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Abstract: Although the International Regulations for Preventing Collision at Sea (COLREGs) provide
guidelines for determining the encounter relations between vessels and assessing collision risk, most
collision accidents occur in crossing situations. Accordingly, prior studies have investigated methods
to identify the relation between the give-way and stand-on vessels in crossing situations to allow
the stand-on vessel to make the optimal collision-avoidance decision. However, these studies were
hindered by several limitations. For example, the collision risk at the current time (t) was evaluated
as an input variable obtained at the current time (t), and collision-avoidance decisions were made
based on the evaluated collision risk. To address these limitations, a collision risk prediction system
was developed for stand-on vessels using a fuzzy inference system based on near-collision (FIS-NC)
and a sequence model to facilitate quicker collision avoidance decision making. This was achieved by
predicting the future time point (t + i) collision risk index (CRI) of the stand-on vessel at the current
time point (t) when the own-ship is determined to be the stand-on vessel in different encounter
relations. According to the performance verification results, navigators who use the developed
system to predict the CRI are expected to avoid collisions with greater clearance distance and time.

Keywords: International Regulations for Preventing Collision at Sea; collision risk; stand-on vessels;
collision risk prediction system; fuzzy inference system

1. Introduction

According to data compiled by the Korea Maritime Safety Tribunal [1] on vessel ac-
cidents by accident type in South Korea over the past five years (2017–2021), the most
common accident type was engine damage, followed by collision, safety accidents, ground-
ing, fire and explosion, capsizing, sinking, and contact. Vessel collision accidents are of
particular concern because they not only result in structural damage to the hull but also
cause loss of life and property, as well as marine pollution. The main cause of collision
accidents is operational negligence, such as non-compliance with general navigational prin-
ciples, laws, and regulations, which accounts for approximately 95% of all accidents. Hence,
to prevent these accidents, complying with the International Regulations for Preventing
Collisions at Sea (COLREGs) [2] is essential. These regulations describe the appropriate
collision-avoidance actions at optimal positions and times based on the analysis of a wide
variety of collected data.

According to the navigation rules in COLREGs Part B, the collision-avoidance actions
between vessels, shown in Figure A1, are performed considering Rules 5, 7, 8, and 13–17 [3].
In particular, the collision risks are assessed, and encounter relations are determined
according to the following rules, as shown in Figure A1:

“Rule 7”: Perform collision risk assessment using radar plotting or equivalent system-
atic observation and compass bearing of an approaching vessel.

“Rules 13–15”: Determine whether it is a head-on situation, overtaking, or a crossing
situation between the own-ship (OS) and target ship (TS).
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“Rule 16”: If determined to be a give-way vessel, create a safe distance early by
simultaneously changing both course and speed, or only course or speed, and take action
to avoid collision with the TS.

“Rule 17”: If determined to be a stand-on vessel, and if there is no risk of collision due
to the collision-avoidance action of the give-way vessel, then maintain current course and
speed; otherwise, take a collision-avoidance action.

Despite the vessel collision risk assessment and encounter relation determination
according to Rules 7 and 13–17, most collision accidents occur in crossing situations [4–6].
This is because, for various crossing situations, the crew often cannot determine the relation
between the give-way and stand-on vessels. Moreover, although the duty of the give-way
vessel is relatively lucid and simple, the stand-on vessel must perform a collision-avoidance
action after observing the give-way vessel’s navigation. Nonetheless, most of these studies
are designed from the give-way ship perspective only [7–15].

Hence, conflict analysis on the activation of the stand-on ship’s role in conflict elim-
ination to improve safe conflict resolution among ships encountering one another has
been conducted as follows. To unambiguously interpret the relation between the give-way
and stand-on vessels in a crossing situation and to assist the stand-on vessel in making
the optimal decision to avoid collision, the ship domain (SD) [16–18], collision risk index
(CRI) [5,19–23], minimum distance to collision (MDTC) [24–28], and nonlinear velocity
obstacle (NL-VO) algorithm [6,29] have been used. The SD is a generalized safe distance
that must be maintained in situations where there are no TSs or obstacles. It is used as a
standard to assess the collision risk of the stand-on vessel [16–18]. In the CRI, if the OS is
determined to be a stand-on vessel, then a collision-avoidance action is taken when the
defined CRI is higher than a threshold value [5,19–23]. The MDTC defines the minimum
distance at which the stand-on vessel can avoid a collision; when the distance between the
give-way and stand-on vessels is less than the MDTC, a collision-avoidance decision is
made [24–28]. In collision avoidance using the NL-VO algorithm, the stand-on vessel esti-
mates the navigation intention of the give-way vessel using SLoD (Stand-on Ship as Second
Line of Defense) and makes a collision-avoidance decision considering the dynamic charac-
teristics of the vessel’s behavior using the NL-VO algorithm [6,29]. However, although the
aforementioned studies were performed to reduce collision accidents in crossing situations,
they did not consider several important issues. First, they considered only the relations
between the give-way and stand-on vessels based on the four stages of a collision situation
that is outlined in a guide on collision-avoidance rules [30]. Therefore, these studies do not
consider all of the encounter relations that occur between give-way and stand-on vessels in
various crossing situations. Second, the collision risk at the current time (t) was assessed
using input variables obtained at this time, and the collision-avoidance decision was made
based on the evaluated collision risk level. Thus, when assessing collision risk based on
the current time point, a collision-avoidance action must be performed without clearance
space or time since the navigator must make a decision when the vessel has already passed
the current time point (t).

