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Abstract: The detection of insulator umbrella disc shedding is very important to the stable operation
of a transmission line. In order to accomplish the accurate detection of the insulator umbrella disc
shedding in foggy weather, a two-stage detection model combined with a defogging algorithm is
proposed. In the dehazing stage of insulator images, solving the problem of real hazy image data is
difficult; the foggy images are dehazed by the method of synthetic foggy images training and real
foggy images fine-tuning. In the detection stage of umbrella disc shedding, a small object detection
algorithm named FA-SSD is proposed to solve the problem of the umbrella disc shedding occupying
only a small proportion of an aerial image. On the one hand, the shallow feature information and
deep feature information are fused to improve the feature extraction ability of small targets; on the
other hand, the attention mechanism is introduced to strengthen the feature extraction network’s
attention to the details of small targets and improve the model’s ability to detect the umbrella disc
shedding. The experimental results show that our model can accurately detect the insulator umbrella
disc shedding defect in the foggy image; the accuracy of the defect detection is 0.925, and the recall is
0.841. Compared with the original model, it improved by 5.9% and 8.6%, respectively.

Keywords: insulator umbrella disc shedding; defect detection; dehazing algorithm; feature fusion;

attention mechanism

1. Introduction

Transmission lines are an important part of the power grid and are crucial to the safe
and stable operation of the power grid [1,2]. In transmission lines, insulators are the basic
equipment used for electrical isolation and mechanical fixation in high-voltage transmission
systems [3,4]. Since the insulators remain exposed, environmental factors inevitably cause
damage to them, and the resulting insulator failures can seriously affect the safe and stable
operation of the power grid [5,6]. Therefore, timely detection of insulator defects and early
treatment can effectively reduce the occurrence of insulator failures [7,8]. The defects of
insulators mainly include umbrella disc shedding, umbrella disc damage, dirt, and icing.
Among these defects, insulator umbrella disc shedding is the most common, the most
numerous, and the most harmful defect. With the rapid development of 5G technology
and Al technology [9,10], combined with 5G high-speed data transmission and target
detection technology, through the all-weather monitoring of transmission lines, insulator
defects can be found in time, effectively reducing the transmission line failures caused by
insulator defects [11]. The advantage of 5G technology is that it can achieve high-speed data
transmission, which can not only ensure image quality but also ensure real-time detection.
Transmission line insulator defect detection based on 5G and Al is shown in Figure 1.
First, HD cameras take videos of insulators; second, the captured data are compressed and
transmitted to the monitoring center through 5G communication; third, stsffs decompress
the data, process the video frame by frame, and use the corresponding defect detection
model to detect and judge the defect level; finally, technicians take corrective measures,
according to the defect level.
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Figure 1. Insulator defect detection based on 5G and Al

At present, the mainstream dehazing algorithms mainly include the dehazing algo-
rithm based on image enhancement, the dehazing algorithm based on image restoration,
and the dehazing algorithm based on CNN. The first method uses image processing to
highlight image details and enhance contrast to make foggy images clearer. The specific
algorithms include histogram equalization [12], wavelet transform [13], and the Retinex al-
gorithm [14]. The second method is based on the physical model of atmospheric scattering,
which can obtain the mapping relationship between the foggy image and the fog-free image;
and it restores the foggy image to a clear image. The most representative algorithm is the
dark channel prior dehazing algorithm proposed by He [15]. However, physical priors
are not always reliable, and these priors do not apply to all hazy images, which makes the
dehazing effect uncertain. The third method builds an end-to-end model through CNN to
recover clear images from hazy images [16,17]. Such methods overcome the disadvantage
of using physical priors; they are more efficient and perform better than traditional prior-
based algorithms. Zhao [18] proposed a novel end-to-end convolutional neural network
called the attention enhanced serial Unet++ [19] dehazing network (AESUnet) for single



Sensors 2022, 22,4871

30f17

image dehazing, and the serial Unet++ module generated more realistic images with less
color distortion. Gao [20] proposed an image dehazing model built with a convolutional
neural network and Transformer to improve the quality of the restored image. However,
CNN requires a large number of hazy and clear image pairs for training, which are difficult
to obtain. Due to the lack of real foggy image datasets, many studies are carried out on
synthetic foggy images, which makes it difficult to achieve good results when the dehazing
algorithms are applied to real foggy images.

