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Abstract: The article discusses the physical foundations of the application of the linear magnetoelec-
tric (ME) effect in composites for devices in the low-frequency range, including the electromechanical
resonance (EMR) region. The main theoretical expressions for the ME voltage coefficients in the case
of a symmetric and asymmetric composite structure in the quasi-static and resonant modes are given.
The area of EMR considered here includes longitudinal, bending, longitudinal shear, and torsional
modes. Explanations are given for finding the main resonant frequencies of the modes under study.
Comparison of theory and experimental results for some composites is given.

Keywords: magnetoelectric effect; magnetoelectric composite; magnetoelectric voltage coefficient;
electromechanical resonance; resonance mode

1. Introduction

At present, magnetoelectric (ME) composites are extensively studied [1–3]. Researchers
pay main attention to layered composites because of the possibility of obtaining the maximum
ME effect on their basis. Because of the content of magnetic and electrical (piezoelectric or
ferroelectric) components in its structure, the ME composite is a multifunctional material and
considerably interests developers of ME devices compared to conventional magnetic and
electrical materials. The presence of a magnetic component makes it possible to change the
magnetic properties of the composite by applying an external electric field, and the electrical
properties change when exposed to an external magnetic field. Depending on the external
applied fields in ME composites, the direct and inverse ME effects are distinguished. In the
case of the direct effect, electric polarization is induced in the composite when it is exposed to
a magnetic field, whereas, in the case of an inverse effect, magnetization occurs when exposed
to an electric field. The main characteristic of the ME composite in the case of a direct effect is
the ME voltage coefficient, which is the ratio of the induced electric field to the alternating
magnetic field acting on the composite. There are numerous works devoted to the calculation
of individual characteristics of ME composites [4–20] and examples of the development of
various ME devices: sensors [21–28], gyrators [29,30], harvesters [31–33], antennas [34,35],
and microwave devices [3,36]. The information in the literature concerns the calculations
of the ME effect for individual electromechanical (EMR) regimes [6–19], then further in the
article we will carry the comparison of the obtained theoretical results with these data out.
As an example of a developed perspective ME device, we can discuss the ME magnetic field
sensor [22]. The great interest in this device is because, having a simple three-layer Metglas-
PMN-PT-Metglas structure, in the near future it can replace a complex electronic device such
as a SQUID operating at helium temperature, since comparable values for giant ME voltage
coefficient of 4.26 × 104 V cm−1 Oe−1 and the equivalent magnetic noise of 2.89 fT Hz−1/2 at
EMR frequency on this structure have already been achieved. If we consider its small weight
and size parameters and operation at room temperature, then we can expect widespread use
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of the ME magnetic field sensor in areas such as biomedicine [37–39]. Next, we should briefly
emphasize the main characteristics of other new ME devices, in which they can compete
with well-known serial devices. For ME gyrators, which are developed for the purpose of
possible replacement of current and voltage transformers, the efficiency of field conversion at
the level of 90% has already been obtained [30]. ME harvesters, unlike mechanical/vibrating
and piezoelectric counterparts, allow using all types of energy in the collection: mechanical,
piezoelectric, magnetic, and electromagnetic, including microwave. So far, we have received of
18,700 mW/m3 by the join application of an AC magnetic field and mechanical vibrations [33].
Wide-range ME antennas, operating on the principle of acoustoelectronic conversion, can
significantly reduce the weight and size parameters and radiation power, which is very
important for their possible use in underground and underwater communications [34]. New
ME control devices in the microwave range, such as filters, attenuator-isolators, and phase
shifters, unlike ferrite analogs, have dual control of their parameters by the magnetic and
electric fields, which makes it possible to increase their speed and manufacturability [3].

As already noted, there are works devoted to the calculation of individual EMR
regimes of the low-frequency ME effect. The authors of the article believe that it is useful
for developers of ME devices to have the results of calculations for all modes in one place
for more efficient operation. Therefore, the purpose of this work is to consider from a
unified standpoint the theory of the direct ME effect in composites in the low-frequency
range, including all modes of EMR resonance: longitudinal, bending, longitudinal-shear,
and torsional ones. In order to compare the calculated and experimental results, data
are presented for symmetric/three-layer and asymmetric/two-layer structures based on
Metglas and various piezoelectrics: PZT, lithium niobate, and gallium arsenide. The
obtained relations may be of interest in the analysis of the properties of the ME composite
and in choosing it as the basis of the developed ME device.

The structure of the article is as follows. The purpose of the article is indicated in the
introduction. Section 2 is devoted to the consideration of the longitudinal and bending
modes in symmetric and asymmetric ME structures. Section 3 describes the longitudinal
shear and torsional modes in such structures. Note that in Sections 2 and 3, as a special case,
the quasi-static regime is also considered. A discussion of the accuracy of the formulas for
the resonant frequencies of various EMR modes is included in Section 4. Section 5 discusses
the conclusions of the article.

2. Longitudinal and Bending Modes
2.1. Symmetric ME Structure

In a symmetric ME structure, excitation of the bending mode of the ME effect is
impossible. Therefore, we first consider the general case of a longitudinal mode for an
arbitrary frequency of an alternating magnetic field, which also includes the resonant mode,
and the expression for the ME voltage coefficient for the quasi-static case is obtained from
the general expression using the passage to the limit, letting the frequency tend to zero.

2.1.1. Resonance Mode

We consider a magnetoelectric composite in the form of a thin narrow plate. Layers
of the magnetostrictive phase of the same thickness are located above and below the
piezoelectric layer. The ME structure created in this way is symmetrical. The X axis is
directed along the length of the plate, and the Z axis is perpendicular to the sample plane
(Figure 1).

We consider small mechanical oscillations in a composite under the influence of a
small external variable magnetic field. In the presence of a constant magnetic field, the
strengths of both fields are directed along the l (x) axis:

h1(t) = h1eiωt, (1)

where h1 (t) is an external variable magnetic field, andω is a cyclic frequency of the external
alternating magnetic field.
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Figure 1. Symmetric tri-layer magnetoelectric composite for the calculation of longitudinal mode. 
Magnetic fields are parallel to each other and lie in the plane of structure, the electric field is per-
pendicular to the plane of structure, and pt and mt are the thicknesses of piezoelectric and magneto-
strictive layers. 
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Figure 1. Symmetric tri-layer magnetoelectric composite for the calculation of longitudinal mode.
Magnetic fields are parallel to each other and lie in the plane of structure, the electric field is perpendic-
ular to the plane of structure, and pt and mt are the thicknesses of piezoelectric and magnetostrictive
layers.

The material Equation for the piezoelectric layer is given by:

pS1 = d31E3 +
pS11

pT1, (2)

where pS1 is the strain tensor component of piezoelectric phase; d31 is piezoelectric coeffi-
cient; E3 is component of the vector of the electric field; ps11 is compliance tensor component
of the piezoelectric phase; pT1 is the stress tensor component of the piezoelectric phase.

The longitudinal component of the stress tensor in a piezoelectric phase can be ex-
pressed as:

pT1 =
1

pS11

pS1 −
d31

pS11
E3. (3)

The longitudinal component of the stress tensor of the magnetostrictive phase is
given by:

mT1 = mY
(

mS1 − q11h̃1

)
, (4)

where mT1 is the stress tensor component of the magnetostrictive phase; mY is their Young’s
module; mS1 is the strain tensor component of magnetostrictive layer; q11 is piezomagnetic
coefficient; h̃1 is the intensity of the alternating magnetic field inside the ferromagnet.

The constitutive Equations for the ferromagnetic phase are given by:

B1 = µµ0h̃1 + q11
mT1 (5)

µµ0h1 = µµ0h̃1 + q11
mT1, (6)

where B1 is magnetic induction; µ is magnetic permeability of an isotropic medium; µ0 is
magnetic constant; h1 is the intensity of an external alternating magnetic field away from
the ferromagnet.