In this study, a collision risk prediction system was developed for stand-on vessels
using a sequence model to facilitate quicker collision-avoidance decision making compared
to conventional approaches by predicting the future time point (t + i) CRI of the stand-
on vessel at the current time point (t) when the OS is determined to be the stand-on
vessel in various encounter relations. First, to identify the encounter relation in various
crossing situations, the give-way vessel and stand-on vessel are determined according to
the encounter relation determination diagram. Additionally, for each encounter angle of
each stand-on vessel, continuous input and output data are collected from the point when
the collision risk between the give-way and stand-on vessels occurs to the point when the
stand-on vessel must perform collision-avoidance actions. Finally, an optimal collision risk
prediction system was developed based on learning using the long short-term memory
(LSTM), bidirectional LSTM (Bi-LSTM), and gated recurrent unit (GRU) sequence models.



Sensors 2022, 22, 4983 3 of 22

The remainder of this paper is separated into different sections. Section 2 presents the
theoretical background of this study. Section 3 outlines the system development process
and describes the development of the collision risk prediction system for stand-on vessels
in detail. Section 4 examines the performance evaluations based on a case study of the
developed system, in addition to a detailed discussion of the results. Finally, Section 5
presents the main conclusions of the study.

2. Theoretical Background
2.1. Determining Encounter Relations and Required Avoidance Actions

The required avoidance actions in COLREGs rules 13–15 [2], i.e., (a) a head-on situation,
(b) overtaking, and (c) a crossing situation, are schematized in Figure 1. In the head-
on situation, the OS and TS have equal responsibilities for avoiding each other. In the
overtaking situation, a vessel is deemed to be overtaking when approaching another vessel
from a direction more than 22.5◦ abaft of its beam, and the overtaking vessel is not relieved
of its duty to keep clear of the overtaken vessel until completely past and clear. In the
crossing situation, the vessel that has the other vessel on its starboard side (i.e., the give-way
vessel) must avoid the course of the other vessel and, unless circumstances permit, avoid
crossing ahead of it (i.e., the stand-on vessel).

Figure 1. Routes of steering for collision avoidance in COLREGs.

Figure 2 is a diagram for determining the encounter relation and the required avoid-
ance actions between the OS and TS using the visibility range of navigation lights. Based
on the course φo of the OS, the position area of the TS is determined as the relative bearing
αr, and the encounter angle φe, where the course of the OS, φo, meets that of the TS, φt,
in the determined area is calculated, thereby determining the encounter relation and the
avoidance actions required by the OS. The circled areas indicate the TS; the OS determines
the encounter relation in the circle based on φe, and the OS’s avoidance actions differ
depending on the encounter relation. These are classified here as head-on, crossing (give-
way), crossing (quarter lee give-way), crossing (stand-on), crossing (quarter lee stand-on),
overtaking, being overtaken, and safe.

Here, αr and φe between the OS and TS are geometrically related, as shown in Figure 3.
Further, φe is calculated using Equation (1); if it is a negative number, then 360◦ is added.

φe = φt − φo − π (1)
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Figure 2. Decisions for different encounter relations ([3]. 2022, Namgung, H.).

Figure 3. Relative bearing and encounter angle.
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2.2. Collision Risk Inference Using FIS-NC
2.2.1. Input Parameters

DCPA is the minimum distance at which the OS passes the TS when maintaining its
current course and speed in an encounter. TCPA is the time taken to reach DCPA, the point
at which the two vessels are the closest. DCPA and TCPA are obtained from geometric
calculations, as shown in Figure 4 [3,23].

Figure 4. Geometry of collision of moving ships.

Here, (xo, yo), φo, and Vo represent the position, course, and speed of the OS, and (xt, yt),
φt, and Vt indicate the position, course, and speed of the TS; αr is the relative bearing of
the TS with respect to the OS. The relative movement parameters, DCPA, and TCPA are
mathematically expressed using Equations (2)–(6).

Dr =

√
(xt − xo)

2 + (yt − yo)
2 (2)

Vr = Vo ×

√
1 +

(
Vt

Vo

)2
− 2× Vt

Vo
× cos(φo − φt) (3)

φr = cos−1
(

Vo −Vt × cos(φo − φt)

Vr

)
(4)

DCPA = Dr × sin(φt − αt − π) (5)

TCPA = Dr × cos(φt − αt − π)/Vr (6)

where Dr is the relative distance between the OS and TS, Vr is the relative speed, φr is the
relative course, and αt is the true bearing of the TS. Here, the variance of compass degree
(VCD) can be calculated using Equation (7).