Researchers have investigated insulator defect detection. Zhang [21] proposed an
optical image detection method based on deep learning and morphological detection.
First of all, the Faster RCNN was used to locate the insulator and extract its target image
from the detection image. Second, a segmentation method of the insulator image was
proposed to remove the background of the target image. Finally, a mathematical model was
established in the binary image to describe the defect of the insulator. Tao [22] proposed
anovel deep CNN cascaded architecture to perform localization and detection of defects
in insulators. The cascaded network transformed defect detection into a two-level object
detection problem, which used a region proposal network-based CNN. The method first
detected the insulator in the aerial image and then detected the shedding defect of the
insulator umbrella disk on this basis. She [23] proposed a multiscale residual neural
network for insulator surface damage identification, using three convolution kernels of
different sizes to perform convolution filtering and feature map fusion to enrich the spatial
correlation and channel correlation of feature maps. Aiming at the small proportion of
the insulator umbrella disc shedding fault area in the entire image and the difficulty in
detection, Zahng [24] introduced the densely connected feature pyramid network into
the YOLOV3 [25] model to achieve high detection accuracy. Zhao [26] combined Faster
R-CNN [27] and an improved FPN [28] to detect two types of insulator defects. However,
the above studies were all to detect insulator defects under normal weather conditions.

Under real environmental conditions, one will inevitably encounter complex weather
conditions [29-31]. Foggy weather is the most common complex weather. Achieving
the detection of insulator defects in foggy conditions is crucial for all-weather real-time
monitoring of transmission lines. As shown in Figure 2, there is a clear difference between
the insulator images in foggy and fog-free weather conditions.

©) ) (2) RS

Figure 2. Images of insulators in foggy and fog-free weather conditions. (a—d) Clear images.
(e-h) Foggy images.

This paper proposes a detection method for insulator umbrella disc shedding in foggy
weather conditions. The main contributions of this paper are as follows:

(1) For the first time, the detection of insulator umbrella disc shedding in foggy condi-
tions is realized, which provides a new way to detect transmission line defects in
complex weather.

(2) A dehazing model with synthetic image pre-training and real image fine-tuning is
proposed to solve the problem of the poor dehazing effect on real hazy images.
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(3) The FA-SSD model [32] is proposed to improve the accuracy and recall rate of insulator
umbrella disc shedding detection.

2. Materials and Methods

As shown in Figure 3, the overall process of umbrella disc shedding detection included
three parts: pre-training and fine-tuning of the defogging model, training with the clear
insulator image datasets, and testing with the fogged insulator images.

| Pre-training Dehazing Fine-tuning
L Dunsmabiies |
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— FogImage of
REISDE Date Set Insulator
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Algorithm
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Figure 3. The overall process of umbrella disc shedding detection. (a) Dehaze model. (b) Training
phase. (c) Testing phase.

The dehazing model was trained by synthetic foggy images, and the insulators with
foggy images were fine-tuned to improve the dehazing effect of the algorithm. A feature
fusion module and an attention module were added to the umbrella disc shedding detection
model to improve the detection accuracy. In the detection of the insulator umbrella disc
shedding, clear images of insulators were used for training, and images of insulators with
fog were used for testing.

2.1. Dehazing Model

Inspired by the dehazing algorithm proposed by Chen [33], this paper adopted the
method of pre-training and fine-tuning to improve the dehazing effect of the dehazing
model. The training of the model was divided into two steps. The first step used a large
number of haze-free images and artificially-generated fogged images from the REISDE
dataset [34] to train the dehazing model, and the second step used the foggy insulator
images to fine-tune the dehazing model to improve the dehazing ability of the dehazing
model on fogged insulator images. During fine-tuning, physical priors were guided through
the loss function. As shown in Figure 4, the dehazing model had a two-stage framework.

