
Citation: Jorayeva, M.; Akbulut, A.;

Catal, C.; Mishra, A. Deep Learning-

Based Defect Prediction for Mobile

Applications. Sensors 2022, 22, 4734.

https://doi.org/10.3390/s22134734

Academic Editors: Ching-Hung Lee

and Lian-Wang Lee

Received: 8 June 2022

Accepted: 19 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep Learning-Based Defect Prediction for
Mobile Applications
Manzura Jorayeva 1,2 , Akhan Akbulut 1 , Cagatay Catal 3 and Alok Mishra 4,5,*

1 Department of Computer Engineering, Istanbul Kültür University, Istanbul 34158, Turkey;
1800004575@stu.iku.edu.tr (M.J.); a.akbulut@iku.edu.tr (A.A.)

2 Yazara Payment Solutions Inc., 230 Park Avenue, 4th Floor, New York, NY 10169, USA
3 Department of Computer Science and Engineering, Qatar University, Doha 2713, Qatar; ccatal@qu.edu.qa
4 Faculty of Logistics, Molde University College—Specialized University in Logistics, 6410 Molde, Norway
5 Department of Software Engineering, Atilim University, Ankara 06830, Turkey
* Correspondence: alok.mishra@himolde.no

Abstract: Smartphones have enabled the widespread use of mobile applications. However, there
are unrecognized defects of mobile applications that can affect businesses due to a negative user
experience. To avoid this, the defects of applications should be detected and removed before release.
This study aims to develop a defect prediction model for mobile applications. We performed cross-
project and within-project experiments and also used deep learning algorithms, such as convolutional
neural networks (CNN) and long short term memory (LSTM) to develop a defect prediction model
for Android-based applications. Based on our within-project experimental results, the CNN-based
model provides the best performance for mobile application defect prediction with a 0.933 average
area under ROC curve (AUC) value. For cross-project mobile application defect prediction, there is
still room for improvement when deep learning algorithms are preferred.

Keywords: software defect prediction; software fault prediction; mobile application; Android applications;
deep learning; machine learning

1. Introduction

Mobile applications are rapidly evolving. Most previous applications were devel-
oped for the management of emails, contacts, calculations, and schedules, but nowadays,
we see very diverse mobile applications that change our lives dramatically. Technology
has also rapidly changed during the last decade, which eventually affected the mobile
application domain.

Technologies such as cloud computing, Internet of Things (IoT), and Blockchain have
helped mobile application developers to develop productivity applications that we did not
anticipate in the past. For instance, with the help of cryptocurrencies and/or Blockchain
infrastructure, people can easily transfer their savings (e.g., USD) from one country to
another because different banks have already started to set up Blockchain networks (e.g.,
Ripplenet) that allow international money transfer between banks and no longer need
specific protocols, which affect the transfer duration. Nowadays, international money
transfers are very fast, like many other activities that we perform these days.

Different mobile applications have been developed recently. For instance, people
started to discover that smartphones have more functional features, such as the use of a
mobile sales assistant with near-field communication (NFC), which enables mobile devices
to identify products by code and display them on mobile devices. This application has
enabled people to reach the product they want faster [1]. The other benefit of mobile
applications is ability to process the credit card information for payment transactions or to
use them for faster payments. The last one is a SoftPOS solution that converts NFC-enabled
Android devices to the normal POS terminals without the need for any additional device.

Sensors 2022, 22, 4734. https://doi.org/10.3390/s22134734 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22134734
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2382-5614
https://orcid.org/0000-0001-9789-5012
https://orcid.org/0000-0003-1275-2050
https://doi.org/10.3390/s22134734
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22134734?type=check_update&version=2

Sensors 2022, 22, 4734 2 of 18

This enables customers to experience in-store shopping while shopping from anywhere.
Since Android devices can be bought by anyone, small businesses can benefit from this
solution at low costs.

In parallel to this rapid progress in software development technologies, user expecta-
tions are also increasing. A small bug in an application affects the reputation of the software
company detrimentally, users have no tolerance for the faults and failures. When a mobile
application software is defective, it affects user experience and software development com-
panies’ reputation dramatically [2]. Insufficient testing in mobile applications can cause
serious problems after release [3]. A defective application cause different difficulties and
waste time [4]. To minimize the number of faults and failures, analyzing previous mobile
application defects can provide the possibility of improving them before deployment [5].

So far, software fault analysis and prevention have been performed using different
techniques, such as static code inspection, early prototyping, adapting fault-tolerant design,
using defensive programming, glass-box and black-box testing, and test automation. Alter-
natively, predictive models use past software metrics and data to predict faulty components
for the next software releases. When there is previous fault data in previous versions,
these defect data are used together with software metrics. Most models so far use machine
learning algorithms. While there have been many different models developed for desktop
and web applications, the number of models for mobile applications is rather limited and
performance is not very satisfactory.

This study aims to develop a fault prediction model for mobile applications. We
focused on Android mobile applications because they are open source and experiments are
repeatable. In this research, we developed our models using deep learning and shallow
learning techniques and applied them to 14 Android application datasets to show the
performance of the models. We designed different deep learning-based models for software
fault prediction in mobile applications. We evaluated the following research questions in
this research:

• RQ1. To what extent can we predict the software faults using cross-project for mobile
apps using deep learning approaches? Here, the goal is to understand how deep
learning algorithms perform regarding mobile applications.

• RQ2. Can we improve the performance of deep learning models using data balancing
approaches? The aim of this research question is to evaluate the effect of data balancing
techniques.

• RQ3. Can we improve the performance of deep learning-based fault prediction models
using feature engineering techniques?

• RQ4. To what extent can LSTM-based deep learning architecture predict software
faults for mobile apps?

The paper is categorized as follows: The Section 2 presents the background and
related work. Section 3 discusses the research methodology. Section 4 shows the model
development. Section 5 explains the experimental results. Section 6 shows the discussion
and Section 7 presents the conclusions.

2. Background and Related Work

A study on the identification of defects in software was presented by Akiyama [6].
However, the initial defect prediction studies using machine learning techniques started
in early 2000s. Our methodology is different than the study of Akiyama because neither
machine learning nor deep learning algorithms were applied by Akiyama [6] at that time.
Recently, the mobile phone market has undergone a huge evolution. Very diverse mobile
applications have been developed. However, there are still unrecognized defects of mobile
applications that can affect businesses. To avoid this, defects of applications should be
reviewed before releases. The benefit of these prediction models is that more testing
resources can be allocated to fault-prone modules effectively.

Software engineers first test the functionality of code on the local systems to compare
actual and expected results. When they find the difference between actual and expected

Sensors 2022, 22, 4734 3 of 18

code it becomes a defect. Software defects affect software quality. When a test engineer
is testing code and finds the difference between actual and expected results, this is a bug.
Error is a mistake in the code; while writing code, developers are not able to run or compile
code. Failure is when the program is ready and customer-facing issues are in production.
There are a few types of software defects: errors of commissions, errors of omission, errors
of clarity, errors of speed, and capacity. The error of commissions means the error in
command. The error of omission means the closing of a bracket was forgotten, left, or
excluded. The error of clarity means a misunderstanding between developer and customer.
The error of speed or capacity means the program works but not in the allowed time.

Machine learning uses various algorithms to analyze and learn data then make predic-
tions and take decisions for future. Nowadays machine learning is a well-known technique
and used in different areas, such as healthcare [7–10], industrial applications [11], bank-
ing [12], telecommunication [13,14], software development [15], etc. Machine learning is
also used for regression tasks and defective classes (i.e., binary class classification). Ma-
chine learning has the following classifications: in supervised learning, it practices labelling
data to detect traits. Unsupervised learning evaluates non-labeled data to identify hidden
structures through determining the correlations of features. The algorithm can benefit from
a limited number of labeled text documents for clustering and dimensionality reduction.
Semi-supervised learning is used when data points are unlabeled, and only a tiny percent-
age of data is labeled. The last category is reinforcement learning, which helps to solve
problems with trial and error.