VCDi =
∣∣αri − αri−1

∣∣ (7)

2.2.2. CRI Inference Based on IF-THEN Rule

DCPA, TCPA, VCD, and Dr are set to the antecedent parameter values x1, x2, x3, and x4,
and CRI is set to the consequent parameter value RC. The membership function for each
fuzzy set is determined using Equation (8) based on the language variables Collision (C),
Danger (D), Threat (T), and Attention (A).

Rulei : If x1 is µ(DCPA)i and x2 is µ(TCPA)i and x3 is µ(VCD)i and x4 is µ(Dr)i

then RC = fi(x1, x2, x3, x4) (8)
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The antecedent parameters x1, x2, x3, and x4 are expressed as µ(D(CPA))
, µ(T(CPA))

,

µ(VCD), and µ(Dr), and the consequent parameter Ri
c is the function fi(x1, x2, x3, x4);

fi(x1, x2, x3, x4) is a polynomial expressed in Equation (9). If ki,0, ki,1, ki,2, ki,3, and ki,4
are the consequent argument set of rule i, and x1, x2, x3, and x4 are 0, then fi has only the
ki,0 term.

fi = ki,0 + ki,1 × x1 + ki,2 × x2 + ki,3 × x3 + ki,4 × x4 (9)

Therefore, there are a total of 256 rules in the fuzzy inference system based on near-
collision (FIS-NC) that comprise combinations of the membership functions, as shown in
Table 1 [23].

Table 1. Components of the fuzzy inference rules for FIS-NC.

Rulei DCPA TCPA VCD Dr

Rule 1 Danger Danger Danger Danger
Rule 2 Threat Threat Threat Threat
Rule 3 Attention Attention Attention Attention

...
...

...
...

...
Rule 254 Collision Threat Danger Collision
Rule 255 Collision Threat Danger Danger
Rule 256 Danger Danger Threat Threat

Given that FIS-NC has a total of 256 rules, the function fi(x1, x2, x3, x4) can be
expressed as Equation (10).

f1(x1, x2, x3, x4)
... f256(x1, x2, x3, x4) (10)

The final output expresses all 256 consequent argument sets as a single unit, which is

obtained using the weighted average
_
f , as shown in Equation (11).

_
f =

256

∑
i=1

µ(ki1)× ki1 + µ(ki2)× ki2 + µ(ki3)× ki3 + µ(ki4)× ki4
µ(ki1) + µ(ki2) + µ(ki3) + µ(ki4)

(11)

The calculated CRI ranges from 0.00 to 1.00; if the time point for collision avoidance
of the give-way vessel is at least 0.01 or that of the stand-on vessel is at least 0.33, then a
collision-avoidance action is taken.

2.3. Sequence Model

If it is assumed that the give-way vessel does not perform adequate clearing action
early in a crossing situation, then the stand-on vessel’s CRI gradually increases as all of
the input parameters approach 0 over time. In this sequence data, since the past data
influence present data, it is necessary to consider both sets of data for future prediction.
A recurrent neural network (RNN) is a representative model that can be applied to sequence
data to create a prediction model [31,32]. A backpropagation algorithm is used for training
general RNNs. However, when error information is backpropagated to a point in the
past, the gradient generally vanishes quickly. The usual approaches for mitigating this
phenomenon include LSTM [33,34], Bi-LSTM [35–37], and GRU [38].

2.3.1. LSTM

In Figure 5, xt represents the input to the hidden node at time t, and ht indicates the
node output at time t. The input gate it plays a role in determining how much of the
processing result of input information, xt, is represented in the memory cell, ct. The output
value it of the input gate is calculated using Equation (12) based on the input xt and its
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weight Ui, the output ht−1 of the previous time point and its weight Wi, and the bias term
bi. Here, σ is the sigmoid function.

it = σ(Uixt + Wiht−1 + bi) (12)

Figure 5. Schematic architecture of the LSTM.

The forget gate ft determines the ratio of the previous state value ct−1 of the memory
cell that should be maintained at the current time point t. The value of the forget gate is
calculated using Equation (13) based on input xt and its weight U f , the output ht−1 of the
previous time point and its weight W f , and the bias term b f .

ft = σ
(

U f xt + W f ht−1 + b f

)
(13)

The value ct stored in the memory cell at time t is calculated using Equation (14); at is
the newly determined state value that is calculated using the LSTM model at time t.

at = tanh(Ucxt + Wcht−1 + bc)ct = it ◦ at + ft ◦ ct−1 (14)

where ◦ indicates the product of the corresponding position elements of two vectors.
According to the second equation, the value ct of the memory cell is determined by consid-
ering the ratio, ft, of the previous state value, ct−1, and the ratio it of the new state value at.
The output gate ot plays a role in adjusting the output of the value stored in memory cell
ct. Here, Uo, Wo, and Vo are the weights of the input, previous output, and previous state
value, respectively, and bo is the bias term.

ot = σ(Uoxt + Woht−1 + Voct−1 + bo) (15)

Output ht at time point t is calculated by multiplying the output gate values ot and
tanh(ct) for each element, as shown in Equation (16).

ht = ot ◦ tanh(ct) (16)

Algorithm 1 state the execution of LSTM [33,34].

