advertising peri-
ods, respectively, where the average power consumption for slow advertising Padv_slow
and the average power consumption for fast advertising Padv_ f ast can be calculated using
Equation (3).

Pidle =
Tadv_slowPadv_slow + Tadv_ f astPadv_ f ast

Tadv_slow + Tadv_ f ast
(4)

4.2. Active Mode Power Consumption Model

In the active mode, the ECG sensor connects to the controlling device, such as a mobile
phone, and starts sampling and streaming the ECG signal. The average power consumed
during the active mode Pconn is the sum of all energy consumed in active mode divided
by the time period T which we are measuring the average power consumption for. The
total energy consumed consists of the energy consumed in connection events Econn, ECG
sampling events Esample, system tick events Etick, and sleep mode Psleep_active × Tsleep. We
can calculate the total sleep time Tsleep as the difference between the total time period T
and the sum of time spent in all other events.

The proposed analytical model for the power consumption in active mode is presented
with Equation (5), where econn is the energy consumed during one connection event, emsg is
the energy consumed during one message-processing event, esample is the energy consumed
during an ECG sampling event, etick is the energy consumed during one system tick event,
tpconn is the connection interval, tpmsg = 14 × tpsample is the message-processing interval
that happens at every 14th ECG sampling event (assuming that each ECG packet contains
14 ECG samples), tpsample is the ECG sampling interval, and tptick is the system tick interval.
tconn, tmsg, tsample, and ttick are the duration of the connection event, the message-processing
event, the ECG sampling event, and the system tick event, respectively. Entering actual
connection parameters into Equation (5) gives an estimation of the power consumption in
an active mode, which is the basis for the sensor autonomy estimation.
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Pconn =
1
T

(
Econn + Esample + Etick

)
+

1
T

Psleep_activeTsleep

=
1
T

(
T

tpconn
econn +

T
tpmsg

emsg +
T

tpsample
esample +

T
tptick

etick

)

+
1
T

Psleep_activeT

(
1 − tconn

tpconn
−

tmsg

tpmsg
−

tsample

tpsample
− ttick

tptick

)

=
econn

tpconn
+

emsg

tpmsg
+

esample

tpsample
+

etick
tptick

+ Psleep_active

(
1 − tconn

tpconn
−

tmsg

tpmsg
−

tsample

tpsample
− ttick

tptick

)
(5)

5. Validation of the Models and Power Consumption Analysis

The proposed power consumption models from Section 4 and measured energy
consumption for all the separate activity events from Section 3 are used for the validation
of models and power consumption analysis for different connection settings.

5.1. Idle Mode Power Consumption

All measured idle mode power consumption parameters presented in Section 3 are
summarized in Table 2. The ECG sensor cannot be put in fast advertising and slow adver-
tising modes manually. It alternates between the two advertising modes automatically, and
therefore the measurements of individual advertising modes have to be differentiated based
on the readings of the multimeter. Both advertising periods are long enough for the values
on the multimeter to settle, and reliable current values can be read. The overall average
advertising current consumption Padv_avg can be calculated from both of the measured
current consumptions—Padv_ f ast and Padv_slow—as presented with Equation (4).

Table 2. BLE idle mode evaluation parameters.

Parameter Value

Tadv_slow 300 s

Tadv_ f ast 30 s

tpadv_slow 1000 ms

tpadv_ f ast 100 ms

tptick 1000 ms

tadv 4.038 ms

ttick 0.133 ms

Psleep_idle 1.095 mW

eadv 120.65 µJ

etick 1.85 µJ

In Table 3, both measured values and model-based values for the idle mode of the
ECG sensor are shown.The Pmeasured and Imeasured values represent the measured power
and current consumption, respectively, while Pmodel and Imodel represent the model-based
calculated power and current consumption values, respectively. The results show that
the measured and calculated values are very similar, which presents a very good model
fit to the actual power and current consumption values, with less than 2% maximal error
in current consumption, while average advertising current consumption fits perfectly.
The error is calculated as deviation of the modeled value from the measured value, and
expressed as percentage of the measured value.
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Table 3. Comparison of measured and model-based power and current consumption for idle mode.
Model error is presented as percentage of the measured value.

Mode Pmodel [mW] Imodel [mA] Pmeasured
[mW]

Imeasured
[mA] Error [%]

Slow
Advertising 1.213 0.294 1.210 0.293 +0.34

Fast
Advertising 2.259 0.547 2.292 0.555 −1.44

Advertising 1.308 0.317 1.308 0.317 0.00

5.2. Active Mode Power Consumption

For the active mode power consumption analysis, we selected 12 possible settings: all
combinations of 4 TX power settings and 3 ECG sampling rates measured in samples per
second (sps). All measured model parameters for power consumption estimation of the 12
settings are summarized in Table 4. Table 5 presents both measured and model-based power
and current values for the active mode. The results show that the model-based values and
the measured values are very close for all settings with the lowest sampling rate (128 sps).
In the case of higher sampling rates, the model overestimates the current consumption.