Even though software architecture has shifted from monolithic applications to mi-
croservice architecture [16] today, software fault prediction is always a problem to be solved.
All related articles published in the last three decades on software defect prediction and
mobile applications defect prediction research have been extensively studied. Nevertheless,
only exceptionally were articles published after the first decade of our century. Alsolai et al.
analyzed publications focused on the defect prediction of OO Software systems using ap-
plied machine learning techniques and proposed a systematic literature review. The authors
used private datasets and affairs on publicly available datasets. They applied to model
k-fold cross-validation methods and detailed regression tasks. Additionally, various studies
implemented unique models [17]. Perez and Tah developed a mobile application to detect
defects on buildings using deep learning techniques. The application worked with a smart-
phone camera to recognize various problems on buildings [18]. Zhao et al. (2022) proposed
a model for imbalanced datasets of 15 Android applications. They used feature learning
with loss function into deep learning for imbalance issue and their model performance was
better when compared to 25 defect prediction models [19]. Dong et al. (2017) proposed a
study on the defect prediction of Android apk files. They used deep neural network for
50 Android apk files and obtained 85.98% accuracy. Deep neural networks achieved better
results than traditional machine learning techniques [20]. Cheng et al. (2022) performed
a model for a cross-project to predict defects of code committed before new releases of
Android applications. They used adversarial learning and experimented on 14 Android
applications. This model gives better results when compared with 20 others [21].

Kaya et al. presented a study and defect prediction model on machine learning
and software metrics using data sampling methods. They described the point of data
sampling methods for imbalanced datasets to improve defect prediction performance.
They mentioned the Adaboost algorithm as the best for defect prediction [22]. Kaur et al.
performed a study for mobile app defect prediction, which used publicly available datasets.
Process metrics-based machine learning models were named as the best predictors [23].
Zhao et al. created a model for Android application defect prediction. To 12 applications
datasets they applied loss function for imbalance class problems and deep learning models
for defect prediction. They pointed out that IDL model performance is better than other
models [24]. Sewak et al. researched different variations of LSTM and presented a study
on malware detection using LSTM networks [25]. Most of these models used traditional
machine learning algorithms. Only a few studies used deep learning algorithms for

Sensors 2022, 22, 4734 4 of 18

model development. In our model, we use artificial neural networks, convolutional neural
networks, and long short term memory to solve defect prediction for Android applications.

3. Research Methodology

In order to make design decisions for the model to be developed in this study, we
conducted a systematic literature review (SLR) study on this topic [26]. We identified
nine research questions and applicable papers were reclaimed from digital platforms. We
applied selection criteria to the selected studies and organized them for quality assessment.
Each article was carefully considered according to quality assessment questions. First, we
reviewed previous studies on software defect prediction and categorized them into three
groups. Web applications, mobile Android applications, and Windows phone application
defect prediction. There were many studies on web application defect prediction; however,
for Windows phone application there were only limited resources, and for Android mobile
application defect prediction only a few studies had been published. We carefully studied
each publication and performed a study on mobile application defect prediction using
machine learning methods. From obtained results in the literature review, we decided to
develop a model for Android application defect prediction using deep learning techniques
because studies on this are very limited. For the model development process, we first
identified three research questions. We reviewed previous studies to identify models
developed for Android application predictions. We recognized that only a few deep
learning algorithms were applied. Therefore, we collected Android application datasets,
completed data processing, and developed a model using deep learning algorithms. We
attempted to answer the identified research questions after the model development process
was completed. Figure 1 shows the methodology of this study.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 19

they applied loss function for imbalance class problems and deep learning models for de-
fect prediction. They pointed out that IDL model performance is better than other models
[24]. Sewak et al. researched different variations of LSTM and presented a study on mal-
ware detection using LSTM networks [25]. Most of these models used traditional machine
learning algorithms. Only a few studies used deep learning algorithms for model devel-
opment. In our model, we use artificial neural networks, convolutional neural networks,
and long short term memory to solve defect prediction for Android applications.

3. Research Methodology
In order to make design decisions for the model to be developed in this study, we

conducted a systematic literature review (SLR) study on this topic [26]. We identified nine
research questions and applicable papers were reclaimed from digital platforms. We ap-
plied selection criteria to the selected studies and organized them for quality assessment.
Each article was carefully considered according to quality assessment questions. First, we
reviewed previous studies on software defect prediction and categorized them into three
groups. Web applications, mobile Android applications, and Windows phone application
defect prediction. There were many studies on web application defect prediction; how-
ever, for Windows phone application there were only limited resources, and for Android
mobile application defect prediction only a few studies had been published. We carefully
studied each publication and performed a study on mobile application defect prediction
using machine learning methods. From obtained results in the literature review, we de-
cided to develop a model for Android application defect prediction using deep learning
techniques because studies on this are very limited. For the model development process,
we first identified three research questions. We reviewed previous studies to identify
models developed for Android application predictions. We recognized that only a few
deep learning algorithms were applied. Therefore, we collected Android application da-
tasets, completed data processing, and developed a model using deep learning algo-
rithms. We attempted to answer the identified research questions after the model devel-
opment process was completed. Figure 1 shows the methodology of this study.

Figure 1. Methodology of SLR.

4. Model Development
The goal of this study was to develop a model for mobile application defect predic-

tion using deep learning algorithms. We used Python data science libraries, NumPy for
numerical processing, pandas for data analysis, Matplotlib for visualization, and sklearn

Figure 1. Methodology of SLR.

4. Model Development

The goal of this study was to develop a model for mobile application defect prediction
using deep learning algorithms. We used Python data science libraries, NumPy for nu-
merical processing, pandas for data analysis, Matplotlib for visualization, and sklearn for
processing machine learning datasets. Machine learning is the practice of using algorithms
to analyze data, learn from that data, and then decide on or predict new data. In machine
learning, we can use different algorithms to classify and predict the desired output. How-
ever, machine learning algorithms do not consider the context of the word as a sequence. It
works based on the number of times the word has been repeated, a probability is derived,
and then it performs a classification task. Deep learning learns a pattern of a word or a
sequence and then tries to predict the desired outcome of the task. For deep learning, we
prefer Keras API Classes. To use Estimator API, we define a list of feature columns, create

Sensors 2022, 22, 4734 5 of 18

the Estimator model, create a data input function, call, train, evaluate, and predict methods
on the Estimator object.

4.1. Datasets

We used 14 available open-source Android application datasets from previous stud-
ies [27]. The datasets are available on the COMMIT GURU platform [28]. The datasets are
numerical, of different sizes, and include six columns and 34.042 lines. Table 1 shows the
names of datasets, web addresses, and the total number of downloads.

Table 1. Datasets.

Datasets Repository Lines Downloads

Afwall https://github.com/ukanth/afwall (accessed on 21 January 2022) 1025 500,000

Alfresco https://github.com/Alfresco/alfresco-android-app (accessed on
21 January 2022) 1004 50,000

androidSync https://figshare.com/s/9a075be3e1fb64f76b48 (accessed on
21 January 2022) 209 100,000

androidWallpaper https://github.com/olivergeith/android_wallpaperDesigner
(accessed on 21 January 2022) 588 5,000,000

anySoftKeyboard https://github.com/AnySoftKeyboard/AnySoftKeyboard (accessed
on 21 January 2022) 2971 25,271

Apg https://github.com/thialfihar/apg (accessed on 21 January 2022) 3780 N/A

atmosphere https://github.com/Atmosphere/atmosphere (accessed on
21 January 2022) 5474 1,000,000

chatSecure https://github.com/guardianproject/ChatSecureAndroid (accessed
on 21 January 2022) 2579 N/A

facebook https://github.com/facebook/facebook-android-sdk (accessed on
21 January 2022) 548 5,000,000,000

flutter https://github.com/flutter/flutter (accessed on 21 January 2022) 10,405 100,000

kiwis https://github.com/kiwix/kiwix-android (accessed on
21 January 2022) 1373 1,000,000

owncloudandroid https://github.com/owncloud/android (accessed on 21 January 2022) 3700 100,000

Pageturner https://github.com/NightWhistler/PageTurner (accessed on
21 January 2022) 164 50,000

reddit https://github.com/emmaguy/wear-notify-for-reddit (accessed on
21 January 2022) 222 50,000,000

4.2. Data Processing

We controlled the number of examples belonging to the true or false class to identify
dataset types. The dataset is imbalanced (false class is larger than true class), as shown in
Figure 2. Then we searched for null values in the datasets, as if datasets contain nonvalues,
it will create a problem. We changed null values belonging to the feature columns, which
we filled with zero values (zero means this feature has no effects on prediction) and false
for the Contains Bug folder. Then we split the dataset X-feature columns, Y-class columns,
data X-input, and data Y-output.

