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Abstract: In the autonomous driving process, the decision-making system is mainly used to provide
macro-control instructions based on the information captured by the sensing system. Learning-
based algorithms have apparent advantages in information processing and understanding for an
increasingly complex driving environment. To incorporate the interactive information between
agents in the environment into the decision-making process, this paper proposes a generalized single-
vehicle-based graph neural network reinforcement learning algorithm (SGRL algorithm). The SGRL
algorithm introduces graph convolution into the traditional deep neural network (DQN) algorithm,
adopts the training method for a single agent, designs a more explicit incentive reward function,
and significantly improves the dimension of the action space. The SGRL algorithm is compared
with the traditional DQN algorithm (NGRL) and the multi-agent training algorithm (MGRL) in
the highway ramp scenario. Results show that the SGRL algorithm has outstanding advantages in
network convergence, decision-making effect, and training efficiency.

Keywords: autonomous driving; decision-making; graph convolution; deep reinforcement learning

1. Introduction

In autonomous driving, the decision-making system is mainly used to produce ad-
vanced actions of vehicles, such as lane changing, acceleration, braking, and so on. Tactical
decision-making for autonomous driving is challenging due to the diversity of environ-
ments, the uncertainty in the sensor information, and the complex interaction with other
road users [1,2]. Traditional vehicle trajectory modeling and tracking control methods, such
as genetic algorithms, neural networks, and their optimizations, have played a positive
role in the research of decision-making [3].

The operational space of an autonomous vehicle (AV) can be diverse and vary sig-
nificantly. Due to this, formulating a rule-based decision-maker for selecting driving
maneuvers may not be ideal [4]. With the development of deep learning, the domain
of reinforcement learning (RL) has become a robust learning framework now capable of
learning complex policies in high-dimensional environments [5]. Therefore, using reinforce-
ment learning to solve decision-making problems has gradually become the mainstream of
research. Carl-Johan Hoel et al. introduce a method based on deep reinforcement learning
for automatically generating a general-purpose decision-making function [6]. They trained
an RL agent to handle a truck–trailer combination’s speed and lane change decisions in
a simulated environment. Hongbo Gao et al. solved sequential decision optimization
problems based on the inverse reinforcement learning algorithm, and the proposed method
was verified in terms of efficiency [7]. Some algorithms for planning and decision-making
are based on analyzing driver behavior [8,9].
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The realization of the decision-making is based on the understanding and analysis
of high-dimensional environmental information. However, the traditional reinforcement
learning algorithm only has a good capacity for decision-making based on low-dimension
features [10]. It will have the problem of insufficient understanding in the face of more
complex scenario information. The deep neural network (DNN) has a strong ability to learn
representations and for the generalization of matching patterns from high-dimensional data.
Therefore, deep reinforcement learning (DRL) algorithms are effective in tasks requiring
feature representation and policy learning, e.g., autonomous driving decision-making [11].
Using the functional approximation ability of a deep neural network (DNN), an intelligent
controller integrating artificial intelligence technologies such as deep learning (DL) and
reinforcement learning (RL) is designed to maintain and avoid obstacles in lanes [12–14],
decision-making [15–21], longitudinal control [22], merger maneuvers [23], human-like
driving strategies [24–26], and other large-scale autonomous driving control tasks. Yingjun
Ye et al. put forward a framework for decision-making training and learning. It consists of a
deep reinforcement learning (DRL) training program and a high-fidelity virtual simulation
environment [27]. Compared with the DQN algorithm based on a value function, the deep
deterministic policy gradient (DDPG) algorithm based on an action policy can solve the
continuity problem of the action space. Haifei Zhang et al. used the DDPG algorithm to
solve the control problem of automatic driving based on a reasonable reward function,
deep convolution network, and exploration policy [28].