2.3.2. Bi-LSTM

Bi-RNN is a model in which the output at time point t is affected by not only the
input and hidden layer values at a previous time but also the input and hidden layer
values at a later time. Figure 6 shows the architecture of a Bi-RNN, in which the output is
obtained from two hidden layer nodes. The connected lines from left to right indicate that
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the past has an influence. In contrast, the connected lines from right to left indicate that the
future influences the present. Here, Bi-LSTM uses an LSTM model for each hidden layer of
the former.

Algorithm 1: Algorithm for execution of LSTM

Input: sequence data (x1, x2, · · · , xt)
weight Wi, Ui,W f ,U f , Wo, Uc, Wc Uo, Vo
bias bi, b f , bc, bo
output: h1, h2, · · · , ht

1 h0 ← 0
2 c0 ← 0
3 for t = 1 to t
4 it ← σ(Uixt + Wiht−1 + bi)
5 at ← tanh(Ucxt + Wcht−1 + bc)

6 ft ← σ
(

U f xt + W f ht−1 + b f

)
7 ct ← it ◦ at + ft ◦ ct−1
8 ot ← σ(Uoxt + Woht−1 + Voct−1 + bo)
9 ht ← ot ◦ tanh(ct)
10 end

Figure 6. Schematic architecture of the Bi-RNN.

If we define the weight matrix between the input and forward layers as U→, the weight
matrix between the forward layers as W→, and the bias term vector of the forward layer as

b→, then the forward layer value
→
ht at time t can be calculated using Equation (17).

→
ht = σ

(
U→xt + W→

→
h t−1 + b→

)
(17)

If we define the weight matrix between the input and backward layers as U←,
the weight matrix between the backward layers as W←, and the bias term vector of the
backward layer as b←, then the backward layer value ht at time t can be calculated as in
Equation (18).

ht = σ
(

U←xt + W←ht+1 + b←
)

(18)

The output layer value yt at time t is calculated as shown in Equation (19) by combining

the forward layer value
→
ht and backward layer value ht. V→ is the weight matrix between
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the forward and output layers, V← is the weight matrix between the backward and output
layers, bo is the bias term, and f is the activation function.

yt = f
(

V→
→
h t + V←ht + bo

)
(19)

2.3.3. GRU

Like LSTM in RNN, the GRU model is proposed to solve the vanishing gradient
problem, and its internal operation is simpler than that of the LSTM. Figure 7 shows the
architecture of the GRU model. While LSTM has three gates, GRU has only two gates: reset
and update. The reset gate r decides how to combine input xt and existing stored content
ht−1. The reset gate performs computations according to Equation (20).

rt = σ(Urxt + Wrht−1 + br) (20)

Figure 7. Schematic architecture of the GRU.

Equation (21) can be used to calculate a new internal state value
∼
ht by combining input

xt and the existing stored content ht−1 according to the reset gate value rt.

h̃t = tanh(Uhxt + Wh(rt ◦ ht−1) (21)

The update gate z determines the ratio that represents the existing stored value ht−1

and newly calculated value h̃t. The value of the update gate zt is calculated using ht−1 and
input xt according to Equation (22).

zt = σ(Uzxt + Wzht−1 + bz) (22)

The internal state value, ht, is calculated by combining the existing stored content ht−1

and newly calculated internal state value h̃t according to the updated gate value obtained
from Equation (23).

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t (23)

The internal state value, ht, is the output value without modification. Therefore, in the
GRU model, the internal state value and output data have the same dimensions.

3. Stand-On Vessel Collision Risk Prediction System Using FIS-NC and Sequence Model
3.1. System Development Process

As shown in Figure 8, the development process of the stand-on vessel collision risk
prediction system is divided into data collection and system development. In data collec-
tion, sectors I, V, and VI in the encounter relation determination diagram of Figure 2 are
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established using αr, and in the determined sectors, φe is used to judge whether the vessel is
a stand-on vessel. Second, if the vessel is judged to be a stand-on vessel, then according to
the guide on collision avoidance rules [30], the input parameters DCPA, TCPA, VCD, and Dr
are calculated from 5 nautical miles (nm), the boundary point where the give-way vessel
and stand-on vessel lose freedom of movement, to the point where both vessels collide.
Third, the calculated parameters are input to FIS-NC to infer the CRI. Fourth, the CRIs
from 0.01 (time point for collision avoidance of the give-way vessel) to 0.33 (time point for
collision avoidance of the stand-on vessel) that are inferred based on the FIS-NC and input
parameters used for this inference are collected. During system development, the collected
input parameters and CRIs from 0.01 to 0.33 are designated as the input and target data of
the sequence data, respectively. Additionally, after the values are input to LSTM, Bi-LSTM,
and GRU and learned to develop a stand-on vessel collision risk prediction system for each
case, their performances are compared.