We used a labeling approach to encode specific numbers (0,1,2) and sklearn preprocess-
ing technique to transform 0 as false and 1 for true. After this, we identified our datasets
into train and test in each loop: X_train, X_test, Y_train, Y_state, X features, and Y classes.
We used a random state as the parameter of test split, each time the cells were run if we
had 1000 examples in the dataset, the random state would randomly choose 80 percent
of the training and test datasets. We checked X_train and shaped X_test. In order to see
how many shape examples we obtained: we split and obtained the size. The correlation
between every feature is shown in Figure 3.

https://github.com/ukanth/afwall
https://github.com/Alfresco/alfresco-android-app
https://figshare.com/s/9a075be3e1fb64f76b48
https://github.com/olivergeith/android_wallpaperDesigner
https://github.com/AnySoftKeyboard/AnySoftKeyboard
https://github.com/thialfihar/apg
https://github.com/Atmosphere/atmosphere
https://github.com/guardianproject/ChatSecureAndroid
https://github.com/facebook/facebook-android-sdk
https://github.com/flutter/flutter
https://github.com/kiwix/kiwix-android
https://github.com/owncloud/android
https://github.com/NightWhistler/PageTurner
https://github.com/emmaguy/wear-notify-for-reddit

Sensors 2022, 22, 4734 6 of 18

Sensors 2022, 22, x FOR PEER REVIEW 6 of 19

for the Contains Bug folder. Then we split the dataset X-feature columns, Y-class columns,
data X-input, and data Y-output.

Figure 2. Dataset classes distribution.

We used a labeling approach to encode specific numbers (0,1,2) and sklearn prepro-
cessing technique to transform 0 as false and 1 for true. After this, we identified our da-
tasets into train and test in each loop: X_train, X_test, Y_train, Y_state, X features, and Y
classes. We used a random state as the parameter of test split, each time the cells were run
if we had 1000 examples in the dataset, the random state would randomly choose 80 per-
cent of the training and test datasets. We checked X_train and shaped X_test. In order to
see how many shape examples we obtained: we split and obtained the size. The correla-
tion between every feature is shown in Figure 3.

Figure 3. Correlation between features.

4.3. Validation
We applied a 10-fold cross-validation to the dataset to evaluate the performance of

our model. The accuracy of the random state might not show the actual performance. Yet
applying cross-validation, we can resolve this problem. We split the dataset into 10 folds,
and cross-validation uses 10 blocks to train the methods and then the last block to test the
method and keep track how of how well the method did with the test data. From the
training set, we obtained the best learning result from the test’s best validation result. We

Figure 2. Dataset classes distribution.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 19

for the Contains Bug folder. Then we split the dataset X-feature columns, Y-class columns,
data X-input, and data Y-output.

Figure 2. Dataset classes distribution.

We used a labeling approach to encode specific numbers (0,1,2) and sklearn prepro-
cessing technique to transform 0 as false and 1 for true. After this, we identified our da-
tasets into train and test in each loop: X_train, X_test, Y_train, Y_state, X features, and Y
classes. We used a random state as the parameter of test split, each time the cells were run
if we had 1000 examples in the dataset, the random state would randomly choose 80 per-
cent of the training and test datasets. We checked X_train and shaped X_test. In order to
see how many shape examples we obtained: we split and obtained the size. The correla-
tion between every feature is shown in Figure 3.

Figure 3. Correlation between features.

4.3. Validation
We applied a 10-fold cross-validation to the dataset to evaluate the performance of

our model. The accuracy of the random state might not show the actual performance. Yet
applying cross-validation, we can resolve this problem. We split the dataset into 10 folds,
and cross-validation uses 10 blocks to train the methods and then the last block to test the
method and keep track how of how well the method did with the test data. From the
training set, we obtained the best learning result from the test’s best validation result. We

Figure 3. Correlation between features.

4.3. Validation

We applied a 10-fold cross-validation to the dataset to evaluate the performance of
our model. The accuracy of the random state might not show the actual performance. Yet
applying cross-validation, we can resolve this problem. We split the dataset into 10 folds,
and cross-validation uses 10 blocks to train the methods and then the last block to test
the method and keep track how of how well the method did with the test data. From
the training set, we obtained the best learning result from the test’s best validation result.
We believe that the assessment of our model will be more accurate when using a 10-fold
cross-validation.

4.4. Feature Engineering

We used supervised deep learning to predict features in the dataset. Features have
two critical properties: units and the magnitude computed with them. When we have a
different feature in the dataset, it is calculated by various units and magnitudes. To run
data into a neural network, we had to scale it using two techniques—normalization and

Sensors 2022, 22, 4734 7 of 18

standardization used for data scaling. Normalization scales down data between 0 to 1 and
standardization helps to scale down data based on a standard normal distribution. We
needed to scale down values between 0 to 1 in deep learning. In convolutional neural
network images, pixels are between 0 to 1. An artificial neural network, which uses
TensorFlow and Keras libraries, except for input between 0 to 1, will help the learning of
weights quickly. To achieve that, we used a MinMaxScaler. We created an instance of a
MinMaxScaler and after this we fit our data. Fitting the data allows the model to know
each column’s minimum and maximum values.

4.5. Data Balancing

As we detailed in previous sections, we are searching for solutions for the detection
of mobile application defects. Additionally, we are working on Android applications’
numerical datasets. In binary classification, we ended up with one class, which is essential
for this study. However, we do not have enough data. In our datasets, a majority class
is more significant than a minority class, and we have a class imbalance problem. Our
minority class is a focus class. There are a few techniques to create fake data and balance
datasets: random oversampling—from the imblearn library—makes a new sample for the
minority class by sampling with replacements. We discovered that in literature studies,
RandomOverSampler reported that their model did not provide the best performance;
therefore, we dropped this method. Random undersampling picks random samples of the
majority class, and after sampling, the majority class and minority class have the same data
points. The near-miss undersampling method uses KNN to perform undersampling. There
are a few types of this method, near-miss selects positive samples from the nearest distance
to the farthest distance and keeps negative samples and positive samples of the average
of N closest and most significant. We focused on SMOTE because of its performance and
used a Python imblearn library and the oversampling method SMOTE to balance the
trained dataset and increase the minority class of the dataset in Figure 4. SMOTE takes
each minority sample and introduces synthetic data points connecting the minority sample
and its nearest neighbors. Neighbors of the K-nearest neighbors were chosen randomly,
using the same random oversampling.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 19

believe that the assessment of our model will be more accurate when using a 10-fold cross-
validation.

4.4. Feature Engineering
We used supervised deep learning to predict features in the dataset. Features have

two critical properties: units and the magnitude computed with them. When we have a
different feature in the dataset, it is calculated by various units and magnitudes. To run
data into a neural network, we had to scale it using two techniques—normalization and
standardization used for data scaling. Normalization scales down data between 0 to 1 and
standardization helps to scale down data based on a standard normal distribution. We
needed to scale down values between 0 to 1 in deep learning. In convolutional neural
network images, pixels are between 0 to 1. An artificial neural network, which uses Ten-
sorFlow and Keras libraries, except for input between 0 to 1, will help the learning of
weights quickly. To achieve that, we used a MinMaxScaler. We created an instance of a
MinMaxScaler and after this we fit our data. Fitting the data allows the model to know
each column’s minimum and maximum values.

4.5. Data Balancing
As we detailed in previous sections, we are searching for solutions for the detection

of mobile application defects. Additionally, we are working on Android applications’ nu-
merical datasets. In binary classification, we ended up with one class, which is essential
for this study. However, we do not have enough data. In our datasets, a majority class is
more significant than a minority class, and we have a class imbalance problem. Our mi-
nority class is a focus class. There are a few techniques to create fake data and balance
datasets: random oversampling—from the imblearn library—makes a new sample for the
minority class by sampling with replacements. We discovered that in literature studies,
RandomOverSampler reported that their model did not provide the best performance;
therefore, we dropped this method. Random undersampling picks random samples of the
majority class, and after sampling, the majority class and minority class have the same
data points. The near-miss undersampling method uses KNN to perform undersampling.
There are a few types of this method, near-miss selects positive samples from the nearest
distance to the farthest distance and keeps negative samples and positive samples of the
average of N closest and most significant. We focused on SMOTE because of its perfor-
mance and used a Python imblearn library and the oversampling method SMOTE to bal-
ance the trained dataset and increase the minority class of the dataset in Figure 4. SMOTE
takes each minority sample and introduces synthetic data points connecting the minority
sample and its nearest neighbors. Neighbors of the K-nearest neighbors were chosen ran-
domly, using the same random oversampling.

Figure 4. Data balancing after SMOTE. Figure 4. Data balancing after SMOTE.