Interaction between vehicles in common public transport scenarios is necessary and
pervasive. However, there are relatively few studies on how autonomous vehicles interact
in public environments with reinforcement learning. Realizing coordination between
vehicles in a shared environment is challenging due to the unique feature of vehicular
mobility, which makes it infeasible to apply the existing reinforcement learning methods
directly. Chao Yu et al. proposed using a dynamic coordination graph to model the
continuously changing topology during vehicles’ interactions and developed two basic
learning approaches to coordinate the driving maneuvers for a group of vehicles [29].

Cooperative vehicle–infrastructure systems and automatic driving technology are
developing rapidly [30]. The graph neural network (GNN) has gained increasing popu-
larity in various domains, including social network analysis [31,32]. GNN can extract the
relational data representations and generate useful node embeddings on the node features
and the features from neighboring nodes. The interactions between the ego vehicle and
other surrounding vehicles can also be represented by the dynamic potential field (DPF)
and embedded in the gap acceptance model to ensure safety and personalization during
driving [33]. Jiqian Dong et al. proposed a novel deep reinforcement learning (DRL)-based
approach combining the graphic convolution neural network (GNN) and deep Q network
(DQN), namely the graphic convolution Q network, as the information fusion module
and decision processor [34]. The proposed model can aggregate the information obtained
by collaborative perception and output collaborative lane change decisions for multiple
vehicles. Even in the case of highly dynamic and partially observed mixed traffic, the
intention can be satisfied.

However, the above multi-agent training-based GNN reinforcement learning (MGRL)
has the following problems in the actual verification process (the scenario of highway
ramp exiting):

1. Multi-agent training simultaneously increases the computational network complexity,
resulting in a higher overall training time cost. Therefore, each parameter modifi-
cation requires a more prolonged verification time, which is not conducive to the
development and adjustment of the algorithm.

2. The reward and punishment offset each other in multi-agent overall training, resulting
in poor network convergence in the training process. Due to the mutual influence
of multiple agents’ reward values, it cannot accurately evaluate the current state,
resulting in the very unstable fluctuation of the loss curve.
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3. Through the test of the final training model, the final task success rate of the GCQ
algorithm is maintained at around 50%, which cannot meet the basic driving needs
of vehicles.

4. The GCQ decision-making model stays in the lateral lane change and cannot control
the longitudinal behavior of the vehicle at the same time. This is an incomplete
driving control model, which leads to a low success rate, serious collisions, and low
traffic efficiency.

Given the above problems, this paper proposes an improved single-agent GNN-based
RL algorithm (SGRL algorithm). This paper has the following contributions:

1. Based on retaining interactive feature extraction (GNN), the trained object is trans-
ferred from multi-agent to single-agent. Through the internal processing of the
network model, the training results of single-agent can be applied to the application
scenarios of multi-agent. This training method can significantly reduce the time cost
of model training and eliminate the interaction of rewards and punishments between
agents to improve the training effect.

2. An inductive reward function is designed to improve the convergence speed of the
model. The reward function incorporates driving intention, collision, lane change
frequency, and vehicle speed into the calculation. The trained model simultaneously
performs well in terms of task success rate, safety, driving stability, and
traffic efficiency.

3. The dimension enhancement of the action space is realized by changing the network
structure. Adding vehicle longitudinal velocity control gives the model a more robust
control ability for task success rate, safety, and traffic efficiency.

4. In the training process, the real-time screening of stored data can improve the train-
ing speed. The random generation mechanism of vehicles’ number, type, and po-
sition in the training scenario can improve the model’s generalization ability and
avoid overfitting.

The paper is organized as follows. Section 2 introduces the proposed SGRL algorithm
in detail. Section 3 shows the model training and testing of the SGRL algorithm and
comparison algorithms (MGRL and NGRL). Section 4 shows the results of training and
testing and analyzes the comparison. Finally, Section 5 derives the conclusions and proposes
future improvement directions.

2. Method

The proposed SGRL methods are used to model the Markov Decision Process (MDP).
The agents can explore the environment by observing states, taking actions, and receiving
rewards, as shown in Figure 1.