Figure 8. Development process of collision risk prediction system for stand-on vessel.

3.2. Data Collection
3.2.1. Simulation Scenario

After configuring the scenarios shown in Table 2, data were collected via simulation
using MATLAB. First, we set the speed of both vessels to 15 kn, the highest speed limit in
Korean ports [39]. Second, the automatic identification system (AIS) dynamic information
was updated according to the required changes in the vessel’s speed and course to prevent
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a collision between the vessels. Since the reporting period was 4 s when the speed was
set to 15 kn, the AIS period was set to 4 s [40]. Third, the Dr was calculated considering
the relative speed of both vessels and an AIS period of 4 s, according to the guide on
collision-avoidance rules [30], from 5 nm, the boundary point where the give-way and
stand-on vessels lose freedom of movement, until collision. Finally, in sectors I, V, and VI,
the OS’s heading was set to 000 degrees as the reference, and the TS’s heading was set as
11.25◦ to allow the OS to become the stand-on vessel for the circles in sectors I, V, and VI.
Here, the αr of the TS for each OS reference was set to 360◦ in sector I, 270◦ in sector V,
and 320.625◦ in sector VI.

Table 2. Scenario for simulation between OS and TS.

Sector I Sector V Sector VI

OS
(Stand-On

Vessel)

TS
(Give-Way

Vessel)

OS
(Stand-On

Vessel)

TS
(Give-Way

Vessel)

OS
(Stand-On

Vessel)

TS
(Give-Way

Vessel)

000◦ 168.75◦ 000◦ 168.75◦ 000◦ 168.75◦

000◦ 157.5◦ 000◦ 157.5◦ 000◦ 157.5◦

000◦ 146.25◦ 000◦ 146.25◦ 000◦ 146.25◦

000◦ 135◦ 000◦ 135◦ 000◦ 135◦

000◦ 123.75◦ 000◦ 123.75◦ 000◦ 123.75◦

000◦ 112.5◦ 000◦ 112.5◦ 000◦ 112.5◦

000◦ 101.25◦ 000◦ 101.25◦ 000◦ 101.25◦

000◦ 090◦ 000◦ 090◦ 000◦ 090◦

000◦ 078.75◦ 000◦ 078.75◦ 000◦ 078.75◦

000◦ 067.5◦ 000◦ 067.5◦ 000◦ 067.5◦

- - - 056.25◦ - -
- - - 045◦ - -
- - - 033.75◦ - -
- - - 022.5◦ - -
- - - 011.25◦ - -

3.2.2. Collected Data

Based on the simulation results for each scenario, the input parameters DCPA, TCPA,
VCD, and Dr and the CRIs that were inferred by applying the parameters in FIS-NC were
collected from sectors I and VI (1680 data) and sector V (2520 data). Table 3 shows the
averages of the DCPA, TCPA, VCD, Dr, and CRI data collected from sectors I, V, and VI
from CRI 0.01 (the time point for collision avoidance of the give-way vessel) to 0.33 (the
time point for collision avoidance of the stand-on vessel). These values represent the
characteristics of the sequence model for learning data according to the flow of time. As a
result, 40, 39, and 40 data values were acquired in sectors I, V, and VI, respectively.

3.3. System Development

DCPA, TCPA, VCD, and Dr, which are the input data obtained via data collection,
and the CRI, which is the output data, were input to LSTM, Bi-LSTM, and GRU for learning.
To predict the CRI for a certain time step in the future, the target data were determined using
data that were moved twice at each time step of the input data, as shown in Figure 9. Among
all vessels, the ship with the slowest reaction time is the tanker. Therefore, the difference
in time was applied using a tanker. In the ship handling simulator shown in Figure 10,
the laden 330,000-tonnage tanker ship experienced a kick phenomenon from its original
course. The time point of this incidence was taken as the reaction time, which was measured
at 8 s via the ship handling simulator in Figure 10.
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Table 3. Collected data in sector I.