4.6. Deep Learning Algorithms

This section identifies algorithms used for the defect prediction model development
of Android applications. We analyzed previous studies and identified most studies used
traditional machine learning methods and focused on web and desktop applications. Deep
learning algorithms were used in a few studies but for mobile applications, limited research

Sensors 2022, 22, 4734 8 of 18

was observed. We developed our model with deep learning algorithms and believe that
the performance of our model can be used to solve the problems.

Artificial Neural Networks are computing systems inspired by the brain’s neural net-
works. These networks are based on a collection of connected units called artificial neurons.
Each connection between neurons can transmit a signal from one neuron to another. The
receiving neuron processes the signal and signals the downstream neurons connected to it.
The structure of artificial neural networks has the following features: neurons organized in
layers; input layer (absolute values from the data); hidden layers (layers between input and
output, three or more hidden layers is “deep network”); and output layer (final estimate of
the output). Artificial neural networks are typically organized in layers. Different types of
layers include dense (or fully connected) layers, convolutional layers, pooling layers, and
recurrent layers. Additional layers may perform various transformations on their inputs.
The convolutional layer is most likely used with image data, the recurrent layer is used
for time-series data, and the dense layer is a layer that connects each input to each output
within its layer. We used the Keras library to build our neural network. Our model is
sequential; we have an input layer, three hidden layers, and an output layer—our artificial
neural network model is shown in Figure 5. We used a kernel initializer for weights and
activation functions, such as Relu, SoftMax, and Sigmoid; we also used Adam optimizer
and binary_crossentropy to evaluate our model. We started building our artificial neural
network model with an input layer with six nodes because we have six columns in our
dataset. Then we added hidden layers 12, 10, and 3 nodes and the output layers are one
node. Our model trained for 100 epochs. An epoch is when all datasets pass a neural
network, then continues. We needed to learn from the dataset and update the model. The
batch size is how much data we want to process in a loop step by step. First ten samples are
obtained, then the artificial neural network gives another ten until the end with randomly
given samples. The architecture of our artificial neural network is shown in Figure 5. We
performed tests on the dataset to predict accuracy. Following that, we evaluated the model
with 10-fold cross-validation and calculated the ROC AUC, confusion matrix, and accuracy
metrics.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 19

4.6. Deep Learning Algorithms
This section identifies algorithms used for the defect prediction model development

of Android applications. We analyzed previous studies and identified most studies used
traditional machine learning methods and focused on web and desktop applications.
Deep learning algorithms were used in a few studies but for mobile applications, limited
research was observed. We developed our model with deep learning algorithms and be-
lieve that the performance of our model can be used to solve the problems.

Artificial Neural Networks are computing systems inspired by the brain’s neural net-
works. These networks are based on a collection of connected units called artificial neu-
rons. Each connection between neurons can transmit a signal from one neuron to another.
The receiving neuron processes the signal and signals the downstream neurons connected
to it. The structure of artificial neural networks has the following features: neurons orga-
nized in layers; input layer (absolute values from the data); hidden layers (layers between
input and output, three or more hidden layers is “deep network”); and output layer (final
estimate of the output). Artificial neural networks are typically organized in layers. Dif-
ferent types of layers include dense (or fully connected) layers, convolutional layers, pool-
ing layers, and recurrent layers. Additional layers may perform various transformations
on their inputs. The convolutional layer is most likely used with image data, the recurrent
layer is used for time-series data, and the dense layer is a layer that connects each input
to each output within its layer. We used the Keras library to build our neural network.
Our model is sequential; we have an input layer, three hidden layers, and an output
layer—our artificial neural network model is shown in Figure 5. We used a kernel initial-
izer for weights and activation functions, such as Relu, SoftMax, and Sigmoid; we also
used Adam optimizer and binary_crossentropy to evaluate our model. We started build-
ing our artificial neural network model with an input layer with six nodes because we
have six columns in our dataset. Then we added hidden layers 12, 10, and 3 nodes and the
output layers are one node. Our model trained for 100 epochs. An epoch is when all da-
tasets pass a neural network, then continues. We needed to learn from the dataset and
update the model. The batch size is how much data we want to process in a loop step by
step. First ten samples are obtained, then the artificial neural network gives another ten
until the end with randomly given samples. The architecture of our artificial neural net-
work is shown in Figure 5. We performed tests on the dataset to predict accuracy. Follow-
ing that, we evaluated the model with 10-fold cross-validation and calculated the ROC
AUC, confusion matrix, and accuracy metrics.

Figure 5. Artificial neural networks. Figure 5. Artificial neural networks.

CNN is an artificial neural network that is used for analyzing images. It is mostly used
for image and vision-based data analysis or data classification problems. Most generally,
we think of CNN as an artificial neural network specializing in picking out or detecting
patterns or making sense of them. This pattern detection is what makes CNN useful for
image analysis. Convolutional neural networks are just a form of artificial neural networks

Sensors 2022, 22, 4734 9 of 18

with different shapes from a standard MLP. CNN has hidden layers called convolutional
layers, and it is precisely this layer that makes CNN. CNN has other non-convolutional
layers, but the basis of a CNN is the convolutional layer. The convolutional layer receives
input and then transforms and outputs the transformed input layer. With a convolutional
layer, this transform is a convolutional operation. Recall that Tensors are N-dimensional
arrays that we build up to: Scaler—3, Vector—[3–5], Matrix—([3,4], [5,6], [7,8]), Tensor—
(([1,2], [3,4]), ([5,6], [7,8])). Tensors make it very convenient to feed in sets of images into
our model—(I, H, W, C). I: images; H: height of image in pixels; W: width of image in
pixels; C: color channels: 1-Grayscale, 3-RGB. To understand the difference between a
densely connected neural network and a convolutional neural network, recall that we were
already able to create a deep neural network with tf.estimator API. In a densely connected
layer, every neuron in one layer is directly connected to every other neuron in another
layer. For the convolutional layer, we take a different approach. Each unit is connected to
a smaller number of nearby units in the next layer. Convolutions also have a significant
advantage for image processing, where pixels nearby are much more correlated to each
other for image detection. Each convolution neural network layer looks at an increasingly
more significant image part. Having units only connected to nearby units also helps with
regularization, limiting the search of weights to the size of the convolution. Convolutional
neural networks did not exist before for mobile application defect prediction. We decided
to build a sequential model using convolutional neural networks as well. We used Keras
library, NumPy, sklearn libraries, Conv2D, MaxPooling2D, dropout, flatten, dense layers,
and activation functions, such as Relu, SoftMax, and sigmoid. We reshaped our train
and test data to make it easy to process our model efficiently. We compiled a model to
measure performance with the Adam optimizer and used loss functions, such as binary
cross-entropy. Convolutional neural network model parameters are presented in Figure 6.
We started building our convolutional neural network with the sequential method and
convolution layer. The convolution means core between blocks of CNN. We applied a
2D convolutional layer with 64 filters and one kernel size and we defined Relu (rectified
linear unit activation function). Input data was multiplied by weights and the point of
the training model was by adjusting weights and biases to find the appropriate values
representing the training data. Neurons obtain a variety of signals and outputs the signals.
The activation function decides whether to output the signals or not. There are a few
types of activation functions. Sigmoid is used to predict the probability of output. Relu
is used most in convolutional neural networks and other classifications. As the second
layer, we applied the max pooling 2D layer with 1,6 filters in our model. The max pooling
2D operation takes the higher value from the convolutional layer and replaces it with the
output. There are also different types of pooling layers, such as the mean pooling layer,
which takes the low values from the convolutional layer output and replaces it with the
mean pooling layer output. The third layer of our model is the convolutional 2D layer
with 32 filters and one kernel size, and the activation function is Relu. Then we added the
max pooling 2D layer with 1,1 filters. We used the dropout layer to reduce the overfitting
problem. Then we applied the flatten layer to our model because the last layer is dense,
and the artificial neural network requires values in a 1D feature vector. Flattening enables
the output of the convolutional or max pooling layer to flatten all its structures in order
to create a single feature vector that the dense layer can use for final classification. We
added a dense layer with 250 nodes and the activation function SoftMax because it gives
the best performance and then the dropout layer. The final output layer had one node and
activation function Sigmoid. We compiled the model with the Adam optimizer based on
datasets, and for deciding parameters, we used the loss function binary cross-entropy. We
trained a convolutional neural network with 100 epochs and 10 batch sizes. Figure 6 shows
the architecture of a convolutional neural network.

Sensors 2022, 22, 4734 10 of 18

Sensors 2022, 22, x FOR PEER REVIEW 10 of 19

Adam optimizer based on datasets, and for deciding parameters, we used the loss func-
tion binary cross-entropy. We trained a convolutional neural network with 100 epochs
and 10 batch sizes. Figure 6 shows the architecture of a convolutional neural network.