Figure 1. Markov Decision Process.
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The implementation core of the SGRL method is based on the preprocessing of input
data, the structure of the deep neural network, and the setting of the output end.

2.1. Network Input

In each time step in the training process, the vehicles in the scenario can be divided
into human-driven vehicles (HVs) and autonomous vehicles (AVs). At each step t, the
input of the training model can be divided into two parts: feature matrix Xt and correlation
matrix Ct. The state st = (Xt, Ct). Concerning the feature matrix Xt, the necessary basic
information based on highway scenarios is included. The total number of human-driven
vehicles (HVs) and autonomous vehicles (AVs) is set to N = NHV + NAV . Then, the
specification of the matrix is N × 8. The eight characteristic parameters of each vehicle
describe the speed, lateral position, longitudinal position, and destination information,
denoted as xi = (vi, pi, li, Ii), To serialize multiple data at the same scale, the parameters
are set as follows:

• vi =
vi−current

vmax
is the relative speed, where vmax = max(vmax−vehicle, vmax−highway) is

the maximum speed for the current vehicle.
• pi =

xi
lhighway

is the relative longitudinal position normalized by the entire length of
the highway. (The algorithm belongs to local planning. Its application scenarios are
specific ramps and expressway sections within short distances, so the normalization
of location information is more favorable for network computing.)

• li is the lateral lane position for the vehicle i. The position of the vehicle is represented
by three-bit binary coding. For example, vehicles in the rightmost lane are denoted as
[1, 0, 0], the middle lane [0, 1, 0] and the leftmost lane [0, 0, 1].

• Ii is the destination intention feature for the vehicle i. The data type is similar to li.
The three destinations are expressed as [1, 0, 0] (merge out from the first ramp), [0, 1, 0]
(merge out from the second ramp) and [0, 0, 1] (go straight along the highway).

Based on GNN, we can introduce a correlation matrix Ct to calculate the relationship
between vehicle nodes. Considering that the sensors installed on autonomous vehicles
have fixed sensing ranges, only vehicles within the sensor sensing range are recorded in
the correlation matrix. Ct is a square matrix with the specification N× N. The row data i of
the matrix represent the relationship between vehicle i and other vehicles through binary
data. The value Cij of the vehicle j within the set distance of the target vehicle i will be set
to 1, as shown in Figure 2.

Figure 2. The schematic diagram of the correlation matrix setting. Each row in the matrix represents
the correlation between a vehicle and all other vehicles, specifically the logical values of 0 and 1,
where 0 represents the actual distance greater than the set distance, and 1 represents the actual
distance less than the set distance.



Sensors 2022, 22, 4935 5 of 22

Considering that the number of vehicles in the scene is dynamic, this situation has
been considered when setting the feature matrix and the correlation matrix. The vehicles in
the environment are divided into HVs and AVs, located in the feature matrix’s upper and
lower parts. When the number of vehicles is less than N, the positions in the matrix are
occupied by 0.

To ensure the authenticity of the simulation process, all vehicles appear and disappear
successively in the scenario, so the feature information and correlation information obtained
at the step t cannot reach the predetermined matrix size. To ensure the standard calculation
of GNN, matrix data filling is needed. Matrix segmentation prevents data confusion and
error correspondence caused by random packing, as shown in Figure 3.

Figure 3. Matrix segmentation diagram. Each row in the matrix represents the characteristic informa-
tion of a vehicle, and the matrix is divided into the upper and lower parts to separate AV and HV.
The green part indicates that the vehicle is not currently in the scenario.

2.2. Network Structure

In the whole network structure, the function of graph convolution is to obtain the
interaction information between vehicles. The function of the full connection layer is to
parse the matrix information. Each newly obtained matrix in the network needs to be
input into the full connection layer for recording and information analysis. In addition, the
number of nodes in each layer also plays a decisive role in the model’s performance. The
optimal number of nodes is selected through comparative experiments.