Sector I

DCPA
(nm)

TCPA
(min)

VCD
(degree)

Dr
(nm)

CRI DCPA
(nm)

TCPA
(min)

VCD
(degree)

Dr
(nm)

CRI

0.086661 6.996518 0 3.11 0.01089 0.069942 5.646707 0 2.51 0.126185
0.085825 6.929028 0 3.08 0.01107 0.069106 5.579217 0 2.48 0.137516
0.084989 6.861537 0 3.05 0.01113 0.06827 5.511726 0 2.45 0.148778
0.084153 6.794046 0 3.02 0.01118 0.067434 5.444236 0 2.42 0.159971
0.083317 6.726556 0 2.99 0.01125 0.066598 5.376745 0 2.39 0.171095
0.082481 6.659065 0 2.96 0.01157 0.065762 5.309255 0 2.36 0.182153
0.081645 6.591575 0 2.93 0.01189 0.064926 5.241764 0 2.33 0.193143
0.080809 6.524084 0 2.9 0.01208 0.06409 5.174274 0 2.3 0.204067
0.079973 6.456594 0 2.87 0.01265 0.063254 5.106783 0 2.27 0.214926
0.079137 6.389103 0 2.84 0.01297 0.062418 5.039293 0 2.24 0.22572
0.078301 6.321613 0 2.81 0.01302 0.061582 4.971802 0 2.21 0.236449
0.077465 6.254122 0 2.78 0.020979 0.060746 4.904312 0 2.18 0.247114
0.076629 6.186632 0 2.75 0.032964 0.05991 4.836821 0 2.15 0.257716
0.075794 6.119141 0 2.72 0.044873 0.059074 4.769331 0 2.12 0.268255
0.074958 6.051651 0 2.69 0.056708 0.058238 4.70184 0 2.09 0.278732
0.074122 5.98416 0 2.66 0.068468 0.057402 4.63435 0 2.06 0.289148
0.073286 5.91667 0 2.63 0.080156 0.056566 4.566859 0 2.03 0.299502
0.07245 5.849179 0 2.6 0.09177 0.055731 4.499369 0 2 0.309796

0.071614 5.781689 0 2.57 0.103313 0.054895 4.431878 0 1.97 0.32003
0.070778 5.714198 0 2.54 0.114785 0.054059 4.364387 0 1.94 0.330205

Figure 9. Schematic of the sequence model used for learning data.

To compare the systems developed using LSTM, Bi-LSTM, and GRU, each neural
network was configured with the same conditions (hidden nodes of identical layers, num-
ber of learning epochs, gradient threshold, and initial learning rate). Adaptive moment
estimation (ADMA), a method for learning weights while adjusting the learning rate for
each weight, was utilized during learning. The root-mean-squared error (RMSE) was used
as the selection criterion for each prediction system. RMSE is a measure of prediction
error and was used to show the difference between the CRI (R̂ci ) predicted using the test
data of the explanatory variable in the system trained with the training data and the CRI



Sensors 2022, 22, 4983 13 of 22

(Rci ) contained in the test data of the response variable. It can be calculated as shown
in Equation (24).

RMSE =

√
∑n

i=1
(

R̂ci − Rci

)2

n
(24)

Figures 11–13 show the learning results of sectors I, V, and VI for the test data predicted
using LSTM, Bi-LSTM, and GRU. According to the results, the sequence model with RMSE
values that were closest to 0 in all sectors was Bi-LSTM.

Figure 10. Ship handling simulator: (a) tanker ship and (b) measured trajectory.
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Figure 11. Sector I: (a) RMSE of LSTM, (b) test observation of LSTM, (c) RMSE of Bi-LSTM, (d) test
observation of Bi-LSTM, (e) RMSE of GRU, and (f) test observation of GRU.

Figure 12. Sector V: (a) RMSE of LSTM, (b) test observation of LSTM, (c) RMSE of Bi-LSTM, (d) test
observation of Bi-LSTM, (e) RMSE of GRU, and (f) test observation of GRU.
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Figure 13. Sector VI: (a) RMSE of LSTM, (b) test observation of LSTM, (c) RMSE of Bi-LSTM, (d) test
observation of Bi-LSTM, (e) RMSE of GRU, and (f) test observation of GRU.

3.4. System Application

The collision risk prediction system for stand-on vessels that was developed based on
Bi-LSTM can be implemented using the following Algorithm 2. Initially, when the CRI is
less than 0.01, the OS maintains its original course and speed. However, when the CRI is
0.01 or greater, the OS determines whether the TS is located in sectors I, V, or VI depending
on αr. In each sector, φe is then used to determine whether the OS is a stand-on vessel; if
so, then the collision-avoidance time point of the stand-on vessel, CRI = 0.33, is predicted
using the developed system.

Algorithm 2: Algorithm for developed system application

Input: αr, φe, encounter relation Er, DCPA, TCPA, VCD, Dr
output: CRI
1 Initialize CRI < 0.01← keep course and speed
2 while CRI >= 0.01 do
3 if TS is in “sector I, V, and VI” decided with αr
4 if (φe > 247.5) and (348.75 > φe) or (φe > 180) and (348.75 > φe) or (φe > 247.5) and (348.75 > φe)
then
5 decide Er ← crossing situation (stand-on, quarterlee stand-on) of OS
6 predict CRI 0.33← the time point for collision avoidance of stand-on vessel
7 else
8 decide Er ← head-on situation or overtaking or Safe of OS
9 end
10 end
11 end
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4. Case Study