Figure 6. Convolutional neural networks.

LSTM is an artificial recurrent neural network (RNN) architecture type, and it is used
in deep learning. It allows neural networks to remember data and forget non-applicable
data. We can say that long short term memory is a type of recurrent neural network. Re-
current neural networks are good for short context classification. In a recurrent neural
network, processed input data after output is provided to the input in the next step and
new input data. It allows a recurrent neural network to remember previous steps in the
sequence. A typical LSTM network is shown in Figure 7.

Figure 7. Long short term memory cells.

However, in recurrent neural network, more data is a problem. It makes not effective
in learning new data. Long short term memory is designed for those issues of recurrent
neural networks. Long short term memory provides a solution for this problem; it is a
named state. The state is a cell consisting of four parts and each part is a gate: forget gate,
memory gate, input gate, and output gate. Forget gate is the sort of state in which data
stored in the internal state can be forgotten and is no longer relevant. Input gate is what
new data we should add or update into working storage data. Output gate is all the data
stored in the state of which part should be output immediately. Numbers between 0–1 can
be assigned to these gates; 0 means the gates are effectively closed, and one means the
gate is wide open. We can make regularizations on them, add, or add a little bit. LSTM
cells are shown in Figure 8.

Figure 6. Convolutional neural networks.

LSTM is an artificial recurrent neural network (RNN) architecture type, and it is used
in deep learning. It allows neural networks to remember data and forget non-applicable
data. We can say that long short term memory is a type of recurrent neural network.
Recurrent neural networks are good for short context classification. In a recurrent neural
network, processed input data after output is provided to the input in the next step and
new input data. It allows a recurrent neural network to remember previous steps in the
sequence. A typical LSTM network is shown in Figure 7.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 19

Adam optimizer based on datasets, and for deciding parameters, we used the loss func-
tion binary cross-entropy. We trained a convolutional neural network with 100 epochs
and 10 batch sizes. Figure 6 shows the architecture of a convolutional neural network.

Figure 6. Convolutional neural networks.

LSTM is an artificial recurrent neural network (RNN) architecture type, and it is used
in deep learning. It allows neural networks to remember data and forget non-applicable
data. We can say that long short term memory is a type of recurrent neural network. Re-
current neural networks are good for short context classification. In a recurrent neural
network, processed input data after output is provided to the input in the next step and
new input data. It allows a recurrent neural network to remember previous steps in the
sequence. A typical LSTM network is shown in Figure 7.

Figure 7. Long short term memory cells.

However, in recurrent neural network, more data is a problem. It makes not effective
in learning new data. Long short term memory is designed for those issues of recurrent
neural networks. Long short term memory provides a solution for this problem; it is a
named state. The state is a cell consisting of four parts and each part is a gate: forget gate,
memory gate, input gate, and output gate. Forget gate is the sort of state in which data
stored in the internal state can be forgotten and is no longer relevant. Input gate is what
new data we should add or update into working storage data. Output gate is all the data
stored in the state of which part should be output immediately. Numbers between 0–1 can
be assigned to these gates; 0 means the gates are effectively closed, and one means the
gate is wide open. We can make regularizations on them, add, or add a little bit. LSTM
cells are shown in Figure 8.

Figure 7. Long short term memory cells.

However, in recurrent neural network, more data is a problem. It makes not effective
in learning new data. Long short term memory is designed for those issues of recurrent
neural networks. Long short term memory provides a solution for this problem; it is a
named state. The state is a cell consisting of four parts and each part is a gate: forget gate,
memory gate, input gate, and output gate. Forget gate is the sort of state in which data
stored in the internal state can be forgotten and is no longer relevant. Input gate is what
new data we should add or update into working storage data. Output gate is all the data
stored in the state of which part should be output immediately. Numbers between 0–1 can
be assigned to these gates; 0 means the gates are effectively closed, and one means the gate
is wide open. We can make regularizations on them, add, or add a little bit. LSTM cells are
shown in Figure 8.

Sensors 2022, 22, 4734 11 of 18Sensors 2022, 22, x FOR PEER REVIEW 11 of 19

Figure 8. Long short term memory architecture.

We used the long short term memory model for Android application defect predic-
tion. We imported Keras and TensorFlow libraries, and because LSTM expects data in a
specific shape, we reshaped our data. We defined the num_of_samples, timesteps, nb_fea-
tures, and nb_out. We started building our model with the sequential method and added
the first LSTM layer with 100 units. We used true return sequences because we wanted
each output signal to be returned to an input. The second layer used dropout to reduce
overfitting. The third layer was LSTM, with 50 false units and returns sequences, then
dropout layer was used.

The last layer was dense with the activation function Sigmoid. We compiled our
model with binary cross-entropy and the Adam optimizer and accuracy metrics. Figure 8
shows LSTM architecture. We trained our model and evaluated the results with 10-fold
cross-validation. Model loss and accuracy curves are presented in Figure 9. Since there
was a large gap between training and testing curves, we had to update the model settings
for the last experiments. We were able to minimize this gap after the model parameter
adjustments. Figure 9 belongs to the previous experimental settings, which were later up-
dated during the fine-tuning of the model.

(a) (b)

Figure 9. Long short term memory model (a) accuracy and (b) loss.

Figure 8. Long short term memory architecture.

We used the long short term memory model for Android application defect prediction.
We imported Keras and TensorFlow libraries, and because LSTM expects data in a specific
shape, we reshaped our data. We defined the num_of_samples, timesteps, nb_features, and
nb_out. We started building our model with the sequential method and added the first
LSTM layer with 100 units. We used true return sequences because we wanted each output
signal to be returned to an input. The second layer used dropout to reduce overfitting. The
third layer was LSTM, with 50 false units and returns sequences, then dropout layer was
used.

The last layer was dense with the activation function Sigmoid. We compiled our
model with binary cross-entropy and the Adam optimizer and accuracy metrics. Figure 8
shows LSTM architecture. We trained our model and evaluated the results with 10-fold
cross-validation. Model loss and accuracy curves are presented in Figure 9. Since there
was a large gap between training and testing curves, we had to update the model settings
for the last experiments. We were able to minimize this gap after the model parameter
adjustments. Figure 9 belongs to the previous experimental settings, which were later
updated during the fine-tuning of the model.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 19

Figure 8. Long short term memory architecture.

We used the long short term memory model for Android application defect predic-
tion. We imported Keras and TensorFlow libraries, and because LSTM expects data in a
specific shape, we reshaped our data. We defined the num_of_samples, timesteps, nb_fea-
tures, and nb_out. We started building our model with the sequential method and added
the first LSTM layer with 100 units. We used true return sequences because we wanted
each output signal to be returned to an input. The second layer used dropout to reduce
overfitting. The third layer was LSTM, with 50 false units and returns sequences, then
dropout layer was used.

The last layer was dense with the activation function Sigmoid. We compiled our
model with binary cross-entropy and the Adam optimizer and accuracy metrics. Figure 8
shows LSTM architecture. We trained our model and evaluated the results with 10-fold
cross-validation. Model loss and accuracy curves are presented in Figure 9. Since there
was a large gap between training and testing curves, we had to update the model settings
for the last experiments. We were able to minimize this gap after the model parameter
adjustments. Figure 9 belongs to the previous experimental settings, which were later up-
dated during the fine-tuning of the model.

(a) (b)

Figure 9. Long short term memory model (a) accuracy and (b) loss. Figure 9. Long short term memory model (a) accuracy and (b) loss.

Sensors 2022, 22, 4734 12 of 18

4.7. Accuracy Metrics

In this section, we explain accuracy metrics used in this study. We trained our model
in training data and tested it with testing data. Now we need to summarize our predicted
results. One way to achieve this is using the confusion matrix method. We have two cate-
gories, faulty and non-faulty, and in the last column we have true positives. True negatives
(TN) refer to the non-faulty classes correctly identified by the algorithm; false negatives
(FN) are faulty classes, but non-faulty classes predicted by the algorithm; false positives
(FP) are non-faulty classes, but the algorithm predicts that they are faulty. Figure 10 shows
the confusion matrix example.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 19

4.7. Accuracy Metrics
In this section, we explain accuracy metrics used in this study. We trained our model

in training data and tested it with testing data. Now we need to summarize our predicted
results. One way to achieve this is using the confusion matrix method. We have two cate-
gories, faulty and non-faulty, and in the last column we have true positives. True nega-
tives (TN) refer to the non-faulty classes correctly identified by the algorithm; false nega-
tives (FN) are faulty classes, but non-faulty classes predicted by the algorithm; false posi-
tives (FP) are non-faulty classes, but the algorithm predicts that they are faulty. Figure 10
shows the confusion matrix example.