Express h̃1 from Equation (6):

h̃1 = h1 −
q11

µµ0

mT1 (7)
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Substituting Equation (7) in Equation (4), we get:

mT1 = mY
(

mS1 − q11

[
h1 −

q11

µµ0

mT1

])
(8)

Express mT1 from Equation (8):

mT1 = mYBmS1 − q11h1, (9)

where:
mYB =

mY
1−mK2

11
q11 = mYBq11

(10)

where mYB is the Young’s modulus under constant magnetic induction; mK11 is the coeffi-
cient of magnetomechanical coupling.

The square of the coefficient of magnetomechanical coupling is:

mK2
11 =

mYq2
11

µµ0
(11)

Since the length of the composite is much greater than its width and height, longitudi-
nal vibrations arise in it.

In accordance with the condition of the problem:

mS1 = pS1 = S1 (12)

The longitudinal component of the composite stress tensor is:

T1 = mνmT1 +
pνpT1 = c11S1 − mνq11h1 − pν

d31
pS11

E3, (13)

where volume fractions of the pν piezoelectric and mν magnetostrictive phases are:

pν =
pt

pt+2mt
mν = 2mt

pt+2mt
(14)

where pt and mt are the thicknesses of piezoelectric and magnetostrictive layers and effective
composite stiffness coefficient:

c11 =
pν

pS11
+ mνmYB (15)

Composite effective density can be obtained from:

ρ = pνpρ + mνmρ, (16)

where pρ, mρ are density of the piezoelectric and magnetostrictive phases, respectively.
The longitudinal component of strain tensor is:

S1 =
∂Ux

∂x
, (17)

where Ux is longitudinal component of the strain vector.
Consider the Equation of motion for deformations:

ρ
∂2Ux

∂t2 =
∂T1

∂x
(18)
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Substituting Equation (13) in Equation (18), we get:

− ρω2Ux = c11
∂2Ux

∂x2 (19)

The solution of this Equation is obtained as:

Ux = A cos(kx) + B sin(kx), (20)

where the wave number is:

k =

√
ρ

c11
ω, (21)

A, B are unknown constants.
Then:

S1 =
∂Ux

∂x
= (B cos(kx)− A sin(kx))k (22)

T1 = c11S1 − mνq11h1 − pν d31
pS11

E3 = c11(B cos(kx)− A sin(kx))k− mνq11h1 − pν d31
pS11

E3 (23)

To obtain the constant A and B, we use the equilibrium conditions for a free sample:

T1|x=− l
2
= 0

T1|x= l
2
= 0

(24)

where l is length of the ME structure.
Substituting Equation (23) in Equation (24):

c11(B cos(η) + A sin(η))k− mνq11h1 − pν d31
pS11

E3 = 0

c11(B cos(η)− A sin(η))k− mνq11h1 − pν d31
pS11

E3 = 0
(25)

where:
η =

kl
2

(26)

we get:
A = 0

B =
mνq11

pS11h1+
pνd31E3

pS11c11k cos(η)
(27)

The transverse component of the electric displacement vector can be obtained from:

D3 = εε0E3 + d31
pT1 = εε0E3 + d31

[
1

pS11
S1 −

d31
pS11

E3

]
=

[
εε0 −

d2
31

pS11

]
E3 +

d31
pS11

S1, (28)

where ε is dielectric permittivity of the medium; ε0 is electrical constant.
The transverse component of the electric field strength vector can be found from the

condition that the electric induction flux through the interface between the upper layer of
the magnetostrictive phase and the piezoelectric is equal to zero:

l
2∫

− l
2

D3dx = 0. (29)

Substituting Equation (28) in Equation (29):[
εε0 −

d2
31

pS11

]
E3l +

2d31
pS11

B sin(η) = 0 (30)
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and substituting Equation (27) in Equation (30):[
εε0 −

d2
31

pS11

]
E3l +

2d31
pS11

sin(η)
mνq11

pS11h1 +
pνd31E3

pS11c11k cos(η)
= 0 (31)

from Equation (31), E3 is obtained as:

E3 = −
mνq11d31

pS11 tan(η)
εε0

pS2
11c11η + d2

31[
pν tan(η)− c11

pS11η]
h1 (32)

As the electric field exists only in the piezoelectric phase, the voltage is given by the
following equation:

U = E3
pt (33)

Average electric field strength in ME composite is:

E =
U

2mt + pt
=

E3
pt

2mt + pt
= pνE3 (34)

Then, the ME voltage coefficient is obtained as:

αE =
E
h1

= −
mνpνq11d31

pS11 tan(η)
εε0

pS2
11c11η + d2

31[
pν tan(η)− c11

pS11η]
(35)

Below, Figure 2 shows the dependence of the ME voltage coefficient on the frequency
of the alternating magnetic field for two cases, when PZT and a cut of lithium niobate
y + 128◦ [13,19] are taken as the piezoelectric phase. Metglas is taken as the magnetostrictive
phase. For the calculation, the following thicknesses of Metglas mt = 29 µm and piezoelectric
pt = 0.5 mm are taken, and the length of ME composite is l = 10 mm. To take into account
losses in the calculation, it is assumed: ω = 2π(1 + (1/2Q)i)f, where Q is the quality factor of
the resonant system. For this calculation, the value of the quality factor Q = 130 was taken.
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The fundamental resonant frequency for this case is:

fr =
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2l

√
c11

ρ
(36)
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In [7,8], the corresponding theory for the longitudinal mode of the ME effect in the
EMR region was used, and it showed its good agreement with the experiment.

2.1.2. Quasi-Static Mode

Assuming in Equation (35) the frequency f is equal to zero, we obtain:

αE = −
mνpνq11d31

pS11

εε0
pS2

11c11 + d2
31[

pν− c11
pS11]

=
mνpνq11d31

mνmYBd2
31 − εε0

pS11c11
(37)

Below, Figure 3 shows the dependence of the ME voltage coefficient on the volume
fraction of the piezoelectric for two cases, when PZT and a cut of lithium niobate y + 128◦

are taken as the piezoelectric phase. Metglas is taken as the magnetostrictive phase.
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In [9,10], the corresponding theory for the longitudinal mode of the ME effect in the
quasi-static regime was applied, and it showed good agreement with the experiment.

2.2. Asymmetric ME Structure
2.2.1. Resonance Regime of the Longitudinal Mode

For an asymmetric ME structure in the resonant mode of the longitudinal ME mode,
the voltage coefficient can be found from Equation (35), and only in Equation (14) is it
necessary to remove the number 2 before mt. The fundamental resonant frequency for this
case can be found in Equation (36). The ME structure shown at Figure 4.
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2.2.2. Resonant Mode of the Bending Mode

We consider bending oscillations in a two-layer magnetostrictive-piezoelectric struc-
ture. We assume that the sample has the form of a thin bar, whose thickness and width are
much less than the length. In this case, we can consider only one component of the stress
and strain tensor.

The full thickness of the composite:

t = pt + mt (38)

The volume fractions of the piezoelectric and magnetostrictive phases are:

pν =
pt
t ,

mν =
mt
t .

(39)

The X axis will be drawn along the neutral line of the ME composite (Figure 5).
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to the neutral line in a two-layer composite.