Data records for comparative tests are shown in Table 1.

Table 1. Training effect for different numbers of nodes.

N of Nodes Training Time for 1000 Episodes Convergence Effect

32 1.5179 h Poor (large fluctuation)
64 2.6438 h Acceptable (occasional large fluctuations)

128 3.4756 h Good (small fluctuation)
256 6.0987 h Good (small fluctuation)
512 10.9542 h Good (small fluctuation)

At each step t, the feature matrix Xt is first fed to a Fully Connected Network
(FCN) encoder ψ and then the matrix Ht ∈ N×128 is obtained (Equation (1)). The orig-
inal eight characteristic values will be recoded to 128 values. FCN will be executed
twice consecutively.

Ht = ψ(Xt) ∈ N×128 (1)
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Next is the calculation of graph convolution. The input of the convolution function
is the newly obtained feature matrix Ht and correlation matrix Ct. The function output
matrix Kt has the same specification as the original matrix Ht (Equation (2)).

Kt = χ(Ht, Ct) ∈ RN×128 (2)

The original feature information and the new information obtained by graph con-
volution are fused by matrix stitching online as the total input of the subsequent neural
network η.

The feature data density changes at each stage are as follows:

• Fully Connected Network (FCN): Dense(8)→ Dense(128)→ Dense(128);
• Graph Neural Network (GNN): Dense(128)→ Dense(128)→ Dense(128);
• Q Network: Dense(256)→ Dense(128)→ Dense(128);
• Output: Dense(128)→ Dense(33).

The overall structure of the SGRL algorithm is shown in Figure 4.

Figure 4. The overall structure diagram of the model. FCN represents the full connection layer, and
GNN represents the graph neural network.

2.3. Network Output

Since the vehicle longitudinal control model built into the simulation environment
is still rule-based, it cannot incorporate the interaction between vehicles into the control
model. The SGRL algorithm fuses longitudinal and lateral control into the same model
by increasing the output dimension, which significantly simplifies the complexity of the
control process and solves the coupling problem of two directions.

The SGRL algorithm is trained based on DQN, so the output action space can only
be discrete. For AVs, the longitudinal control is mainly reflected in the acceleration, and
the lateral control is primarily reflected in the lane change direction. The improvement of
the output action resolution is conducive to improving the control sensitivity, but it also
increases the computational complexity and reduces the control frequency. In the algorithm
of this paper, a compromise solution is selected. The longitudinal control is set to 11 discrete
values in the interval [−5, 5], and the lateral control is set to three actions: keeping, turning
left and turning right. Thus, the output matrix of the model is set as At ∈ RN×33, as shown
in Figure 5.
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Figure 5. Model action space diagram. The matrix row direction divides the longitudinal acceleration
into discrete values, and the matrix column direction represents the lateral lane change of the vehicle.

2.4. Reward Function

The setting of the reward function needs clear guidance and a strong correlation
with training objectives. In the SGRL algorithm, the task success rate, security, and traffic
efficiency should be considered simultaneously. The corresponding reward values are set
as intention reward, crash reward, and speed reward.

2.4.1. Intention Reward

To guide autonomous vehicles to complete driving tasks from the corresponding ramps
out of the highway, the SGRL algorithm constructs reward gradients for different lanes, as
shown in Figure 6. Merge_0 and merge_1, respectively, refer to the autonomous vehicles
that need to drive away from ramp_0 and ramp_1 according to the task requirements.
In the simulation experiment, the driving route of all autonomous vehicles is entirely
determined by the reinforcement learning controller. Therefore, vehicles belonging to the
merge_0 category will not necessarily exit from ramp_0; that is, they cannot complete the
driving task.

Figure 6. Intention reward gradient diagram. The task completion of autonomous vehicles is seen as
a factor in judging the quality of the current reinforcement learning model, which is manifested in the
reward values that can be obtained when each vehicle is in different driving sections and lanes. The
strip area represents the reward types that the corresponding vehicles can obtain from the area. Green
represents reward (1× RI−Base), blue represents punishment (−1× RI−Base), and orange represents
serious punishment (−2× RI−Base). RI−Base is set to 1 for normalization.