According to the Korea Maritime Safety Tribunal decision [1], on 14 December 2011 at
approximately 06:24 at 34◦ 33′ 17” N, 128◦ 01′ 49” E, PACIFIC CARRIER (stand-on ves-
sel), which was carrying 133,104 t of coal to Samcheonpo Port, collided with HYUNDAI
CONFIDENCE (give-way vessel), which was carrying 3133 twenty-foot equivalent units
(TEUs) of containers from Gwangyang Port to Busan Port. The two vessels encountered
a crossing situation wherein HYUNDAI CONFIDENCE was unable to avoid PACIFIC
CARRIER, and the two vessels collided, as shown in Figure 14. Consequently, PACIFIC
CARRIER experienced a puncture in the hull approximately 20 m long and 10 m high at the
center of the left side, severe damage to cargo holds 4, 5, and 6, and approximately 70 cm
of flooding in the engine room. HYUNDAI CONFIDENCE experienced severe damage to
the bow and cargo hold 1. In this study, we determined whether it was possible to perform
a collision-avoidance action with sufficient space and time clearance by applying the devel-
oped system to PACIFIC CARRIER and determining the encounter relation between the
give-way and stand-on vessels in a crossing situation.

Figure 14. Collision accident between HYUNDAI CONFIDENCE and PACIFIC CARRIER.

4.1. Simulation Results

Table 4 shows the trajectory data of both vessels based on the AIS information. The tra-
jectory data were interpolated in 30 s increments and simulated using MATLAB, as shown
in Figure 15. The trajectory numbers were set to simultaneously identify the movements
of both vessels. Based on the analysis of trajectories from the AIS information of both
vessels, trajectory number 1 had a Dr of 6.4 nm and a relative speed of 27 kn and showed no
encounter relation. Given trajectory number 2, however, with a Dr of 5.5 nm and a relative
speed of 21.2 kn, based on PACIFIC CARRIER (stand-on vessel), the encounter relation in
sector VI of Figure 15 was initiated, and neither vessel took appropriate collision-avoidance
actions, which led to the collision accident.
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Table 4. AIS trajectory data between HYUNDAI CONFIDENCE and PACIFIC CARRIER.

Trajectory
Number

Dr
(nm)

Vr
(kn)

HYUNDAI CONFIDENCE
(Give-Way Vessel)

PACIFIC CARRIER
(Stand-On Vessel)

Heading
(degree)

Speed
(kn)

Heading
(degree)

Speed
(kn)

1

6.4 27.0 174 19.8 028 8.2
6.2 27.0 174 19.8 028 8.2
6.0 27.0 174 19.8 028 8.2
5.9 27.0 174 19.8 028 8.2
5.7 27.0 174 19.8 028 8.2

2

5.5 21.2 120 18.8 025 8.4
5.3 21.2 120 18.8 025 8.4
5.1 21.2 120 18.8 025 8.4
4.9 21.2 120 18.8 025 8.4
4.8 21.2 120 18.8 025 8.4
4.6 21.2 120 18.8 025 8.4
4.4 21.2 120 18.8 025 8.4
4.2 21.2 120 18.8 025 8.4

3

4.1 18.5 104 18.8 029 8.5
4.0 18.5 104 18.8 029 8.5
3.8 18.5 104 18.8 029 8.5
3.7 18.5 104 18.8 029 8.5
3.5 18.5 104 18.8 029 8.5

4

3.3 18.9 102 19.4 028 8.7
3.2 18.9 102 19.4 028 8.7
3.0 18.9 102 19.4 028 8.7
2.9 18.9 102 19.4 028 8.7
2.7 18.9 102 19.4 028 8.7
2.6 18.9 102 19.4 028 8.7
2.4 19.0 102 19.4 028 8.8
2.3 19.0 102 19.4 028 8.8
2.1 19.0 102 19.4 028 8.8
2.0 19.0 102 19.4 028 8.8
1.8 19.0 102 19.4 028 8.8

5

1.7 19.4 105 19.5 029 8.8
1.5 19.4 105 19.5 029 8.8
1.4 19.4 105 19.5 029 8.8
1.3 19.4 105 19.5 029 8.8

6
1.1 21.4 119 19.4 028 8.7
0.9 21.4 119 19.4 028 8.7
0.8 21.4 119 19.4 028 8.7

7
0.5 23.9 176 15.9 022 8.6
0.3 23.9 176 15.9 022 8.6
0.2 23.9 176 15.9 022 8.6

To evaluate performance, FIS-NC and the developed system were applied to PACIFIC
CARRIER (stand-on vessel), and the results are shown in Figure 16 and Table 5. For FIS-NC
and the developed system, in trajectory number 3, the CRI gradually increased according to
the input variable from 0.01 and higher (time point for collision avoidance of the give-way
vessel). In trajectory number 4, however, the developed system gave a greater Dr and
TCPA clearance of 0.297 nm and 1 min, respectively, compared to FIS-NC at CRI = 0.33 and
higher (time point for collision avoidance of the stand-on vessel) and recommended a
collision-avoidance action for PACIFIC CARRIER (stand-on vessel).
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Figure 15. Ship trajectories of the collision accident between HYUNDAI CONFIDENCE and PACIFIC
CARRIER.