In the case of rigid connection between the components of the composite, we have:

mS1 = pS1 = S1 = −z
∂2w
∂x2 , (40)

where w is the transverse displacement.
The longitudinal component of the stress tensor and the third component of the electric

stress vector of a piezoelectric phase are given by:

pT1 = cD
11S1 − h31D3 (41)

E3 = −h31S1 + βS
33D3, (42)

where cD
11 is longitudinal component of the stiffness tensor at a constant electrical displace-

ment; h31 is piezoelectric coefficient at a constant longitudinal component of the strain
tensor; βS

33 is inverse permittivity at a constant longitudinal component of the strain tensor:

cD
11 =

(
psE

11 −
d2

31
εT

33ε0

)−1

h31 =
cD

11d31
εT

33ε0

βS
33 = 1+h31d31

εT
33ε0

(43)
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where psE
11 is compliance tensor component at constant electric field strength of the piezo-

electric phases; εT
33 is transversal component of the relative permittivity tensor at a constant

longitudinal component of the stress tensor.
Substituting Equation (40) in Equation (9), we get:

mT1 = −zmYB ∂2w
∂x2 − q11h1 (44)

The torque is:

M =

z0∫
z0−pt

bzpT1dz +
z0+

mt∫
z0

bzmT1dz = −b
∂2w
∂x2 D− bpt2〈h31〉D3 − bmt2〈q11〉h1, (45)

where b is the sample width, z0 is position of the boundary between the piezoelectric and
magnetostrictive phases relative to the neutral line, and:

〈h31〉 = 1
pt2

z0∫
z0−pt

zh31dz = 2z0−pt
2pt h31

〈q11〉 = 1
mt2

z0+
mt∫

z0

zq11dz =
q11(2z0+

mt)
2mt

(46)

D = pD + mD is full cylindrical stiffness of the composite:

pD = 1
3 cD

11
pt
(pt2 − 3ptz0 + 3z2

0
)

mD = 1
3

mYBmt
(mt2 + 3mtz0 + 3z2

0
) (47)

Then, the voltage across the piezoelectric phase is:

U =

z0∫
z0−pt

E3dz = pt2〈h31〉
∂2w
∂x2 + ptβS

33D3 (48)

From Equation (48) we obtain the electric displacement in the piezoelectric phase:

D3 =
U

ptβS
33
−

pt〈h31〉
βS

33

∂2w
∂x2 (49)

Substituting the resulting expression in Equation (45):

M = −bt3〈c11〉
∂2w
∂x2 −

bpt〈h31〉
βS

33
U − bmt2〈q11〉h1, (50)

where:

〈c11〉 =
1
t3

(
D−

pt3〈h31〉2

βS
33

)
. (51)

The position of the boundary between the piezoelectric and magnetostrictive phases
relative to the neutral line z0 is determined from the minimum condition 〈c11〉:

z0 =

(
cD

11
pt2 − mYBmt2

)
βS

33 − h2
31

pt2

2
(

mYBmt + cD
11

pt
)

βS
33 − h2

31
pt

(52)

The shear force is:

V =
∂M
∂x

= −bt3〈c11〉
∂3w
∂x3 (53)
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The equation of bending vibrations can be written as:

ρbt
∂w2

∂τ2 =
∂V
∂x

(54)

Substituting Equation (53) in Equation (54), we obtain:

t2〈c11〉
∂4w
∂x4 + ρ

∂w2

∂τ2 = 0 (55)

Given that the time dependence of the shift is harmonic w ∼ eiωt, the equation of
bending vibrations can be written as:

∂4w
∂x4 − k4w = 0,

k =
(

ρ

t2〈c11〉
ω2
) 1

4 .
(56)

The general solution of the motion equation is:

w = C1 cosh(kx) + C2sinh(kx) + C3 cos(kx) + C4 sin(kx), (57)

where C1, C2, C3, C4 are unknown constants.
The open circuit condition is:

l∫
0

D3dx = 0 (58)

Integrating Equation (48) over x, we obtain:

Ul = pt2〈h31〉
∂w
∂x

∣∣∣∣l
0
= pt2〈h31〉k[C1r2 + C2(r1 − 1)− C3r4 + C4(r3 − 1)], (59)

where:
r1 = cosh(kl)
r2 = sinh(kl)
r3 = cos(kl)
r4 = sin(kl)

(60)

Free Clamping of Both Ends of the ME Composite.

The boundary conditions for free ends of the beam are given by:

V(0) = 0,
M(0) = 0,
V(l) = 0,
M(l) = 0.

(61)

Combining Equation (61) with Equation (59), we obtain a linear system of five inho-
mogeneous algebraic equations for five unknowns C1, C2, C3, C4, U:

C2 − C4 = 0
−t3〈c11〉k2(C1 − C3)−

pt〈h31〉
βS

33
U − mt2〈q11〉h1 = 0

C1r2 + C2r1 + C3r4 − C4r3 = 0
−t3〈c11〉k2(C1r1 + C2r2 − C3r3 − C4r4)−

pt〈h31〉
βS

33
U − mt2〈q11〉h1 = 0

Ul = pt2〈h31〉k[C1r2 + C2(r1 − 1)− C3r4 + C4(r3 − 1)]

(62)
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We solve this system by considering the fact that:

r2
1 − r2

2 = 1
r2

3 + r2
4 = 1

(63)

The voltage across the piezoelectric is given by the following equation:

U =
2mt2 pt2〈q11〉〈h31〉βS

33(r1r4 + r2r3 − r2 − r4)

〈c11〉klt3βS
33(1− r1r3)− 2pt3〈h31〉2(r1r4 + r2r3 − r2 − r4)

h1. (64)

As a result, the ME voltage coefficient is obtained in the form:

αE =
E3

h1
=

2mt2 pt2〈q11〉〈h31〉βS
33(r1r4 + r2r3 − r2 − r4)

t
[
〈c11〉klt3βS

33(1− r1r3)− 2pt3〈h31〉2(r1r4 + r2r3 − r2 − r4)
] . (65)

Below, Figure 6 shows the dependence of the ME voltage coefficient on the frequency of
the alternating magnetic field for two cases, when PZT and a cut of lithium niobate y + 128◦

are taken as the piezoelectric phase. Metglas is taken as the magnetostrictive phase. For the
calculation, the following thicknesses of Metglas mt = 29 µm and piezoelectric pt = 0.5 mm
are taken, and the length of ME composite is l = 10 mm. To take into account losses in the
calculation, it is assumed: ω = 2π(1 + (1/2Q)i)f, where Q is the quality factor of the resonant
system. The value of the quality factor was taken to be the same as for the longitudinal
mode, Q = 130.
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The fundamental resonant frequency for this case is:

fr =
χ2t

2πl2

√
〈c11〉

ρ

χ = 473
(66)

Cantilever Clamping of ME Composite.

The boundary conditions for this case:

w(0) = 0,
∂w
∂x (0) = 0,
V(l) = 0,
M(l) = 0.

(67)
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The general solution of the equation of motion is:

w = C1 cosh(kx) + C2sinh(kx) + C3 cos(kx) + C4 sin(kx) (68)

The linear system of five inhomogeneous algebraic equations for five unknowns C1,
C2, C3, C4, U:

C1 + C3 = 0
C2 + C4 = 0
C1r2 + C2r1 + C3r4 − C4r3 = 0
−t3〈c11〉k2(C1 − C3)−

pt〈h31〉
βS

33
U − mt2〈q11〉h1 = 0

−t3〈c11〉k2(C1r1 + C2r2 − C3r3 − C4r4)−
pt〈h31〉

βS
33

U − mt2〈q11〉h1 = 0

Ul = pt2〈h31〉k[C1r2 + C2(r1 − 1)− C3r4 + C4(r3 − 1)]

(69)

We solve this system, considering the fact that:

r2
1 − r2

2 = 1
r2

3 + r2
4 = 1

(70)

The voltage across the piezoelectric is given by:

U = −
mt2 pt2〈q11〉〈h31〉βS

33(r1r4 + r2r3)

〈c11〉klt3βS
33(1 + r1r3) + pt3〈h31〉2(r1r4 + r2r3)

h1. (71)

As a result, the ME voltage coefficient is obtained as:

αE =
E3

h1
= −

mt2 pt2〈q11〉〈h31〉βS
33(r1r4 + r2r3)

[〈c11〉klt3βS
33(1 + r1r3) + pt3〈h31〉2(r1r4 + r2r3)]t

. (72)

Below, Figure 7 shows the dependence of the ME voltage coefficient on the frequency of
the alternating magnetic field for two cases, when PZT and a cut of lithium niobate y + 128◦

are taken as the piezoelectric phase. Metglas is taken as the magnetostrictive phase. For the
calculation, the following thicknesses of Metglas mt = 29 µm and piezoelectric pt = 0.5 mm
are taken, length of ME composite is l = 10 mm. To take into account losses in the calculation,
it is assumed: ω = 2π(1 + (1/2Q)i)f, where Q is the quality factor of the resonant system.
The value of the quality factor was taken the same as for the longitudinal mode Q = 130.
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fr =
χ2t

2πl2

√
〈c11〉

ρ

χ = 1875
(73)

In [11,12], the theory of the bending mode of the ME effect in the EMR region was
considered, based on the hypothesis that the electric field strength in the piezoelectric phase
is independent of the coordinate along the thickness of an asymmetric magnetostrictive-
piezoelectric composite, and its satisfactory agreement with experimental data was shown.
The theory of the same phenomenon based on a more plausible hypothesis of indepen-
dence of the electric displacement in the piezoelectric phase from the coordinate along
the thickness of an asymmetric magnetostrictive piezoelectric composite was considered
in [13], and it showed good agreement with the experiment. However, in this work, the
corresponding theory is presented very briefly. In our article, we describe this theory in as
much detail as possible for a better understanding and ease of application, if necessary.