Figure 10. Confusion matrix example.

We use a binary classification because of the dataset type. In classification, there are
two statements: class labels and probability. We applied confusion matrix to see how
many predicted classes were correctly predicted and how many were not. The X-axis is
the prediction and the Y-axis is the class label. From a balanced dataset we can calculate
the accuracy from the confusion matrix and obtain results but in an imbalanced dataset,
values in categories are very different; one category can be maximum and another mini-
mum. Our confusion matrix results are presented in Figures 11–13.

Figure 11. Confusion matrix of ANN model.

Figure 10. Confusion matrix example.

We use a binary classification because of the dataset type. In classification, there are
two statements: class labels and probability. We applied confusion matrix to see how
many predicted classes were correctly predicted and how many were not. The X-axis is the
prediction and the Y-axis is the class label. From a balanced dataset we can calculate the
accuracy from the confusion matrix and obtain results but in an imbalanced dataset, values
in categories are very different; one category can be maximum and another minimum. Our
confusion matrix results are presented in Figures 11–13.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 19

4.7. Accuracy Metrics
In this section, we explain accuracy metrics used in this study. We trained our model

in training data and tested it with testing data. Now we need to summarize our predicted
results. One way to achieve this is using the confusion matrix method. We have two cate-
gories, faulty and non-faulty, and in the last column we have true positives. True nega-
tives (TN) refer to the non-faulty classes correctly identified by the algorithm; false nega-
tives (FN) are faulty classes, but non-faulty classes predicted by the algorithm; false posi-
tives (FP) are non-faulty classes, but the algorithm predicts that they are faulty. Figure 10
shows the confusion matrix example.

Figure 10. Confusion matrix example.

We use a binary classification because of the dataset type. In classification, there are
two statements: class labels and probability. We applied confusion matrix to see how
many predicted classes were correctly predicted and how many were not. The X-axis is
the prediction and the Y-axis is the class label. From a balanced dataset we can calculate
the accuracy from the confusion matrix and obtain results but in an imbalanced dataset,
values in categories are very different; one category can be maximum and another mini-
mum. Our confusion matrix results are presented in Figures 11–13.

Figure 11. Confusion matrix of ANN model.

Figure 11. Confusion matrix of ANN model.

Sensors 2022, 22, 4734 13 of 18

Sensors 2022, 22, x FOR PEER REVIEW 12 of 19

4.7. Accuracy Metrics
In this section, we explain accuracy metrics used in this study. We trained our model

in training data and tested it with testing data. Now we need to summarize our predicted
results. One way to achieve this is using the confusion matrix method. We have two cate-
gories, faulty and non-faulty, and in the last column we have true positives. True nega-
tives (TN) refer to the non-faulty classes correctly identified by the algorithm; false nega-
tives (FN) are faulty classes, but non-faulty classes predicted by the algorithm; false posi-
tives (FP) are non-faulty classes, but the algorithm predicts that they are faulty. Figure 10
shows the confusion matrix example.

Figure 10. Confusion matrix example.

We use a binary classification because of the dataset type. In classification, there are
two statements: class labels and probability. We applied confusion matrix to see how
many predicted classes were correctly predicted and how many were not. The X-axis is
the prediction and the Y-axis is the class label. From a balanced dataset we can calculate
the accuracy from the confusion matrix and obtain results but in an imbalanced dataset,
values in categories are very different; one category can be maximum and another mini-
mum. Our confusion matrix results are presented in Figures 11–13.

Figure 11. Confusion matrix of ANN model.

Figure 12. Confusion matrix of CNN model.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 19

Figure 12. Confusion matrix of CNN model.

Figure 13. Confusion matrix of LSTM model.

Instead of our datasets, results show that true positives are more numerous than false
positives. If we calculate accuracy with the Equation (1): Accuracy = TP + TNTP + FP + FN + TN (1)

Accuracy alone is not enough to interpret the success of the model. We focused on
recall and precision because these metrics are used for imbalanced datasets. In terms of
recall, out of the total actual positive values, how many values did we correctly predict
positively? Recall is also named the true positive rate or sensitivity. In terms of precision,
out of the total predicted results, how many results are positive? Equation (2) of Precision
and Recall is shown as follows: onRecall = TPTP + FN Precision = TPTP + FP (2)

We applied the 𝐹ఉ score because all values are important from the actual and pre-
dicted class. If we consider our beta value as 1, our 𝐹ఉ becomes an F1-Score. The formula
for 𝐹ఉ is shown as follows: 𝐹ఉ = (1 + 𝛽ଶ) ୔୰ୣୡ୧ୱ୧୭୬ ×ୖୣୡୟ୪୪ఉమ × ୔୰ୣୡ୧ୱ୧୭୬ାୖୣୡୟ୪୪ (3)

We combined Precision and Recall in selecting the right metrics. A binary classifica-
tion also uses ROC (receiver operating characteristics) and AUC (area under curve) per-
formance metrics. If the area under the curve is higher, it means the model is better at
predicting classes. It is mostly used in binary classification, such as fraud detection, spam
detection, and software defect prediction. When AUC is 1, it means the model performs
well, when model AUC is 0 or close to 0 then the model is performing at its worst separa-
bility. The ROC curve of the artificial neural network is shown in Figure 14.

Figure 13. Confusion matrix of LSTM model.

Instead of our datasets, results show that true positives are more numerous than false
positives. If we calculate accuracy with the Equation (1):

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Accuracy alone is not enough to interpret the success of the model. We focused on
recall and precision because these metrics are used for imbalanced datasets. In terms of
recall, out of the total actual positive values, how many values did we correctly predict
positively? Recall is also named the true positive rate or sensitivity. In terms of precision,
out of the total predicted results, how many results are positive? Equation (2) of Precision
and Recall is shown as follows:

onRecall =
TP

TP + FN
Precision =

TP
TP + FP

(2)

We applied the Fβ score because all values are important from the actual and predicted
class. If we consider our beta value as 1, our Fβ becomes an F1-Score. The formula for Fβ is
shown as follows:

Fβ=
(

1 + β2)
Precision × Recall

β2 × Precision + Recall
(3)

We combined Precision and Recall in selecting the right metrics. A binary classification
also uses ROC (receiver operating characteristics) and AUC (area under curve) performance
metrics. If the area under the curve is higher, it means the model is better at predicting

Sensors 2022, 22, 4734 14 of 18

classes. It is mostly used in binary classification, such as fraud detection, spam detection,
and software defect prediction. When AUC is 1, it means the model performs well, when
model AUC is 0 or close to 0 then the model is performing at its worst separability. The
ROC curve of the artificial neural network is shown in Figure 14.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 19

Figure 14. ROC and AUC curve.

5. Experimental Results
In this section, we summarize the obtained results for an Android application soft-

ware defect prediction model. We used ANN, CNN, and LSTM algorithms in this re-
search. We also applied cross-project analysis by combining all the datasets for training,
except the test data, and for the test we chose a different dataset each time. We preferred
deep learning algorithms because previous studies applied mostly machine learning clas-
sifiers. The experimental results of ANN are shown in Table 2, CNN results are presented
in Table 3, LSTM results are shown in Table 4, and algorithm performance in datasets is
shown in Table 5. We found these results by tuning the hyperparameters empirically.
However, the use of metaheuristic algorithms could increase performance of the classifi-
ers.

Table 2. ANN defect prediction results (within-project analysis).

Datasets Accuracy (%) Precision Recall F-1 Score AUC

aFall 65 0.73 0.69 0.80 0.91

Alfresco 68 0.74 0.70 0.77 0.92

androidSync 70 0.70 0.70 0.83 0.96

androidWalpa-
per 84 0.71 0.84 0.77 0.94

anySoftKeyboard 75 0.93 0.80 0.79 0.90

Apg 70 0.76 0.83 0.75 0.89

atmosphere 71 0.73 0.72 0.81 0.93

chatSecure 69 0.82 0.68 0.73 0.91

facebook 72 0.74 0.70 0.70 0.84

flutter 70 0.80 0.76 0.72 0.90

kiwis 67 0.71 0.90 0.69 0.93

Figure 14. ROC and AUC curve.