To ensure practical guidance for all locations, the reward value RI−t for the fixed area
is set to a constant value. To ensure the interaction between various rewards and to pass it
to the training process, it is necessary to pay attention to the consistency of the numerical
scale when setting RI−t. Moreover, the RI−t needs to distinguish between positive and
negative values, which is more conducive to the training. In addition, if the autonomous
vehicle completes the task, it can obtain greater RI−t, and if the task fails, it will also obtain
a greater negative RI−t.
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2.4.2. Crash Reward

The safety of autonomous driving is the basis of all other characteristics. The simu-
lation platform SUMO can detect collisions at step t and output the number Ncollision−t of
vehicles involved in collisions. The collision reward is calculated according to Ncollision−t
(Equation (3)).

RC−t = −Ncollision−t/2 (3)

2.4.3. Speed Reward

To control the consistency of the reward scale, the speed reward value RS−t needs
to be normalized. vmax = max(vmax−vehicle, vmax−highway) is the max speed for the AV. To
ensure the positive and negative values of RS−t, the calculation is shown as Equation (4).

RS−t =
vi−t
vmax

− 0.3 (4)

2.4.4. Total Reward

The general method to calculate the total reward is a weighted summation of each com-
ponent. Direct addition will lead to mutual coverage of rewards, resulting in poor training
effects. The SGRL algorithm uses a new aggregation method, as shown in Equation (5).

Rt =

{
ωI × RI−t × RS−t + ωC × RC−t

ωI × RI−t + ωC × RC−t

(RI−t > 0)
(RI−t ≤ 0)

(5)

This calculation method takes the task success rate and safety as the primary consider-
ations and considers traffic efficiency simultaneously. The problem of vehicle parking for
intention rewards can be completely avoided. Moreover, the weight relationship between
rewards can be adjusted by parameters ωI and ωC. The parameter settings of this paper
are ωI = 1, ωC = 2.

2.5. Model Training and Testing

The most prominent feature of the SGRL algorithm is training for a single agent, but
the obtained model can be applied to a multi-agent environment. For trained agents, the
vehicles around them can be considered the same category—surrounding vehicles. There-
fore, the work done by the GNN-based reinforcement learning model can be interpreted as
planning and decision-making based on the characteristics and relationships of the target
agent and its surrounding vehicles. The model obtained by single-agent training can be
directly transplanted to other agents in the same scenario, as shown in Figure 7.

Figure 7. Reinforcement learning model transplant diagram.
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To prevent the overfitting of the reinforcement learning process, we randomize the
distribution of training vehicles and the task of autonomous vehicles in each episode based
on fixed rules, as shown in Figure 8.

Figure 8. Scenario random setting diagram.

Algorithm 1 shows the detailed steps of training.

Algorithm 1 SGRL Q Learning Steps

Initialize the reply memory R to capacity N
Initialize the weights for the SGRL Net (ψ, χ, η . . . . . .)

Jointly Current Network
∧

Qθ and Target Network
∧

Qt =
∧

Qθ

## Warming up ##
For step t = 1 to T0(warming up steps) do

Choose random action for agent i: at−r = np.random.choice(np.arrange(3), N)
Get the transition (st, at, rt, st+1)
Store in the buffer

## Training step ##
For step t = T0 + 1 to T(total steps) do

With the probability e choose random action for agent i: at−r
With the probability 1− e do:

State decoding: (Xt, Ct) = st
Double FCN: Ht−1 = ψ0(Xt) ∈ RN×128; Ht−2 = ψ1(Ht−1) ∈ RN×128