2.2.3. Quasi-Static Mode

In [14,15], the theory of the longitudinal and bending modes of the ME effect in the
quasi-static mode for an asymmetric magnetostrictive-piezoelectric structure was consid-
ered. Separate expressions are found for the contributions of the planar and bending
modes, and then the full expression. In our article, we start immediately from general
expressions that consider the planar and flexural modes and obtain the result. We do this in
as much detail as possible to facilitate understanding and ease of application of this theory
if necessary.

In the quasi-static mode, Equation (18) is given by:

∂T1

∂x
= 0 (74)

This means that T1 must not depend on x. It is obvious that S1 must not depend on x
either. Since both the longitudinal and bending modes are excited in the asymmetric ME
structure in the quasi-static mode:

S1 = A + zB, (75)

where A, B are unknown constants.
Substituting Equation (75) in Equation (9) and Equation (41), also considering that due

to the open circuit condition D3 = 0, we obtain:

mT1 = mYB(A + zB)− q11h1 = mYB A− q11h1 +
mYBzB (76)

pT1 = cD
11(A + zB) = cD

11 A + cD
11zB (77)

The first condition for the static equilibrium of the ME composite is the equality to
zero of the total longitudinal force is given by:

z0∫
z0−pt

pT1dz +
z0+

mt∫
z0

mT1dz = 0 (78)

Substituting Equations (76) and (77) in Equation (78), we obtain:

ptcD
11 A +

1
2

cD
11Bpt(2z0 − pt) +

(
mYB A− q11h1

)
mt +

1
2

mYBBmt(2z0 +
mt) = 0. (79)

The second condition for the static equilibrium of the ME composite is the zero total
moment is given by:
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z0∫
z0−pt

zpT1dz +
z0+

mt∫
z0

zmT1dz = 0 (80)

Substituting Equations (76) and (77) in Equation (80), we obtain:

1
2 cD

11 Apt(2z0 − pt) + 1
3 cD

11Bpt
(pt2 − 3ptz0 + 3z2

0
)
+

+ 1
2
(mYB A− q11h1

)mt(2z0 +
mt) + 1

3
mYBBmt

(mt2 + 3mtz0 + 3z2
0
)
= 0

(81)

The Equations (79) and (81) form a linear inhomogeneous system of two equations
with two unknowns A, B. Solving them, we obtain A and B as:

A =
(3cD

11
mt pt2−6cD

11
mt ptz0−6cD

11
pt2z0+

mY Bmt3)mtq11h1

(cD
11)

2 pt4+4cD
11

mY B ptmt3+6cD
11

mY B pt2mt2+4cD
11

mY Bmt pt3+(mY B)
2mt4

B =
6cD

11
mt pt(mt+pt)q11h1

(cD
11)

2 pt4+4cD
11

mY B ptmt3+6cD
11

mY B pt2mt2+4cD
11

mY Bmt pt3+(mY B)
2mt4

(82)

Substituting Equation (75) in Equation (42), and considering that due to the open
circuit condition D3 = 0, we get E3:

E3 = −h31(A + zB). (83)

Then, the voltage across the piezoelectric is:

U =

z0∫
z0−pt

−h31(A + zB)dz = −h31

[
Apt +

1
2

Bpt(2z0 − pt)
]

. (84)

Substituting Equation (82) in Equation (84), we obtain:

U = −
mt pt

(
cD

11
pt3 + mYBmt3)h31q11h1(

cD
11
)2 pt4 + 4cD

11
mYB ptmt3 + 6cD

11
mYB pt2mt2 + 4cD

11
mYBmt pt3 + (mYB)

2mt4
(85)

From Equation (85) we find the ME voltage coefficient as:

αE = −
mt pt(cD

11
pt3+mY Bmt3)h31q11[

(cD
11)

2 pt4+4cD
11

mY B ptmt3+6cD
11

mY B pt2mt2+4cD
11

mY Bmt pt3+(mY B)
2mt4

]
(mt+pt)

(86)

Below, Figure 8 shows the dependence of the ME voltage coefficient on the volume
fraction of the piezoelectric for two cases, when PZT and a cut of lithium niobate y + 128◦

are taken as the piezoelectric phase. Metglas is taken as the magnetostrictive phase.
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3. Longitudinal-Shear and Torsional Modes
3.1. Symmetrical ME Structure

In a symmetric ME structure, excitation of the torsional mode of the ME effect is
impossible. Therefore, we first consider the general case of a longitudinal-shear mode for
an arbitrary frequency of an alternating magnetic field, which also includes the resonant
mode, and the expression for the ME voltage coefficient for the quasi-static case will be
obtained from the general expression, assuming the frequency f is equal to zero.

3.1.1. Resonance Mode

We consider a magnetoelectric composite as a thin narrow plate. Layers of the magne-
tostrictive phase of the same thickness are above and below the piezoelectric layer. The ME
structure created in this way is symmetrical. The X axis is directed along the length of the
plate, and the Z axis is perpendicular to the sample plane, as in Figure 9.
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We consider small longitudinal-shear mechanical oscillations in a composite under
the influence of a small external variable magnetic field. The AC magnetic field is directed
along the X axis, and the DC magnetic field is directed along the Y axis, then:

h1(t) = h1eiωt. (87)

The material equation for the piezoelectric layer is given by:

pS6 = d36E3 +
ps66

pT6, (88)

where pS6 is shear strain tensor component of piezoelectric phase; d36 is piezoelectric
coefficient; ps66 is shear compliance tensor component of the piezoelectric phase; pT6 is the
shear stress tensor component of the piezoelectric phase.

The shear component of the stress tensor in a piezoelectric can be expressed as:

pT6 =
1

ps66

pS6 −
d36
ps66

E3 (89)

The shear component of the stress tensor in the magnetostrictive phase has the form:

mT6 = mG(mS6 − q16h1) =
mGmS6 − q16h1, (90)
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where:
q16 = mGq16, (91)

where mS6 is shear strain tensor component of magnetostrictive phase, mG is shift modulus
in the magnetostrictive phase, and q16 is corresponding pseudo-piezomagnetic coefficient.