In the pre-training stage, an advanced dehazing model was adopted as the backbone.
The pre-training phase used synthetic data for training, resulting in a pre-trained model
on the synthetic domain. In the fine-tuning stage, the fog-free image |, transmission map
t, and atmospheric light A were obtained through the backbone network. At the same
time, three priors, including a dark channel prior, a bright channel prior, and the Contrast
Limited Adaptive Histogram Equalization (CLAHE) were introduced, and the model was
guided in the form of loss function.
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Figure 4. Structure of the dehaze model.
The loss function of the dark channel prior is shown as follows:
Lpcp = E(t ) = tTLt+A(t—£)T(t— ¢ 1
pcp =E(t, t) = FA(E—t) (t—1t) 1

where t and f denote the transmission estimates from the DCP and the backbone network,
respectively. L is a Laplacian-like matrix.
The loss function of the bright channel prior is shown as follows:

Lpcp = Hf— tHl )

where t and f represent the transmission estimates from the BCP and the backbone net-
work, respectively.
The loss function of the CLAHE reconstruction is shown as follows:

Lerane = |1 — IcLanelly 3)

where [ is the original hazy input, and I[cLAHE is the reconstruction result by [cLAHE, t,
and A.

The role of the three loss functions is different. Dark channel prior greatly advances
the model performance on real hazy images, bright channel prior helps make the resulting
images brighter and with enhanced contrast, and CLAHE is used to achieve a balance
between LpCP and LBCP.

The total loss of the fine-tuning process was obtained by combining the three losses
as follows:

Leom = AgLpcp + ApLpcp + AcLcranE 4)
where Ay, Ay, and A, are the tradeoff weights.

2.2. Fa-Ssd Model

Target detection includes target recognition and localization. For CNN, the two
are contradictory [35]. Generally speaking, deep feature maps contain more semantic
information, which is good for object recognition but not good for object localization;
the difference is that the shallow feature map contains more detailed features, which is
good for object localization but not good for object recognition. As shown in Figure 5, the
SSD model adopts a feature pyramid structure to detect objects of different scales; small
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objects are detected on the shallow feature maps, and large objects are detected on the deep
feature maps.

=
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Figure 5. Structure of the SSD model.

However, the problem with this method is that the small target features generated by
the shallow layer lack sufficient semantic information, and the detection of small targets
still is not effective. In order to improve the detection ability of the SSD model for the
insulator umbrella disk shedding, the FA-SSD model is proposed. As shown in Figure 6,
the FA-SSD model adds a feature fusion module and an attention module to the SSD model.
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Figure 6. Structure of the FA-SSD model.

First, the insulator images were sent to the ResNet50 [36] feature extraction network
to extract the features. Since the shallow feature maps contain richer small target detail
information, Conv4_x in ResNet50 and two auxiliary convolutional layers were selected
for feature fusion. The feature dimension of Conv4_x was 38 x 38 x 1024, and the feature
dimensions of the two auxiliary convolutional layers were 19 x 19 x 512 and 10 x 10 x 512.
Then, in order to fuse the features of the three different scales simply and efficiently, the two
auxiliary convolutional layers were upsampled using bilinear interpolation to make them
the same size as Conv4_x. Finally, the feature map was concatenated and normalized to
generate a new feature pyramid structure for the identification and localization of umbrella
disc shedding. The parameters of each layer in the structure are shown in Table 1.

On this basis, in order to enhance the network’s ability to extract low-level detail
features, the SE channel attention module [37] was added to the lowest three layers of the
feature pyramid.
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Table 1. Input and output dimensions of each layer.

Layer Name Input Output
Convl 300 x 300 x 3 150 x 150 x 64
Conv2_x 150 x 150 x 64 75 x 75 x 256
Conv3_x 75 x 75 x 256 38 x 38 x 512
Conv4_x 38 x 38 x 512 38 x 38 x 1024
layerl 38 x 38 x 1024 19 x 19 x 512
layer2 19 x 19 x 512 10 x 10 x 512
SE Module

The SE learns a set of weight coefficients through a small fully connected network
to weigh each channel of the original feature map. In this way, different weights are
assigned to each channel to enhance the feature extraction capability of the network. The
implementation process of the SE was as follows:

(1) We performed convolution pooling and other operations on the input image to obtain
a feature map:

!
C
ue =vex X =) 05 xx° )
s=1
where v, and X represent the convolution kernel and the input image, respectively;
v; and x° represent the convolution kernel and the sth channel of the input image,
respectively; and ¢ represents the number of channels.
(2) We squeezed and compressed the feature map into one-dimensional features:

1 H W
Ze = qu(uc) = m Z; Z;uc(l,]) (6)
i=1j=

where H and W represent the width and height of the feature map, respectively.
(38) For excitation, we performed activation operations on multiple channels to extract
different features:

5 = Fur(z, W) = 0(g(z, W) = 0(Wad(W2)) )

(4) We multiplied the obtained weight factor with the corresponding channel feature to
obtain a new feature map:

J?C = Fscale(ucl SC) = Sc - Uc. 8)

3. Results
3.1. Experimental Environment

The proposed model used an NVIDIA RTX 2080Ti GPU for training and testing and
the Ubuntu 18.04 LTS as the operating system; the training process was accelerated by
CUDA 10.1; the computer language was Python 3.6, and the network framework was
PyTorch. The batch size was set to 8, the learning rate was 0.003, the preprocessed size of
the input image was 300 x 300, and the maximum number of iterations was 7800. The SSD
was chosen as the baseline for improvement and comparison purposes.

The datasets used in the dehazing stage included the REISDE dataset and images
of fogged insulators. The insulator images used in this paper were the aerial images of
transmission line inspection, which were obtained by UAV. The datasets used in the object
detection stage consisted of fogged insulator images, as well as fog-free insulator images.
Since the insulators were in normal working condition most of the time, the defect images
occupied a small proportion of the obtained aerial images. In addition, due to factors such
as shooting environment, shooting angle, shooting distance, etc., many images were of poor
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quality. By cooperating with several power grid companies, we obtained some samples
of insulator umbrella disk shedding. Among them, there were 160 images (the number of
the insulator umbrella disc shedding was 176) with fog and 480 images (the number of the
insulator umbrella disc shedding was 518) without fog. We used the images without fog as
the training set and the images with fog as the test set. As shown in Figure 7, the insulator
datasets contained glass insulators and ceramic insulators.

ERERTITI AT I PR P
L
1% L

(ol oo :
’ 1(-{[ of f 'H'H f(

Figure 7. Glass insulators and ceramic insulators. (a) Glass insulators. (b) Ceramic insulators.

To compare the different models, precision(P), recall(R), and F; were used as model
evaluation metrics. The higher the value, the better the detection performance of the model.

Tp

P = 9
Tp+ Fp ©

Tp
R=—""+— 10
Tp+ Fn (19)
F1:2><P><R (1)

P+R
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where TP and FP denote the number of correctly and incorrectly located defects, respectively.
TP + FP is the total number of located defects, andTP + FN is the total number of actual
defects. Fj is the harmonic mean of precision and recall.

3.2. Ablation Experiment of Fa-Ssd Model

In order to verify the effectiveness of the feature fusion module and the attention
module, the experiments were conducted on the original SSD model, the SSD model with
the feature fusion module, the SSD model with the attention module, and the FA-SSD
model. The visualization results of the FA-SSD model and the SSD model are shown
in Figure 8.

Figure 8. Visualization of SSD and FA-SSD. (a) SSD. (b) FA-SSD.
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In the experiment, the other parameters of the model training were guaranteed to be
the same, and the obtained detection results are shown in Table 2.

Table 2. Results of the ablation experiment.

SSD Feature Attention P R g
Fusion
v 0.866 0.755 0.806
v v 0.899 0.769 0.828
v v 0.877 0.793 0.832
v v v 0.909 0.817 0.860

The detection performance of the FA-SSD was better than the methods that only added
the feature fusion module or the attention module. Compared with the original SSD model,
the accuracy rate was improved, the recall rate was improved, and the F1 indicator was
improved. The experimental results showed that both the feature fusion module and the
attention module had a positive effect on the model.

3.3. Compared with Other Methods

In order to further verify the effectiveness of the FA-SSD model in the detection of insulator
umbrella disk shedding, under the condition of ensuring the same feature extraction network
and hyperparameters, the method in this paper was compared with the commonly used
target detection algorithm at this stage. The compared methods included Faster R-CNN [27],
YOLOV3 [25], and RetinaNet [38], and the results are shown in Figures 9 and 10 and Table 3.

[
o R
|F, 3 _
0.8 - ] ] ]
0.6
[l
0.4
0.2 -
0.0 |

| ! | ' | ! ! I
SSD  Faster R-CNN YOLOV3 RetinaNet FA-SSD
Method

Figure 9. Results of different methods.
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) (k)

Figure 10. Visualization results of different methods. (a—c) Faster R-CNN. (d—f) YOLOV3. (g—i) RetinaNet.
(j-1) FA-SSD.