5. Experimental Results

In this section, we summarize the obtained results for an Android application software
defect prediction model. We used ANN, CNN, and LSTM algorithms in this research. We
also applied cross-project analysis by combining all the datasets for training, except the test
data, and for the test we chose a different dataset each time. We preferred deep learning
algorithms because previous studies applied mostly machine learning classifiers. The
experimental results of ANN are shown in Table 2, CNN results are presented in Table 3,
LSTM results are shown in Table 4, and algorithm performance in datasets is shown in
Table 5. We found these results by tuning the hyperparameters empirically. However, the
use of metaheuristic algorithms could increase performance of the classifiers.

Table 2. ANN defect prediction results (within-project analysis).

Datasets Accuracy (%) Precision Recall F-1 Score AUC

aFall 65 0.73 0.69 0.80 0.91
Alfresco 68 0.74 0.70 0.77 0.92
androidSync 70 0.70 0.70 0.83 0.96
androidWalpaper 84 0.71 0.84 0.77 0.94
anySoftKeyboard 75 0.93 0.80 0.79 0.90
Apg 70 0.76 0.83 0.75 0.89
atmosphere 71 0.73 0.72 0.81 0.93
chatSecure 69 0.82 0.68 0.73 0.91
facebook 72 0.74 0.70 0.70 0.84
flutter 70 0.80 0.76 0.72 0.90
kiwis 67 0.71 0.90 0.69 0.93
owncloudandroid 70 0.72 0.80 0.71 0.96
Pageturner 68 0.73 0.76 0.73 0.92
reddit 72 0.70 0.71 0.77 0.90
Average 70.79 0.75 0.76 0.755 0.915

Sensors 2022, 22, 4734 15 of 18

Table 3. CNN defect prediction results (within-project analysis).

Datasets Accuracy Precision Recall F-1 Score AUC

aFall 67 0.73 0.70 0.69 0.95
Alfresco 70 0.67 0.80 0.71 0.96
androidSync 64 0.94 0.70 0.65 0.94
androidWalpaper 66 0.82 0.66 0.70 0.96
anySoftKeyboard 72 0.75 0.70 0.83 0.90
Apg 69 0.75 0.77 0.70 0.93
atmosphere 70 0.68 0.90 0.80 0.91
chatSecure 67 0.70 0.75 0.73 0.96
facebook 71 0.75 0.69 0.81 0.90
flutter 68 0.84 0.70 0.72 0.94
kiwis 73 0.76 0.74 0.69 0.92
owncloudandroid 70 0.80 0.72 0.69 0.96
Pageturner 69 0.75 0.82 0.70 0.90
reddit 70 0.73 0.69 0.85 0.93
Average 69 0.76 0.738 0.734 0.933

Table 4. LSTM defect prediction results (within-project analysis).

Datasets Accuracy Precision Recall F-1 Score AUC

aFall 69 0.77 0.80 0.69 0.95
Alfresco 70 0.71 0.77 0.82 0.93
androidSync 73 0.83 0.79 0.65 0.86
androidWalpaper 68 0.80 0.93 0.77 0.94
anySoftKeyboard 71 0.73 0.69 0.80 0.91
Apg 72 0.74 0.80 0.77 0.90
atmosphere 69 0.70 0.72 0.71 0.89
chatSecure 73 0.80 0.75 0.72 0.95
facebook 70 0.72 0.74 0.83 0.90
flutter 67 0.70 0.76 0.74 0.92
kiwis 70 0.71 0.90 0.73 0.96
owncloudandroid 72 0.83 0.70 0.69 0.90
Pageturner 69 0.75 0.71 0.70 0.93
reddit 70 0.73 0.80 0.77 0.90
Average 70.21 0.751 0.775 0.742 0.917

Table 5. Cross-project analysis results (AUC).

Projects ANN CNN LSTM

aFall 0.65 0.67 0.69
Alfresco 0.68 0.70 0.70
androidSync 0.70 0.64 0.73
androidWalpaper 0.84 0.66 0.68
anySoftKeyboard 0.75 0.72 0.71
Apg 0.70 0.69 0.72
atmosphere 0.71 0.70 0.69
chatSecure 0.69 0.67 0.73
facebook 0.72 0.71 0.70
flutter 0.70 0.68 0.67
kiwis 0.67 0.73 0.70
owncloudandroid 0.70 0.70 0.72
Pageturner 0.68 0.69 0.69
reddit 0.72 0.70 0.70
Average 0.71 0.69 0.70

Sensors 2022, 22, 4734 16 of 18

6. Discussion

In this section, we discuss our software defect prediction for Android application
model performance. We evaluated three deep learning defect prediction models. We used
14 Android application projects from the COMMIT GURU platform. We used 10-fold
cross-validation to evaluate the performance of each algorithm. We implemented SMOTE
oversampling techniques to balance our datasets. We evaluated results with accuracy
metrics, such as Recall, Precision, F1-score, ROC, and AUC. We evaluated the following
research questions:

RQ1. To what extent can we predict the software faults using cross-project for
mobile apps using deep learning approaches?

For this research question, we analyzed deep learning performance.

RQ2. Can we improve the performance of deep learning models using data
balancing approaches?

For imbalanced mobile application datasets, we used SMOTE oversampling techniques
to balance and improve the effectiveness of datasets.

RQ3. Can we improve the performance of deep learning-based fault prediction
models using feature engineering techniques?

To improve the performance of deep learning models, we applied the data-scaling
technique from input variables to an output variable. We used MinMaxScaler because our
datasets are numerical, and we practiced binary classification. MinMaxScaler used for 0, 1
and for deep learning input variables expected in an 0, 1.

RQ4. To what extent can deep learning architecture predict software faults for
mobile apps?

Specifically, we focused on CNN and LSTM deep learning algorithms because, based
on recent review articles, they are the most preferred algorithms for software engineering
problems, namely, malware detection [29] and phishing detection [30]. However, the
other deep learning algorithms [31] might be also investigated regarding this problem
and performance can be improved this way. Additionally, different handcrafted and non-
handcrafted features can be analyzed [32]. We focused on Android applications in this
research because the available datasets use Android projects and there were no publicly
available datasets from other mobile operating systems. Additionally, we observed this
issue in our recent review study on mobile malware detection [29], nearly all of the papers
analyzed Android projects. However, the performance of the algorithms on different
mobile operating systems, such as Windows, might be different. This requires additional
research, which has not been performed in this study.

While SLR papers on mobile application defect prediction have been recently pub-
lished [9], tertiary studies, such as [33], can be performed as well. Tertiary studies can
synthesize secondary studies (i.e., SLR and systematic mapping (SM) studies) and present
the state-of-the-art in this field. While finding relevant papers, we followed the SLR proto-
col carefully; however, due to some manual steps, some papers might have been neglected.
A similar analysis using automated tools [34] could help to find more relevant papers in this
research and include more deep learning algorithms. Previously, we performed different
SLR studies [35,36] and observed the potential gaps in the relevant fields. In this research,
we also used the knowledge of our recently published SLR paper [37]. Researchers can also
examine this paper to see the potential research problems in this field.

7. Conclusions

Mobile applications have become a part of our lives. The goal of businesses is to
propose users’ application with zero defects and make things easier. Mobile applications
are tested manually and there might be unseen defects. Additionally, nowadays there
are increasing types of mobile phones on the market, and mobile applications should be

Sensors 2022, 22, 4734 17 of 18

adapted for this. To recognize defects before the testing stage, the literature previously
proposed defect prediction models for software using machine learning techniques. For
mobile applications there were limited studies, and we proposed a study on software defect
prediction models for mobile applications using deep learning methods. We used fourteen
open-source Android application datasets of different sizes and platforms. We applied
artificial neural networks, convolutional neural networks, and long short term memory.
In an AUC-based performance benchmark, the CNN was the highest performing model
with 0.93. We compared our results with open-source machine learning algorithms, such
as support vector machines and decision trees, and our models have better results. In
future work, we plan to use our defect prediction models in SoftPOS real-time applications,
because the most important things are security and robust, stable application for SoftPOS.

Author Contributions: Conceptualization: M.J., A.A. and C.C.; data curation: M.J.; formal analysis:
M.J., A.A., C.C. and A.M.; investigation: M.J., A.A., C.C. and A.M.; methodology: M.J., A.A., C.C.
and A.M.; project administration: A.A. and C.C.; resources: M.J., A.A., C.C. and A.M.; supervision:
A.A. and C.C.; validation: M.J., A.A., C.C. and A.M.; writing—original draft: M.J., A.A., C.C. and
A.M.; writing—review and editing: M.J., A.A., C.C. and A.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Molde University College-Specialized Univ. in Logistics,
Norway for the support of Open Access fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Resatsch, F.; Karpischek, S.; Sandner, U.; Hamacher, S. Mobile sales assistant: NFC for retailers. In Proceedings of the 9th

International Conference on Human Computer Interaction with Mobile Devices and Services, Singapore, 9–12 September 2007;
pp. 313–316.