In accordance with the condition of the problem for longitudinal-shear mode is:

mS6 = pS6 = S6 =
∂Ux

∂y
+

∂Uy

∂x
=

∂Uy

∂x
(92)

Shear component of the composite stress tensor is:

T6 = mνmT6 +
pν pT6 = c66S6 − mνq16h1 − pν

d36
ps66

E3, (93)

where volume fractions of the piezoelectric and magnetostrictive phases are:

pν =
pt

pt+2mt
mν = 2mt

pt+2mt
(94)

The effective shear composite stiffness coefficient is:

c66 =
pν

ps66
+ mνmG. (95)

Composite effective density is given by:

ρ = pν pρ + mνmρ. (96)

Consider the motion equation for deformations is:

ρ
∂2Uy

∂t2 =
∂T6

∂x
. (97)

Substituting Equation (90) in Equation (94), we get:

− ρω2Uy = c66
∂2Uy

∂x2 (98)

The solution of this equation is obtained as:

Uy = A cos(kx) + B sin(kx), (99)

where the wave number is:

k =

√
ρ

c66
ω, (100)

and A, B are unknown constants.
Then:

S6 =
∂Uy

∂x
= (B cos(kx)− A sin(kx))k, (101)

T6 = c66(B cos(kx)− A sin(kx))k− mνq16h1 − pν
d36
ps66

E3. (102)

To obtain the constants A and B, we use the equilibrium conditions for a free sample:

T6|x=− l
2
= 0

T6|x= l
2
= 0

(103)
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Substituting Equation (103) in Equation (102), we get:

c66(B cos(η) + A sin(η))k− mνq16h1 − pν d36
ps66

E3 = 0

c66(B cos(η)− A sin(η))k− mνq16h1 − pν d36
ps66

E3 = 0
(104)

where:
η =

kl
2

, (105)

As a result, we get:
A = 0

B =
mνq16

ps66h1+
pνd36E3

ps66c66k cos(η)
(106)

The transverse component of the electric displacement vector can be obtained from:

D3 = εε0E3 + d36
pT6 =

[
εε0 −

d2
36

ps66

]
E3 +

d36
ps66

S6. (107)

We can find the transverse component of the electric field strength vector from the
condition that the electric induction flux through the interface between the upper layer of
the magnetostrictive phase and the piezoelectric are equal to zero:

l
2∫

− l
2

D3dx = 0. (108)

Substituting Equation (104) in Equation (105), we get:[
εε0 −

d2
36

ps66

]
E3l +

2d36
ps66

B sin(η) = 0 (109)

Substituting Equation (103) in Equation (106):[
εε0 −

d2
36

ps66

]
E3l +

2d36
ps66

sin(η)
mνq16

ps66h1 +
pνd36E3

ps66c66k cos(η)
= 0. (110)

From Equation (110), E3 is obtained as:

E3 = −
mνq16d36

ps66 tan(η)
εε0

ps2
66c66η + d2

36[
pν tan(η)− c66

ps66η]
h1. (111)

As the electric field exists only in the piezoelectric phase, the voltage is given by the
following equation:

U = E3
pt. (112)

Average electric field strength in ME composite is:

E =
U

mt + pt
= pνE3 (113)

Then, the ME voltage coefficient is obtained as:

αE =
E
h1

= −
mν pνq16d36

ps66 tan(η)
εε0

ps2
66c66η + d2

36[
pν tan(η)− c66

ps66η]
. (114)

Below, Figure 10 shows the dependence of the ME voltage coefficient on the frequency
of the alternating magnetic field. To take into account losses in the calculation, it is as-
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sumed: ω = 2π(1 + (1/2Q)i)f, where Q is the quality factor of the resonant system. In
the calculation, the following material parameters of the initial components were used:
for Metglas: mρ = 7180 kg/m3, mG = 3.85 × 1010 Pa, q16 = 1.0 × 10−9 m/A, mt = 29 µm;
for gallium arsenide (GaAs) [18] pρ = 5320 kg/m3, shift modulus pG = 5.94 × 1010 Pa,
ε = 12.9, d36 = −2.69 × 10−12 m/V, pt = 2 × 10−4 m. Sample length l = 2.3 × 10−2 m, width
b = 3 × 10−4 m. The value of the quality factor was Q = 300.
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Figure 10. Theoretical dependence of the ME voltage coefficient on the frequency of the alternating
magnetic field for symmetrical ME structure Metglas/GaAs of the longitudinal-shear mode.

The fundamental resonant frequency for this case is:

fr =
1
2l

√
c66

ρ
(115)

3.1.2. Quasi-Static Mode

Assuming in Equation (114) the frequency f equal to zero, we obtain:

αE =
E
h1

= −
mν pνq16d36

ps66

εε0
ps2

66c66 + d2
36[

pν − c66
ps66]

. (116)

Below, Figure 11 shows the dependence of the ME voltage coefficient on the volume
fraction of the piezoelectric, when GaAs are taken as the piezoelectric phase. Metglas is
taken as the magnetostrictive phase.
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3.2. Asymmetric ME Structure
3.2.1. Resonance Regime for the Longitudinal-Shear Mode

For an asymmetric ME structure in the resonant mode of the longitudinal-shear ME
mode, the voltage coefficient can be found from Equation (114). Only in Equation (94) is it
necessary to remove the number 2 before mt. The fundamental resonant frequency for this
case can be found in Equation (115). The ME structure shown at Figure 12.
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Figure 12. Asymmetric two-layer magnetoelectric composite for calculation of longitudinal-shear
mode. All designations are the same as in Figure 9.

Below, Figure 13 shows the dependence of the ME voltage coefficient on the frequency
of the alternating magnetic field. To take into account losses in the calculation, it is assumed:
ω = 2π(1 + (1/2Q)i)f, where Q is the quality factor of the resonant system.
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Figure 13. Theoretical dependence of the ME voltage coefficient on the frequency of the alternating
magnetic field for asymmetrical ME structure Metglas/GaAs of the longitudinal-shear mode.

3.2.2. Resonant Regime for the Torsional Mode

In [16,17], the theory of the torsional mode of the ME effect in the EMR region was
considered for an asymmetric magnetostrictive-piezoelectric structure. However, since
the torsion of the structure was considered around the axis passing along the width of the
structure, the numerical values of the ME stress coefficient turned out to be too small for the
torsional mode to be seen against the background of a relatively large longitudinal shear
mode. In this article, we consider the torsion of an ME structure around an axis running
along the length of the structure. This made it possible to obtain relatively large values of
the ME voltage coefficient.

Draw the X axis along the length of the sample in the corresponding plane of symmetry
of the sample, and the Y axis along the axis of rotation of the composite beam during
torsional vibrations in the direction of the sample width as in Figure 14.
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Figure 14. Asymmetric two-layer magnetoelectric composite for calculation of torsional mode.

The AC magnetic field is directed along the X axis, and the DC magnetic field is
directed along the Y axis.

The full thickness of the composite:

t = pt + mt. (117)

Shear components of the strain tensor are:

S5 = y ∂θ
∂x

S6 = −z ∂θ
∂x

(118)

where θ—the twist angle.
Material equations for a piezoelectric phase:

S5 = 1
pG

pT5

S6 = 1
pG

pT6 + d36
pE3

(119)

where pE3 is electric field intensity in a piezoelectric.
From Equation (115), we find the tangent components of the stress tensor for the

piezoelectric:
pT5 = pGS5 = pGy

∂θ

∂x
(120)

pT6 = pG(S6 − d36
pE3) = −pGz

∂θ

∂x
− d36

pG pE3. (121)

Material equations for a ferromagnet:

S5 = 1
mG

mT5

S6 = 1
mG

mT6 + q16h1
(122)

From Equation (118), the tangent components of the stress tensor of the magnetostric-
tive phase:

mT5 = mGS5 = mGy ∂θ
∂x

mT6 = mG(S6 − q16h2) = −mGz ∂θ
∂x − q16h1

(123)

where:
q16 = mGq16. (124)

The electrical displacement in piezoelectric is equal:

D3 = d36
pT6 + εε0

pE3 = −d36
pGz

∂θ

∂x
+
(

εε0 − pGd2
36

)
pE3. (125)
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From Equation (121), the electric field pE3 is obtained as:

pE3 = h36z
∂θ

∂x
+ βS

33D3, (126)

where:
h36 = d36

pG
εε0−pGd2

36

βS
33 = 1

εε0−pGd2
36

(127)

Substituting in Equation (117), we get:

pT6 = −pGDz
∂θ

∂x
− h36D3, (128)

where shear modulus at constant electrical displacement of the piezoelectric phase:

pGD =
εε0

pG
εε0 − pGd2

36
. (129)

The torque of composite is:

M =

b
2∫
− b

2

dy
z0∫

z0−pt
(ypT5 − zpT6)dz +

b
2∫
− b

2

dy
z0+

mt∫
z0

(ymT5 − zmT6)dz =

=

b
2∫
− b

2

dy
z0∫

z0−pt

(
ypGy ∂θ

∂x − z
(
−pGDz ∂θ

∂x − h36D3

))
dz+

+

b
2∫
− b

2

dy
z0+

mt∫
z0

(
ymGy ∂θ

∂x − z
(
−mGz ∂θ

∂x − q16h1

))
dz = K0

∂θ
∂x + bpt2〈h36〉D3 + bmt2〈q16〉h1

(130)

where:
K = pK + mK
pK = 1

3
pGD

(
z3

0 − (z0 − pt)3
)

b + 1
12

pG ptb3

mK = mGm I
(131)

where z0 is the position of the interface between the piezoelectric and magnetostrictive
phases relative to the axis of rotation of the composite beam, and polar moment of a
ferromagnet:

m I =
1
3

(
(z0 +

mt)3 − z3
0

)
b +

1
12

mtb3 (132)

〈h36〉 = 1
pt2

z0∫
z0−pt

zh36dz = h36(2z0−pt)
2pt

〈q16〉 = 1
mt2

z0+
mt∫

z0

zq16dz =
q16(2z0+

mt)
2mt

(133)

The voltage across the piezoelectric phase is given by the following equation:

U =

z0∫
z0−pt

pE3dz =

z0∫
z0−pt

(
h36z

∂θ

∂x
+ βS

33D3

)
dz = pt2〈h36〉

∂θ

∂x
+ ptβS

33D3. (134)

From Equation (134), the electric displacement in the piezoelectric phase is:

D3 =
U

ptβS
33
−

pt〈h36〉
βS

33

∂θ

∂x
(135)
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Substituting in Equation (126), we find:

M = −bt3〈G〉 ∂θ

∂y
− bpt〈h36〉〈

βS
33
〉 U + bmt2〈q16〉h1, (136)

where effective shear modulus of the sample:

〈G〉 = 1
bt3

(
K− bpt3〈h36〉2〈

βS
33
〉 )

. (137)

The position of the interface between the piezoelectric and magnetostrictive phases
relative to the axis of rotation of the composite beam z0 is determined from the condition of
the minimum effective shear modulus of the sample 〈G〉:

z0 =
pGD pt2βS

33 − mGmt2βS
33 − h2

36
pt2

2
(

mGmtβS
33 +

pGD ptβS
33 − h2

36
pt
) . (138)

The torsional vibrations are:

J
∂θ2

∂τ2 =
∂M
∂x

, (139)

where the moment of inertia of the sample per unit width:

J = pρ p I + mρm I , (140)

where the polar moment of the piezoelectric is:

p I =
1
3

(
z3

0 − (z0 − pt)3
)

b +
1
12

ptb3. (141)

Substituting Equation (133) in Equation (136), we get:

J
∂θ2

∂τ2 = −bt3〈G〉 ∂2θ

∂x2 . (142)

The dependence of the twist angle on time is harmonic θ ∼ eiωt, therefore:

∂2θ

∂x2 + k2θ = 0, (143)

where the wave number is:

k = ω

√
J

bt3〈G〉 . (144)

The general solution of the Equation (140) is:

θ = A cos(kx) + B sin(kx), (145)

where A, B are unknown constants.
The open circuit condition is:

l
2∫

− l
2

D3dx = 0. (146)

Then, we integrate Equation (135) over x:

Ul = pt2〈h36〉 θ|
l
2
− l

2
= 2pt2〈h36〉B sin η, (147)
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where:
η =

kl
2

. (148)

Boundary conditions for a free sample are:

M
(

l
2

)
= 0

M
(
− l

2

)
= 0

(149)

Combining boundary conditions Equation (146) with Equation (144), we obtain a
linear system of three inhomogeneous algebraic equations with three unknowns, A, B, U:

−kbt3〈G〉(B cos η − A sin η)− bpt〈h36〉
βS

33
U + bmt2〈q16〉h1 = 0

−kbt3〈G〉(B cos η + A sin η)− bpt〈h36〉
βS

33
U + bmt2〈q16〉h1 = 0

Ul = 2pt2〈h36〉B sin η

(150)

As a result, the ME voltage coefficient is obtained as:

αE =
2pt2mt2〈h36〉〈q16〉βS

33 tan η

t
(

klt3〈G〉βS
33 + 2〈h36〉2 pt3 tan η

) . (151)

Figure 15 shows the dependence of the ME voltage coefficient on the frequency of
the alternating magnetic field. To take into account losses in the calculation, it is assumed:
ω = 2π(1 + (1/2Q)i)f , where Q is the quality factor of the resonant system. In the calculation,
the same material parameters were used as for the longitudinal-shear mode.
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3.2.3. Quasi-Static Mode

In the quasi-static mode, there are no vibrations along the length of the composite.
This means that S5 and S6 must not depend on x. Since both the longitudinal-shear and
torsional modes are excited in the asymmetric ME structure in the quasistatic mode, then:

S5 = yB
S6 = A− zB

(153)

where A, B are unknown constants.
Substituting Equation (153) in Equations (120), (123), and (128), also considering that

due to the open circuit condition D3 = 0, we obtain:

mT5 = mGS5 = mGyB
mT6 = mG(S6 − q16h1) =

mG A− mGzB− q16h1
(154)

pT5 = pGS5 = pGyB
pT6 = pGD A− pGDzB

(155)

The first condition for the static equilibrium of the ME composite is the total tangential
force on the site perpendicular to the x axis along the y axis is equal to zero and is given by
the following equation:

z0∫
z0−pt

pT6dz +
z0+

mt∫
z0

mT6dz = 0. (156)

Substituting Equations (154) and (155) in Equation (156), we get:

− 1
2

pGDB[z2
0 − (z0 − pt)2] + pGD Apt − 1

2
mGB[(z0 +

mt)2 − z2
0] +

mGmt(A− q16h1) = 0 (157)

The second condition for the static equilibrium of the ME composite is the zero torque
and given by:

b
2∫

− b
2

dy
z0∫

z0−pt

(ypT5 − zpT6)dz +

b
2∫

− b
2

dx
z0+

mt∫
z0

(ymT5 − zmT6)dz = 0 (158)

Substituting Equations (154) and (155) in Equation (158), we get:

1
3

pGDB[z3
0 − (z0 − pt)3]− 1

12
pGD Ab[z2

0 − (z0 − pt)2] + 1
12 BpG ptb3 + 1

3
mGBb[(z0 +

m t)3 − z3
0]−

− 1
2

mGb(A− q16h1)[(z0 +
mt)2 − z2

0] +
1

12
mGBmtb3 = 0

(159)

The Equations (153) and (155) form a linear inhomogeneous system of two equations
with two unknowns A, B. Solving it, we find A and B:

A =
mGmtq16h1[b2(mGmt+pG pt)+mGmt3+

mGmtb2(mtmG+pG pt+pG D pt)+mG2mt4+
+pG D(3pt2mt−6z0

ptmt+4pt3−6z0
pt2)]

+pG D pt(pG ptb2+4mGmt3+6mGmt2 pt+4mGmtpt2+pG D pt3)

B = − 6mGmtq16h1
pt·

mGmtb2(mtmG+pG pt+pG D pt)+mG2mt4+
·(mt+pt)

+pG D pt(pG ptb2+4mGmt3+6mGmt2 pt+4mGmtpt2+pG D pt3)

(160)

Substituting Equation (153) in Equation (126), and considering that due to the open
circuit condition D3 = 0, E3 is obtained as:

E3 = −h36(A− zB). (161)
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The voltage across the piezoelectric:

U =

z0∫
z0−pt

−h36(A− zB)dz = −h36

[
Apt +

1
2

Bpt(2z0 − pt)
]

. (162)

Substituting Equation (156) in Equation (158), we get:

U = h1
ptmtmGq16h36[

pG D pt3+mGmt3+
mG2mt2(b2+mt2)+pG D pt2(pG D pt2+6mt2mG+4mtmG pt+b2 pG)+
+b2(pG pt+mGmt)]

+mG ptmt(b2 pG+4pG Dmt2+pG Db2)

(163)

From Equation (159) we find the ME voltage coefficient:

αE =
ptmtmGq16h36[

pG D pt3+mGmt3+
[mG2mt2(b2+mt2)+pG D pt2(pG D pt2+6mt2mG+4mtmG pt+b2 pG)+

+b2(pG pt+mGmt)]
+mG ptmt(b2 pG+4pG Dmt2+pG Db2)](pt+mt)

(164)

Below, Figure 16 shows the dependence of the ME voltage coefficient on the volume
fraction of the piezoelectric, when GaAs are taken as the piezoelectric phase. Metglas is
taken as the magnetostrictive phase. The material parameters of the ME structure are the
same as for the calculation of the longitudinal shear mode.
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As can be seen from the comparison of Figures 13 and 15, the ME voltage coefficient
in the EMR regime for the longitudinal-shear mode is several times larger than for the
torsional mode. Therefore, it is quite natural that in the quasistatic mode the torsional
mode does not make a very significant contribution, and the ME voltage coefficient in the
quasistatic mode is mainly determined by the contribution of the longitudinal-shear mode.