Table 4. BLE active mode evaluation parameters.

Parameter Sampling Rate = 128 sps Sampling Rate = 256 sps Sampling Rate = 512 sps

tpconn 80.0 ms 36.0 ms 14.0 ms

tpsample 7.8 ms 3.9 ms 2 ms

tpmsg 109.2 ms 54.6 ms 28 ms

tptick 10 ms 10 ms 10 ms

tconn 2.987 ms 2.987 ms 2.987 ms

tmsg 3.543 ms 3.543 ms 3.543 ms

tsample 0.373 ms 0.373 ms 0.373 ms

ttick 0.133 ms 0.133 ms 0.133 ms

Psleep_active 2.980 mW 2.980 mW 2.980 mW

econn_0dBm 73.13 µJ 73.13 µJ 73.13 µJ

econn_−6dBm 69.06 µJ 69.06 µJ 69.06 µJ

econn_−12dBm 66.63 µJ 66.63 µJ 66.63 µJ

econn_−18dBm 65.60 µJ 65.60 µJ 65.60 µJ

emsg 79.35 µJ 79.35 µJ 79.35 µJ

esample 2.78 µJ 2.78 µJ 2.78 µJ

etick 1.85 µJ 1.85 µJ 1.85 µJ
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Table 5. Comparison of measured and model-based power and current consumption for active mode.
Model error is expressed as percentage of the measured value.

TX [dBm] Sampling [sps] Pmodel [mW] Imodel [mA] Pmeasured [mW] Imeasured [mA] Error [%]

0
128 4.752 1.151 4.774 1.156 −0.43
256 6.580 1.593 6.393 1.548 +2.91
512 10.994 2.662 10.123 2.451 +8.61

−6
128 4.701 1.138 4.737 1.147 −0.78
256 6.467 1.566 6.311 1.528 +1.83
512 10.703 2.592 9.932 2.405 +7.78

−12
128 4.671 1.131 4.712 1.141 −0.88
256 6.400 1.550 6.282 1.521 +1.91
512 10.529 2.549 9.809 2.375 +7.33

−18
128 4.658 1.128 4.700 1.138 −0.88
256 6.371 1.543 6.245 1.512 +2.05
512 10.456 2.532 9.767 2.365 +7.06

5.3. Analysis of Sensor Autonomy

To translate power consumption to sensor autonomy, we divide the battery capacity
by the average current consumption in the selected sensor mode. The analyzed sensor has
an integrated 240 mA h lithium-ion battery that stores enough energy for several days of
continuous ECG signal streaming. The results of ECG sensor autonomy estimation based on
measured average current consumption and estimated current consumption are collected in
Table 6. The results show that by quadrupling the ECG sampling rate and thus quadrupling
the amount of bytes transferred, the sensor autonomy is reduced by a factor of two. The
typical autonomy of modern smartphones, assuming an average user, is around one day,
while the sensor on a single charge lasts for around four days with 512 sps and more
than eight days with 128 sps. When the sensor is neither in active mode nor in shutdown
mode, it stays in idle mode, where advertising takes place with average advertising power
consumption Padv_avg = 1.308 mW, which gives us 31.5 days of autonomy while waiting to
start ECG measurements. Thus, with regular weekly use, shutting down the sensor seems
unnecessary. This further simplifies the usage for non-tech-savvy users.

Table 6. ECG sensor autonomy estimation based on measured average current consumption
and estimated model-based current consumption. Model error is expressed as percentage of the
measured value.

TX [dBm] Sampling [sps] Autonomy (Imeasured)
[days]

Autonomy (Imodel)
[days] Error [%]

0
128 8.65 8.69 +0.46
256 6.46 6.28 −2.79
512 4.08 3.76 −7.84

−6
128 8.72 8.79 +0.80
256 6.54 6.39 −2.29
512 4.15 3.86 −6.99

−12
128 8.76 8.84 +0.91
256 6.57 6.45 −1.82
512 4.21 3.92 −6.89

−18
128 8.79 8.87 +0.91
256 6.61 6.48 −1.97
512 4.23 3.95 −6.62
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The most influencing parameter on the sensor autonomy is the ECG sampling rate.
Sampling rate directly imposes requirements on the length of connection interval, which
has to be, on one hand, short enough to enable transfer of all recorded ECG data, while,
on the other hand, long enough not to waste energy with unnecessary empty connection
events. By decreasing the length of the connection interval, the density of transmission
events increases, which consequently increases the average power consumption. The
optimal connection interval for the selected sampling interval tpsample is therefore in our
case tpconn = 14 × tpsample, where 14 samples are packed in a single ECG report packet.