GNN + FCN: Kt = χ(Ht−2, Ct) ∈ RN×128; Kt−1 = ψ2(Kt) ∈ RN×128

Feature Stitching: Ft = (Ht−2, Kt−1) ∈ RN×256

Double FCN: Ft−1 = ψ3(Ft) ∈ RN×128; Ft−2 = ψ4(Ft−1) ∈ RN×128

Compute Q values:
∧

Qθ (st) = ψ5(Ft−3) ∈ RN×33

Select a∗t = arg max
∧

Qθ (st)
Execute a∗t and get a new state st+1
Store in the buffer
Set st = st+1

## Training model at training step ##
Sample a batch from the buffer and calculate the Q target:

Qt arg et =

rt + γmax
∧

Qθ (st)
a

done = 0

rt done = 1
Get average Loss

Update parameters θ of the model
∧

Qθ

## Updating Target Net every n steps ##
∧

Qtarget =
∧

Qθ
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Algorithm 2 shows the detailed steps of testing.

Algorithm 2 SGRL Testing Steps

Initialize the simulation environment
## Testing step ##
For step t = 1 to T(total test steps) do

State decoding: (Xt, Ct) = st
For AV i = 1 to NAV do

Move other AV’s features to the back of HV: Xt0 = λ(Xt) ∈ RN×8

Calculate Q based on trained model:
∧

Qθ (st) = πSGRL(Xt0, Ct) ∈ RN×33

Select a∗t−i = arg max
∧

Qθ (st)
Get the action matrix a∗t = (a∗1 , a∗2 , . . . . . . a∗NAV

)

Execute a∗t and get a new state st+1
Set st = st+1

3. Simulation
3.1. Baseline Models

Two baseline models are introduced for comparative analysis in the simulation: the
traditional DQN algorithm (NGRL) and the multi-agent training algorithm (MGRL). In the
NGRL algorithm, the GNN part is removed, and the correlation matrix is used as input by
splicing with the feature matrix.

The model of the MGRL algorithm is consistent with the SGRL proposed in this
paper in terms of network structure, but its training process is based on multi-agent
environment interaction.

By comparing the three models, the specific effects of the GNN structure and single-
agent training of SGRL can be effectively analyzed. The simulation scenario is shown in
Figure 9.

Figure 9. Simulation scenario diagram.

3.2. Simulator Parameters

The simulation scenario is a long highway with three lanes. There are exit ramps at
one-third and two-thirds of the total length respectively. The speed limit for the whole road
is set as 20 m/s (76 km/h) for all the vehicles. The AVs and HVs are put into the scenario
at the probability of 0.1 and 0.4 from the left side of the road. And the initial speed and
lane position are random.

There are six types of vehicles in the scenario, including HVs that travel straight
through the highway, vehicles (HVs and AVs) that want to exit from ramp_0 and vehicles
(HVs and AVs) that want to exit from ramp_1. The simulation environment controls the
driving of HVs, and the AVs are completely controlled by the reinforcement learning model
SGRL in real time.

The number of vehicles in the experiment is set as shown in Table 2.
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Table 2. Number setting of experimental vehicles.

Algorithm Type N of Vehicles

AVs HVs
Merge_0 Merge_1

Training Process
SGRL 1 19
MGRL 5 5 10
NGRL 5 5 10

Testing Process
SGRL 5 5 10
MGRL 5 5 10
NGRL 5 5 10

4. Results and Discussion
4.1. Training Results

All three models were trained for 1000 episodes. The symbolic data of the training
process are the reward, average Q value and loss value. Average rewards are obtained by
averaging rewards against steps. The specific changes are shown in Figures 10–13.

For the comparison of reward values in the training process, under the same reward
value calculation, the reward values and average reward values of the SGRL algorithm can
converge faster and have better final convergence.

The changing trend of the Q value and loss value of the SGRL algorithm in the training
process is consistent with the learning process. According to the loss results, SGRL has a
faster convergence speed.

Figure 10. Diagram of average reward. This value is the average of each step reward value.
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Figure 11. Diagram of reward. This value is the accumulation of each single step reward value.