Figure 16. Comparison of results for CRI.

4.2. Discussion

By applying the Algorithm 2 for the developed system to PACIFIC CARRIER (stand-
on vessel) in a real collision accident, it was not only possible to accurately determine
whether the vessel was the stand-on vessel in a changing encounter relation, but a collision-
avoidance action was also recommended for PACIFIC CARRIER (stand-on vessel) for
CRI values of 0.33 and higher (time point for collision avoidance of the stand-on vessel)
assuming that HYUNDAI CONFIDENCE (give-way vessel) did not perform an appropri-
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ate collision-avoidance action. However, FIS-NC also recommended the same collision-
avoidance action for PACIFIC CARRIER (stand-on vessel) from CRI 0.33 and higher (time
point for collision avoidance of the stand-on vessel).

Table 5. Comparison of results of FIS-NC and the developed system.

Trajectory
Number

DCPA
(nm)

TCPA
(min)

VCD
(degree)

Dr
(nm)

FIS-NC Developed
System

3
0.644 12.139 0.898 3.803 0.011 0.015
0.644 11.639 0.917 3.651 0.012 0.016
0.644 11.139 0.937 3.499 0.015 0.028

4

0.741 10.296 1.182 3.336 0.021 0.031
0.741 9.796 0.958 3.182 0.028 0.057
0.741 9.296 0.977 3.028 0.037 0.084
0.741 8.796 0.996 2.876 0.049 0.119
0.741 8.296 1.015 2.723 0.058 0.165
0.741 7.796 1.033 2.572 0.117 0.221
0.728 7.291 1.083 2.417 0.174 0.283
0.728 6.791 1.078 2.267 0.231 0.338
0.728 6.291 1.096 2.118 0.284 0.387
0.728 5.791 1.114 1.970 0.335 0.429

Because each system infers and predicts different CRIs according to changes in the
input variables at the same distance and time, the clearance distance and time for PACIFIC
CARRIER (stand-on vessel) to avoid collision were different. To evaluate whether the
avoidance actions recommended at the clearance distance and time for the CRIs inferred
and predicted using each system were appropriate, the results were analyzed based on
a guide for collision avoidance rules [30]. Accordingly, if the give-way vessel does not
take appropriate action in the open sea according to Rule 16, the stand-on vessel must
take a collision-avoidance action within 6 min at approximately 2 to 3 nm. We compared
Dr and TCPA of FIS-NC and the developed system when the inferred and predicted CRIs
were 0.33 and higher, as shown in Table 6. The developed system recommended collision-
avoidance actions that satisfied the distance and time requirements in the guide to collision
avoidance rules. Hence, navigators who use the system to predict CRI are expected to be
able to safely avoid collisions while securing more clearance distance and time.

Table 6. Comparison of results of point positioning and timing for collision avoidance.

Division Guide to Collision Avoidance Rules FIS-NC Developed System

Dr (nm) 2 to 3 1.970 2.267
TCPA (min) 6 5.791 6.791

5. Conclusions

In this study, a collision risk prediction system was developed using FIS-NC and a
sequence model to enable stand-on vessels to perform safe collision-avoidance actions
while securing appropriate clearance distance and time. This was achieved by predicting
the future CRI if the OS was determined to be a stand-on vessel in various encounter
relations. The development of the collision risk prediction system for stand-on vessels was
divided into data collection and system development. In data collection, when the OS
was determined to be the stand-on vessel according to the encounter relation judgment
guidelines, CRI values from 0.01 (time point for collision avoidance of the give-way ves-
sel) to 0.33 (time point for collision avoidance of the stand-on vessel) that were inferred
using FIS-NC and the input parameters DCPA, TCPA, VCD, and Dr used for this inference
were collected. In system development, the collected input parameters and CRIs from
0.01 to 0.33 were designated as the input data and target data of the sequence data, respec-
tively. Additionally, after the values were input to the sequence models (LSTM, Bi-LSTM,
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and GRU) and learned to develop a stand-on vessel collision risk prediction system for
each case, the optimal system was selected. According to the results, the collision risk
prediction system for collision avoidance of stand-on vessels using Bi-LSTM demonstrated
superior performance. Among vessels that experienced collision accidents, the developed
system using Bi-LSTM was applied to a stand-on vessel to evaluate its performance. In
this instance, the system recommended a collision-avoidance action that could be safely
performed by the stand-on vessel while also securing more clearance distance and time
compared to conventional approaches. However, despite the diverse maritime navigation
environments and vessel navigation information encountered during voyages, only the
input parameters DCPA, TCPA, VCD, and Dr are required for the proposed system. There-
fore, in future studies, systems that can predict the optimal CRI by considering additional
navigation environmental factors should be investigated.
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Appendix A

Figure A1. Procedure for collision avoidance based on COLREGs ([3]. 2022, Namgung, H.).
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