3.3. ME Structure Based on Bimorph Lithium Niobate
3.3.1. Resonant Regime for the Torsional Mode

Draw the X axis along the axis of rotation of the composite beam during torsional
vibrations in the direction of the length of the sample, and the Y axis along the width of the
sample in the corresponding plane of symmetry of the sample, as in Figure 17.
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The AC magnetic field is directed along the X axis, and the DC magnetic field is
directed along the Y axis.

The shear components of the strain tensor are given by:

S5 = y ∂α
∂x

S6 = −z ∂α
∂x

(165)

where α—the twist angle.
Material equations for a ferromagnetic phase:

S5 = 1
mG

mT5

S6 = 1
mG

mT6 + q16h1
(166)

From Equation (162), we find the tangent components of the stress tensor for the
magnetostrictive phase:

mT5 = mGS5 = mGy ∂α
∂x

mT6 = mG(S6 − q16h1) = −mGz ∂α
∂x − q16h1

(167)

where:
q16 = mGq16. (168)

Material equations for piezoelectric:

pT5 = pcE
55S5 +

pcE
56S6 − e35

pE3
pT6 = pcE

56S5 +
pcE

66S6 − e36
pE3

D3 = e35S5 + e36S6 + ε33ε0
pE3

(169)

where pcE
55, pcE

56, pcE
66 are shear components at a constant electric field strength of the

stiffness tensor of the piezoelectric phase, e35, e36 are piezoelectric coefficients at constant
electric field strength.

Express pT5, pT6, pE3 from Equation (169):

pT5 = pcD
55S5 +

pcD
56S6 − h35D3

pT6 = pcD
56S5 +

pcD
66S6 − h36D3

pE3 = −h35S5 − h36S6 + βS
33D3 = −h35y ∂α

∂x + h36z ∂α
∂x + βS

33D3

(170)
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where pcD
55, pcD

56, pcD
66 are shear components at a constant electrical displacement of the

stiffness tensor of the piezoelectric phase, h35, h36 are piezoelectric coefficients at constant
shear components of the strain tensor:

pcD
55 = pcE

55 +
e2

35
ε33ε0

pcD
66 = pcE

66 +
e2

36
ε33ε0

pcD
56 = pcE

56 +
e35e36
ε33ε0

h35 = e35
ε33ε0

h36 = e36
ε33ε0

βS
33 = 1

ε33ε0

(171)

The tangential components of the piezoelectric stress tensor:

pT5 = pcD
55S5 +

pcD
56S6 − h35D3 = pcD

55y ∂α
∂x −

pcD
56z ∂α

∂x − h35D3
pT6 = pcD

56S5 +
pcD

66S6 − h36D3 = pcD
56y ∂α

∂x −
pcD

66z ∂α
∂x − h36D3

(172)

The torque is:

M = p M + m M =

b
2∫
− b

2

dy
z0∫

z0−pt
(ypT5 − zpT6)dz +

b
2∫
− b

2

dy
z0+

mt∫
z0

(ymT5 − zmT6)dz =

=

b
2∫
− b

2

dy
z0∫

z0−pt

(
y
(

pcD
55y ∂α

∂x + pcD
56z ∂α

∂x − h35D3

)
− z
(

pcD
56y ∂α

∂x + pcD
66z ∂α

∂x − h36D3

))
dz+

+

b
2∫
− b

2

dx
z0+

mt∫
z0

(
ymGy ∂α

∂x − z
(
−mGz ∂α

∂x − q16h1

))
dz = Q̃ ∂α

∂x + bpt2〈h36〉D3 + bmt2〈q16〉h1

(173)

Q̃ = pQ + mQ, (174)

where z0 is the position of the interface between the piezoelectric and magnetostrictive
phases relative to the axis of rotation of the composite beam.

〈h36〉 = 1
pt2

z0∫
z0−p2t−p1t

zh36dz =

 z0−p1t∫
z0−p2t−p1t

zp2h36dz +
z0∫

z0−p1t
zp1h36dz

 =

= 1
pt2

2

(p2h36
p2t
(
2z0 − 2p1t − p2t

)
+ p1h36

p1t
(
2z0 − p1t

))
= 1

4
p1h36

(175)

〈q16〉 =
1

mt2

z0+
mt∫

z0

zq16dz =
q16(2z0 +

mt)
2mt

, (176)

where polar moments of the coefficient of shear stiffness of the piezoelectric and ferromag-
net phases are given by:

pQ =
1
3

pcD
66

(
z3

0 − (z0 − pt)3
)

b +
1

12
pcD

55
ptb3 (177)

mQ =
1

12
mGmtb3 +

1
3

mGb
[
(z0 +

mt)3 − z3
0

]
. (178)

The voltage across the piezoelectric phase:

U =
z0∫

z0−pt

pE3dz =
z0∫

z0−pt

(
−h35y ∂α

∂x + h36z ∂α
∂x + βS

33D3

)
dz = pt2〈h36〉 ∂α

∂x + ptβS
33D3. (179)
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The electrical displacement in the piezoelectric phase is given by the following equa-
tion:

D3 =
U

ptβS
33
−

pt〈h36〉
βS

33

∂α

∂x
(180)

Substituting in Equation (173), we find:

M = Q
∂α

∂x
+

bpt〈h36〉
βS

33
U + bmt2〈q16〉h1 (181)

Q = Q̃− bpt3〈h36〉2

βS
33

. (182)

The position of the interface between the piezoelectric and magnetostrictive phases
relative to the axis of rotation of the composite beam z0 is determined from the condition of
minimum effective shear modulus of the sample Q:

∂Q
∂z0

= 0

z0 =
pcD

66
pt2−mc44

mt2

2(mc44
mt+pcD

66
pt)

(183)

The equation of torsional vibrations is:

J
∂α2

∂τ2 =
∂M
∂x

, (184)

where the moment of inertia of the sample per unit width:

J = pρ p I + mρm I , (185)

where the polar moments of the piezoelectric and ferromagnetic are given by:

p I =
1
3

(
z3

0 − (z0 − pt)3
)

b +
1

12
ptb3 (186)

m I =
1
3

(
(z0 +

mt)3 − z3
0

)
b +

1
12

mtb3 (187)

J
∂α2

∂τ2 = Q
∂2α

∂x2 . (188)

The dependence of the twist angle on time is harmonic α ∼ eiωt, therefore, we get:

Q
∂2α

∂x2 + Jω2α = 0, (189)

∂2α

∂x2 + k2α = 0, (190)

where the wave number is:

k = ω

√
J
Q

. (191)

The general solution of the equation of motion is:

α = A cos(kx) + B sin(kx), (192)

A, B are unknown constants.
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Boundary conditions for this case:

M
(

l
2

)
= 0

M
(
− l

2

)
= 0

(193)

∂α

∂x
= k(B cos(kx)− A sin(kx)). (194)

Then, we integrate Equation (179) over x:

Ul = pt2〈h36〉α|
l
2
− l

2
= 2pt2〈h36〉B sin

(
kl
2

)
. (195)

Combining boundary conditions with Equation (195), we obtain a linear system of
three inhomogeneous algebraic equations with three unknowns, A, B, U:

Qk
(

B cos
(

kl
2

)
− A sin

(
kl
2

))
+ bpt〈h36〉

βS
33

U + bmt2〈q16〉h1 = 0

Qk
(

B cos
(

kl
2

)
+ A sin

(
kl
2

))
+ bpt〈h36〉

βS
33

U + bmt2〈q16〉h1 = 0

Ul = 2pt2〈h36〉B sin
(

kl
2

) (196)

Solving this system, the voltage across the piezoelectric can be obtained in the form:

U = −
2〈h36〉βS

33
pt2mt2b〈q16〉 tan

(
kl
2

)
QklβS

33 + 2bpt3〈h36〉2 tan
(

kl
2

) h1. (197)

The average electric field strength in the composite is:

E3 =
U

mt + pt
= −

2〈h36〉βS
33

pt2mt2b〈q16〉 tan
(

kl
2

)
(mt + pt)

(
QklβS

33 + 2bpt3〈h36〉2 tan
(

kl
2

))h1. (198)

As a result, the ME voltage coefficient is obtained as:

αE =
E3

h1
= −

2〈h36〉βS
33

pt2mt2b〈q16〉 tan
(

kl
2

)
(mt + pt)

(
QklβS

33 + 2bpt3〈h36〉2 tan
(

kl
2

)) . (199)

Below, Figure 18 shows the dependence of the ME voltage coefficient on the frequency
of the alternating magnetic field for case, when bimorph LiNbO3 Zyl + 45◦ are taken as
the piezoelectric phase. Metglas is taken as the magnetostrictive phase. The length of ME
composite was l = 23 mm, and width was b = 0.5 mm. In the calculation, the following
material parameters of the initial components were used: for Metglas: mρ = 7180 kg/m3,
mG = 3.85·1010 Pa, q16 = 1.0·10−9 m/A, mt = 29 µm; for LiNbO3 Zyl + 45◦: pρ = 4647 kg/m3,
pcE

55 = 6.75·1010 Pa, pcE
56 = 6.75·1010 Pa, pcE

55 = 7.5·109 Pa, ε33 = 36.5, p1e35 = −p21e35 = 2.5
C/m2, p1e36 = −p21e36 = 2.5 C/m2, pt = 0.4 mm. To take into account losses in the calculation,
it is assumed: ω = 2π(1 + (1/2Qr)i)f, where Qr is the quality factor of the resonant system.
The value of the quality factor was taken the same as for the longitudinal mode Qr = 100.
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( )

2 2
36 33 16

3

231
33 36
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2

E

S p m

m p S p
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E
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α
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The fundamental resonant frequency for this case is:

fr =
1
2l

√
Q
J

. (200)

3.3.2. Quasi-Static Mode

In a magnetostrictive-piezoelectric structure based on bimorph lithium niobate, the
longitudinal-shear mode is not excited due to oppositely directed polarization in the layers
of lithium niobate. Therefore, the expression for the ME voltage coefficient in the quasi-
static mode can be obtained from Equation (199) by assuming the frequency f equal to
zero:

αE = −
〈h36〉βS

33
pt2mt2b〈q16〉

(mt + pt)
(

QβS
33 + bpt3〈h36〉2

) . (201)

Below, Figure 19 shows the dependence of the ME voltage coefficient on the volume
fraction of the piezoelectric material for the asymmetric ME structure Metglas/LiNbO3 Zyl
+ 45◦ for the quasi-static torsional mode.
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4. Discussion

It is necessary to discuss the accuracy of the above formulas for the fundamental
resonant frequencies for various modes. In the case of a longitudinal mode, we turn to the
expression for the ME voltage coefficient Equation (35). Obviously, the resonant frequency
should vanish from the denominator of this expression. However, this denominator consists
of the main term and term proportional to the dimensionless quantity of d2

31/(εε0
pS11). If

this dimensionless quantity is small compared to unity, then the corresponding term in
the denominator can be neglected, and then Equation (36) is obtained for the fundamental
resonant frequency for the longitudinal mode.

If we estimate the value of the dimensionless quantity of d2
31/(εε0

pS11), then for PZT
we get 0.13, and for LN y + 128◦ 0.24. In this case, the main resonant frequency, determined
from the exact plot for PZT Figure 2, is 158 kHz, determined according to the approx-
imate Equation 36 of 151 kHz. Additionally, the main resonant frequency, determined
from the exact graph for LN y + 128◦ Figure 2, is of 296 kHz, and determined from the
approximate Equation 36, is 267 kHz. Obviously, the larger the value of the dimensionless
quantity of d2

31/(εε0
pS11), the more the exact fundamental resonant frequency differs from

the fundamental resonant frequency. To discuss this issue for the bending mode in the
case of a sample with free ends, we turn to the expression for the ME stress coefficient
Equation (65). Likewise, the resonant frequency must vanish from the denominator of this
expression. Similarly, the denominator consists of a principal term and a term proportional
to the dimensionless quantity of pt3〈h31〉2/

(
t3〈c11〉βS

33
)
. If one estimates the value of the

dimensionless quantity of pt3〈h31〉2/
(
t3〈c11〉βS

33
)
, then for PZT it will be 0.0023, and for

LN y + 128◦ it will be 0.0011. In this case, the main resonant frequency, determined from
the exact graph for PZT Figure 6, is of 17,512 Hz, and determined from the approximate
Equation (66) is of 17,498 Hz. Additionally, the main resonant frequency, determined from
the exact graph for LN y + 128◦ Figure 6, is of 33,098 Hz, and determined from the approxi-
mate Equation (66) of 33,086 Hz. Since the values of the dimensionless quantity are much
less than unity for PZT and LN y + 128◦, the differences between the exact fundamental
resonant frequencies and those determined by the approximate formula are negligible.

For the case of a bending mode for a sample with an ME cantilever, the voltage coeffi-
cient is determined by Equation (72), and the approximate formula for the fundamental
resonant frequency is Equation (73). Obviously, the results for this case will be completely
similar to the results for the case for the bending mode for a sample with free ends. To
discuss this issue for the torsional mode, we turn to the expression for the ME voltage
coefficient Equation (151). Likewise, the resonant frequency must vanish from the de-
nominator of this expression. Similarly, the denominator consists of a principal term and
a term, proportional to the dimensionless quantity of pt3〈h31〉2/

(
t3〈c11〉βS

33
)
. The value

of this dimensionless coefficient is much less than unity. Therefore, the main resonant
frequency, determined by the exact graph Figure 15, of 67,809.0 Hz, and determined by the
approximate Equation (152) of 67,809.7 Hz, practically do not differ.

Similarly, questions of accuracy are considered for approximate Equations (115), (152)
and (200) for the main resonant frequencies.

In addition, the correspondence of the described theory to the experimental data
should be noted. The longitudinal and bending modes of the ME effect have been fairly
well studied experimentally. The obtained experimental results are in good agreement
with the stated theory [12,13]. The experimental study of the torsional mode of the ME
effect is just beginning, so it is not yet possible to draw reasonable conclusions about the
correspondence of the theory presented to the experimental data.

5. Conclusions

The article considers the theory of low-frequency direct ME effect in symmetric and
asymmetric magnetostrictive-piezoelectric structures in longitudinal and bending, as well
as longitudinal-shear and torsional modes. Expressions are obtained for the ME voltage co-
efficients in the quasi-static and EMR modes. Additionally, for the EMR mode, approximate
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formulas for the main resonant frequencies were obtained and their accuracy was investi-
gated. For the torsion mode, the advantages of using a bimorph piezoelectric material are
shown, which led to a significant increase in the ME voltage coefficient. A comparison of
the obtained theoretical results with known data from the literature and experiment for
the GaAs-Metglas and LiNbO3-Metglas structures showed satisfactory agreement. The
value of the study, according to the authors, lies in the fact that within the framework of
a unified approach, the main relationships for the ME voltage coefficients for all modes
of low-frequency direct ME effect were obtained. The results obtained can be used for
choosing ME composites that can create new ME devices in the low-frequency range. In
terms of further research, it is of interest to carry out a similar calculation of the inverse
low-frequency ME effect and compare the results obtained.
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