Figure 12. Diagram of average Q. This value is a training mark value in reinforcement learning.
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Figure 13. Diagram of loss. This value represents the difference between the real network and the
ideal network.

To compare the task success rate, security, and traffic efficiency, the average velocity,
number of collisions, success rate, and average steps per episode must be collected. The
results of the above training data are shown in Figures 14–17.

Figure 14. Diagram of success rate. This value is obtained by the ratio of the number of vehicles
completing the task (entering the corresponding ramp) to the total number.
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Figure 15. Diagram of collisions. This value is the number of collisions between vehicles obtained by
real-time detection in the simulation scenario.

Figure 16. Diagram of average velocity. This value is the average velocity of all AVs in the scenario.
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Figure 17. Diagram of average steps. This value is the number of steps experienced at the end of
each episode.

The SGRL algorithm has obvious advantages regarding task success rate and average
vehicle speed. In terms of collision times and average training step length, SGRL also meets
driving safety requirements.

In addition, SGRL has apparent advantages in training efficiency under the premise of
the same training episodes. The specific hardware parameters and training time are shown
in Table 3. The comparison of the training time is shown in Table 4.

Table 3. Computer hardware information.

Item Type

CPU Intel I9 10980XE
GPU NVIDIA RTX3090(24G)
RAM Crucial DDR4 3200MHz 32G × 4
SSD SAMSUNG 970 EVO Plus 1T × 2
OS Ubuntu 20.04

Table 4. Training time statistics (ten experiments for each algorithm; time unit is hours).

SGRL MGRL NGRL

1 3.335665 66.40787 3.251174
2 3.687935 78.94237 4.812508
3 3.782653 71.37449 3.737191
4 3.763133 82.16632 4.360045
5 3.38374 66.463 3.259155
6 3.286891 72.25948 3.890604
7 3.874574 67.38896 3.840993
8 3.043649 67.68016 3.668797
9 3.368947 65.51202 3.017189
10 3.832845 69.72951 4.072374

Mean 3.536003 70.79242 3.791003
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4.2. Testing Results

The trained model needs to be verified by the test process. To fully verify the algo-
rithm’s effectiveness, we adjust the total length of the road under the premise of the same
traffic flow (20 vehicles per episode). The three algorithms are tested on 1000 m, 750 m and
500 m roads to simulate different traffic flow and congestion levels.

Each test process includes 1000 episodes. In the test process, the reward value can still
be used as an essential evaluation of model performance. The simulation results of reward
value and average reward value are shown in Figures 18 and 19.

Figure 18. Diagram of testing reward. This value is the average of the total reward value for each
episode in the test.

Figure 19. Diagram of testing average reward. This value is the average of the average reward value
of each episode in the test.
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For the most complex and congested 500 m highway scenario, the longitudinal motion
spatial distribution of the three algorithms throughout the test cycle is as shown in Figure 20.

Figure 20. Spatial distribution diagram of longitudinal movement. Based on the frequency statistics
of each action output in each testing process, the probability distribution of the longitudinal action
can be obtained through probability calculation. The data in the figure are obtained from the average
of ten repeated experiments.

The longitudinal control of autonomous vehicles will become more and more complex
with the increase in road congestion, so the test results of the 500 m scene are the optimal
reference. The test results show that the action output of the SGRL algorithm is mainly
concentrated near 0, and the probability of large acceleration is acceptable.

To compare the task success rate, security, and traffic efficiency, the average velocity,
number of collisions, success rate, and average step per episode must be collected.

The data of different methods are listed in Table 5, and the mean of the above data is
shown in Figures 21–24.

Table 5. Performance comparison for different models.