Table 3. Results of different methods.

Method Input Size P R 2]
SSD [32] 300 x 300 0.866 0.755 0.806
Faster
R-CNN [27] 800 x 800 0.793 0.702 0.744
YOLOV3 [25] 300 x 300 0.879 0.769 0.820
RetinaNet [38] 300 x 300 0.774 0.658 0.711
FA-SSD 300 x 300 0.909 0.817 0.860

It can be seen that FA-SSD significantly outperformed SSD and other commonly
used object detection algorithms. Compared with other algorithms, the accuracy rate of
detecting the umbrella disc shedding was improved on average 8.1%, and the recall rate
was improved on average 9.6%. Compared with other target detection algorithms, the
FA-SSD algorithm improved the detection accuracy and reduced the missed detection rate.

3.4. Dehazing Algorithm Experiment

As shown in Figure 11, after using the dehazing algorithm to dehaze the hazy images,
the pictures became clearer.
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Figure 11. Visualization of Dehazing Algorithms. (a) Foggy images. (b) Images after dehazing.

In order to verify the effectiveness of the dehazing algorithm proposed in this paper for
the detection of insulator umbrella disc shedding in foggy images, the dehazing algorithm
proposed in this paper was combined with the target detection algorithm, and the obtained
detection results are shown in Figure 12.

As shown in Figure 12, the accuracy and recall of the model proposed in this paper
were better than other models. It can be seen that after adding the defogging model,
the accuracy and recall rate of the insulator umbrella disc shedding detection of the other
models were significantly improved. Among them, the accuracy rate of the model increased
by 0.08 on average, and the recall rate increased by 0.06 on average. This is because the
clear image obtained by the dehazing algorithm was more conducive to the extraction of
the features, thereby improving the detection effect. As shown in Figure 13, after adding the
defogging algorithm, the detection effect of the FA-SSD model was significantly improved.
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Figure 12. Experimental results before and after adding the defogging algorithm.
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(a) (b)

Figure 13. Visualization results of the FA-SSD and FA-SSD with defogging algorithm. (a) FA-SSD.
(b) FA-SSD with defogging algorithm.

4. Discussion

On the basis of realizing the defect detection of insulators with foggy images, combined
with the high-speed transmission advantages of 5G technology, real-time detection of
insulator defects can be realized, and the necessary processing methods can be taken in
time to reduce insulator failures. Compared with the traditional manual inspection, the
method in this paper can reduce labor, material resources, and the influence of subjective
factors; compared with the currently used UAV inspection, the method in this paper is more
in real time. In the context of China’s vigorous promotion of a smart grid, this research has
important practical significance and good development prospects.

In the future, our research will have the following three aspects. First, we will examine
more dehazing algorithms, such as the latest semi-supervised [39] or unsupervised [40]
frameworks. Second, we will collect more fogged images of insulators and conduct a joint
training strategy to combine image dehazing with defect detection [41]. Third, we will
study the defect detection of insulators under a series of complex weather conditions such
as sand, rain, and snow and devote ourselves to solving the problem of the defect detection
of transmission lines in complex weather, so as to realize all-weather real-time monitoring
of transmission lines.
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5. Conclusions

Aiming to solve the difficulty of fully extracting effective features from foggy insulator
images, as well as the small and difficult to detect proportion of umbrella disk shedding in
an image, this paper proposed a detection method for insulator umbrella disk shedding
defects that combined a dehazing algorithm and FA-SSD. Through the two-stage algorithm
of dehazing and detection, the accurate detection of the insulator umbrella disk shedding in
a foggy image was realized. This paper is the first to detect the defects in transmission lines
with foggy images, which provides a solution for all-weather monitoring of transmission
lines under complex weather conditions.
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The following abbreviations are used in this manuscript:

5G Fifth Generation Mobile Communication Technology
Al Artificial Intelligence

HD High Definition

SSD Single Shot MultiBox Detector

NMS Non-maximum suppression

YOLO  You Only Look Once
CNN Convolutional Neural Network
FA-SSD  SSD Combining Feature Fusion and Attention Mechanism

FPN Feature Pyramid Network
AR Augmented Reality

GPU Graphics Processing Unit
P Precision

R Recall

TP True Positive

FP False Positive

FN False Negative

UAV Unmanned Aerial Vehicle
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