Before providing guidelines for further development of the ECG sensor, additionally
to taking into consideration the power anatomy analysis, we also consider the experience
gathered from users who bought/rented the device for themselves [12] or used the device
in a renting scheme with weekly turn-around [13]. While most of the experience is beyond
the scope of this article, the most important findings are summarized below. The first
finding refers to the current autonomy of the sensor as more than sufficient. While the
sensor has been mostly used with maximum transmission power and a very low sampling
frequency of 128 Hz, its autonomy far surpassed both the autonomy of smartphones,
which it was used in combination with, and the period in which people felt comfortable
wearing it continuously. While the latter varies from person to person, most people are
inclined to remove it after 2 days of use or less. This is not due to the weight of the
device worn on one’s chest—most people find it completely unobtrusive—but because
self-adhesive electrodes are required, which are prone to irritating the skin. Therefore, the
autonomy could be reduced to just above 2 days under some usage scenarios. The second
finding was that the sensor’s sampling frequency of 128 samples/s was often too low for
clinical use. The medical personnel examining measurements expressed their wish for
more details, which would broaden the specter of potential use of the sensor. Since the
sensor is an excellent platform for long-term heart rate variability monitoring, the rate of
250–500 samples/s was taken as a design goal, based on research which excluded lower
frequencies as insufficient [33]. Lastly, the processing requirements of the sensor have not
increased, so neither the MCU replacement nor a change in its usage pattern was planned.

Having the power consumption model available, as well as the above experience, both
user-subjective and medical, we are able to make recommendations regarding the sensor
redesign. Our recommendations are to increase the sampling frequency to 512 Hz and
leave radio transmission power at 0 dB, since its effect on autonomy is insignificant. The
sampling frequency increase is required to increase the sensor’s capabilities, often required
by the medical personnel, and is enabled by the continuous development of more capable
smartphone hardware, which no longer struggle with receiving more than 128 samples per
second. Furthermore, we envision two scenarios regarding the battery capacity, which can
be used to tailor the next version of the sensor . The first scenario is to decrease the battery
capacity to 160 mA h, provided that it would also lead to sensor size, weight, and price
reduction. While a smaller battery would primarily increase comfort, it might also help
reduce the motion-induced measurement artifacts due to reduced sensor weight. Under
this scenario, the users would be required to recharge the sensor every 2 days or less, which
would still be acceptable since a large portion of users already require a break from the
irritable self-adhesive electrodes in nearly the same time. In the second scenario, the battery
could be increased to 400 mA h, extending the autonomy to over 5 days at 512 Hz sampling
rate, which might be seen as beneficial for health care services where the sensor is lent to a
different user every week. The users would therefore not even need a charger, which would
make this scenario more user-friendly. The battery would have to be larger and heavier
though, which might create some unforeseen adverse effects for the engineers designing
the device and for the users wearing it. Given that, so far, no user has complained about
the device weight, this might be a path worth exploring.
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6. Conclusions

In this paper, we thoroughly investigated the sources of power consumption in a
modern wireless ECG sensor and proposed analytical power consumption models for the
most important activity modes. We designed a model for active ECG streaming mode,
which slightly overshoots the measured average current consumption for higher ECG
sampling rates, but nevertheless serves as a good predictor of the wireless sensor autonomy.

The limitation of the presented approach is that for each new platform which we want
to estimate power consumption for, we need to make measurements of all the parameters
used in the proposed models. This arises from the variability of the platforms available
on the market for BLE sensors. Different BLE modules may have different base power
consumption due to different implementations of the communication stack. The central
processing unit (CPU) used for the application can also have a large impact on the power
consumption, depending on the CPU performance and the complexity of the application
running on it. The power consumption estimates can be used for similar platforms, but
without the measurement of base current consumption events, significant deviations from
the results presented in this manuscript are to be expected.

Based on the presented results, we can conclude that it is not possible to make a power
consumption model for the general use of BLE devices. There are some useful guidelines
though regarding the manner the current consumption of BLE devices can be tamed. The
results show that the transmit power has a negligible effect on the sensor autonomy in
the case of streaming data with high sampling rates. The most energy can be saved by
lowering the sampling rate and by packing as much data as possible in a single BLE packet.
Finally, selecting a suitable connection interval for the applied sampling rate can have the
strongest energy-saving effect.

Further optimizing such a sensor is a difficult task. We propose two scenarios in which
the battery could be either increased or decreased according to current usage patterns.
Apart from the battery capacity, other sensor hardware and software parameters cannot be
optimized for significant power consumption reduction.
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CDCA Coordinated duty cycle algorithm
COPD Chronic obstructive pulmonary disease
CPU Central processing unit
DC Direct current
DMM Digital multimeter
DSO Digital sampling oscilloscope
ECG Electrocardiogram
FDMA Frequency-division multiple access
GATT Generic attribute
IEEE Institute of Electrical and Electronics Engineers
ISM Industrial, scientific, and medical
LR-WPAN Low-rate wireless personal area network
MCU Microcontroller unit
PCB Printed circuit board
PDA Personal digital assistant
PHY Physical layer
RC Resistor-Capacitor
RF Radio frequency
RTC Real-time clock
RX Receive
SBC Single board computer
SIG Special Interest Group
SPI Serial peripheral interface
sps samples per second
TDMA Time-division multiple access
TX Transmit
WBAN Wireless body area network
WPAN Wireless personal area network
WSN Wireless sensor network
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