Model Road Length Average_V N_Collisions Success_Rate Average_Steps
1000 m 9.55588 1.66888 0.94068 601.1014
750 m 8.45047 1.73714 0.92385 494.9505SGRL
500 m 7.50548 2.06911 0.91493 307.8586
1000 m 3.60231 2.90205 0.54129 2478.409
750 m 3.33545 2.96804 0.53864 1836.932MGRL
500 m 3.20753 3.02719 0.47095 1334.704
1000 m 8.92665 1.23373 0.53529 204.3344
750 m 7.16045 1.83906 0.52708 166.5145NGRL
500 m 6.70472 2.31418 0.4839 111.9219
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Figure 21. Diagram of testing average steps. This value is the number of steps experienced at the end
of each episode.

Figure 22. Diagram of testing success rate. This value is obtained by the ratio of the number of
vehicles completing the task (entering the corresponding ramp) to the total number.
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Figure 23. Diagram of testing collisions. This value is the number of collisions between vehicles
obtained by real-time detection in the simulation scenario.

Figure 24. Diagram of testing average velocity. This value is the average velocity of all AVs in
the scenario.

It can be seen from the figure and table that SGRL has apparent advantages in task
success rate and average velocity. In terms of the number of collisions and the test steps,
although the SGRL value is not the best, it is consistent with the best value.

4.3. Results Discussion

It can be seen that the SGRL algorithm has outstanding advantages over the MGRL
algorithm and the NGRL algorithm. The SGRL algorithm can converge faster during the
training process and achieve better data performance. In the testing process, the SGRL
algorithm has outstanding data performance in terms of task success rate, average vehicle
speed, and security.
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The MGRL algorithm directly sums the reward value of all autonomous vehicles in
the process of reward value calculation, so there is a phenomenon in which the excellent
performance of vehicle behavior and the poor performance of vehicle behavior offset each
other, which is not conducive to the adequate updating of parameters, and also causes the
final convergence speed to be slow, and thus the convergence effect is not good.

The NGRL algorithm lacks the calculation consideration of the interaction process
between vehicle individuals. Therefore, in the decision-making process, due to the relatively
simple understanding of the environment, it cannot obtain sufficient data support, so the
data performance is poor.

The SGRL algorithm considers and solves the above problems and optimizes the
network structure. According to the comparison of data, it can be verified that the improve-
ment of SGRL is obviously effective.

5. Conclusions

This paper proposes a generalized single-vehicle-based graph neural network rein-
forcement learning algorithm (SGRL algorithm). This algorithm combines GNN with deep
reinforcement learning to solve the vehicle planning problem in the scenario of highway
driving out of the ramp. The SGRL model is trained for a single agent and can be tested
in multi-agent scenarios. At the same time, the algorithm sets up an improved reward
function to provide a clear direction for training.

Comparing the three algorithms, the conclusions are as follows:

• Firstly, a training mode for single-agent training extended to multi-agent scenarios
is proposed and verified in terms of training effectiveness and performance. The
algorithm improves the analytical ability of the DRL by increasing the number of
network nodes, thereby increasing the control dimension of vehicle decision-making
to longitudinal and lateral dimensions.

• Secondly, the proposed SGRL algorithm simplifies the training mode and improves the
training efficiency without affecting the training effect. This helps to adjust complex
parameters and reduce time costs.

• Thirdly, SGRL is more sufficient in the training process to achieve a better convergence
effect. The fluctuation is the smallest after the training data are stable. This shows that
the proposed SGRL algorithm has outstanding training ability and is more suitable
for decision-making based on reinforcement learning in multi-agent scenarios.

• Finally, the newly designed reward function effectively solves the problem of mutual
influence between longitudinal and lateral control. SGRL can achieve higher task
success rates and average velocity in the training and testing process. This shows that
the new reward function, the training method for a single agent, and the incorporation
of GNN effectively improve the decision performance of the model.

In future research, the continuity of model action space can be added to this algorithm,
which will effectively improve the driving fluency of vehicles. In addition, the relationship
between multiple agents in the scenario should not be limited to physical characteristics:
decision-making, driving intention, and task priority can also be incorporated into the
calculation process.
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