2. Kaur, A.; Kaur, K. An investigation of the accuracy of code and process metrics for defect prediction of mobile applications. In
Proceedings of the 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO), Noida,
India, 2–4 September 2015.

3. Kha1id, H.E.; Shihab, M. What do mobile app users complain about? A study on free ios apps. IEEE Softw. 2015, 32, 70–77.
4. Harman, M.; Jia, Y. App store mining and analysis: Msr for app stores. In Proceedings of the 2012 9th IEEE Working Conference

on Mining Software Repositories (MSR), Zurich, Switzerland, 2–3 June 2012.
5. Xia, X.; Shihab, E.; Kamei, Y.; Lo, D.; Wang, X. Predicting crashing releases of mobile applications. In Proceedings of the 10th

ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, Ciudad Real, Spain, 8–9 September
2016; pp. 1–10.

6. Akiyama, F. An Example of Software System Debugging. In Proceedings of the IFIP Congress, Ljubljana, Yugoslavia,
23–28 August 1971; Volume 71, pp. 353–359.

7. Khan, E.; Rehman, M.Z.U.; Ahmed, F.; Alfouzan, F.A.; Alzahrani, N.M.; Ahmad, J. Chest X-ray classification for the detection of
COVID-19 using deep learning techniques. Sensors 2022, 22, 1211. [CrossRef] [PubMed]

8. Akbulut, F.P.; Ikitimur, B.; Akan, A. Wearable sensor-based evaluation of psychosocial stress in patients with metabolic syndrome.
Artif. Intell. Med. 2020, 104, 101824. [CrossRef] [PubMed]

9. Akbulut, F.P.; Perros, H.G.; Shahzad, M. Bimodal affect recognition based on autoregressive hidden Markov models from
physiological signals. Comput. Methods Programs Biomed. 2020, 195, 105571. [CrossRef]

10. Akbulut, A.; Ertugrul, E.; Topcu, V. Fetal health status prediction based on maternal clinical history using machine learning
techniques. Comput. Methods Programs Biomed. 2018, 163, 87–100. [CrossRef]

11. Begüm, A.Y.; Akbulut, A.; Zaim, A.H. Techniques for Apply Predictive Maintenance and Remaining Useful Life: A Systematic
Mapping Study. Bilecik Şeyh Edebali Üniv. Fen Bilimleri Derg. 2021, 8, 497–511.

12. Jakšič, M.; Marinč, M. Relationship banking and information technology: The role of artificial intelligence and FinTech. Risk
Manag. 2019, 21, 1–18. [CrossRef]

13. Elmasry, W.; Akbulut, A.; Zaim, A.H. Evolving deep learning architectures for network intrusion detection using a double PSO
metaheuristic. Comput. Netw. 2020, 168, 107042. [CrossRef]

http://doi.org/10.3390/s22031211
http://www.ncbi.nlm.nih.gov/pubmed/35161958
http://doi.org/10.1016/j.artmed.2020.101824
http://www.ncbi.nlm.nih.gov/pubmed/32499003
http://doi.org/10.1016/j.cmpb.2020.105571
http://doi.org/10.1016/j.cmpb.2018.06.010
http://doi.org/10.1057/s41283-018-0039-y
http://doi.org/10.1016/j.comnet.2019.107042

Sensors 2022, 22, 4734 18 of 18

14. Catal, C.; Akbulut, A.; Karakatič, S.; Pavlinek, M.; Podgorelec, V. Can we predict software vulnerability with deep neural network?
In Proceedings of the 19th International Multiconference on Information Society, Ljubljana, Slovenia, 9–13 October 2016; pp. 19–22.

15. Understand by Scientific Toolworks, Inc. Available online: https://www.scitools.com/ (accessed on 29 April 2022).
16. Akbulut, A.; Perros, H.G. Performance analysis of microservice design patterns. IEEE Internet Comput. 2019, 23, 19–27. [CrossRef]
17. Alsolai, H.; Roper, M. A systematic literature review of machine learning techniques for software maintainability prediction. Inf.

Softw. Technol. 2020, 119, 106214. [CrossRef]
18. Perez, H.; Tah, J.H. Deep learning smartphone application for real-time detection of defects in buildings. Struct. Control Health

Monit. 2021, 28, e2751. [CrossRef]
19. Zhao, K.; Xu, Z.; Yan, M.; Xue, L.; Li, W.; Catolino, G. A compositional model for effort-aware Just-In-Time defect prediction on

android apps. IET Softw. 2021, 16, 259–278. [CrossRef]
20. Dong, F.; Wang, J.; Li, Q.; Xu, G.; Zhang, S. Defect prediction in android binary executables using deep neural network. Wirel.

Pers. Commun. 2018, 102, 2261–2285. [CrossRef]
21. Cheng, T.; Zhao, K.; Sun, S.; Mateen, M.; Wen, J. Effort-aware cross-project just-in-time defect prediction framework for mobile

apps. Front. Comput. Sci. 2022, 16, 166207. [CrossRef]
22. Kaya, A.; Keçeli, A.S.; Catal, C.; Tekinerdogan, B. Model analytics for defect prediction based on design-level metrics and

sampling techniques. In Model Management and Analytics for Large Scale Systems; Academic Press: Cambridge, MA, USA, 2020; pp.
125–139.

23. Kaur, A.; Kaur, K.; Kaur, H. Application of machine learning on process metrics for defect prediction in mobile application. In
Information Systems Design and Intelligent Applications; Springer: Berlin, Germany, 2016; pp. 81–98.

24. Zhao, K.; Xu, Z.; Yan, M.; Tang, Y.; Fan, M.; Catolino, G. Just-in-time defect prediction for Android apps via imbalanced deep
learning model. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, Gwangju, Korea, 22–26 March
2021; pp. 1447–1454.

25. Sewak, M.; Sahay, S.K.; Rathore, H. Assessment of the Relative Importance of different hyper-parameters of LSTM for an IDS. In
Proceedings of the 2020 IEEE Region 10 Conference (TENCON), Osaka, Japan, 16–19 November 2020; pp. 414–419.

26. Jorayeva, M.; Akbulut, A.; Catal, C.; Mishra, A. Machine Learning-Based Software Defect Prediction for Mobile Applications: A
Systematic Literature Review. Sensors 2022, 22, 2551. [CrossRef]

27. Catolino, G.; Di Nucci, D.; Ferrucci, F. Cross-project just-in-time bug prediction for mobile apps: An empirical assessment. In
Proceedings of the 2019 IEEE/ACM 6th International Conference on Mobile Software Engineering and Systems (MOBILESoft),
Montreal, QC, Canada, 25–31 May 2019; pp. 99–110.

28. Rosen, C.; Grawi, B.; Shihab, E. Commit guru: Analytics and risk prediction of software commits. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, Bergamo, Italy, 30 August–4 September 2015; pp. 966–969.

29. Catal, C.; Giray, G.; Tekinerdogan, B. Applications of deep learning for mobile malware detection: A systematic literature review.
Neural Comput. Appl. 2021, 34, 1007–1032. [CrossRef]

30. Catal, C.; Giray, G.; Tekinerdogan, B.; Kumar, S.; Shukla, S. Applications of deep learning for phishing detection: A systematic
literature review. Knowl. Inf. Syst. 2022, 64, 1457–1500. [CrossRef]

31. Tiwari, S. Dermatoscopy using multi-layer perceptron, convolution neural network, and capsule network to differentiate
malignant melanoma from benign nevus. Int. J. Healthc. Inf. Syst. Inform. 2021, 16, 58–73. [CrossRef]

32. Saba, T. Computer vision for microscopic skin cancer diagnosis using handcrafted and non-handcrafted features. Microsc. Res.
Tech. 2021, 84, 1272–1283. [CrossRef]

33. Ligthart, A.; Catal, C.; Tekinerdogan, B. Systematic reviews in sentiment analysis: A tertiary study. Artif. Intell. Rev. 2021, 54,
4997–5053. [CrossRef]

34. Van Dinter, R.; Tekinerdogan, B.; Catal, C. Automation of systematic literature reviews: A systematic literature review. Inf. Softw.
Technol. 2021, 136, 106589. [CrossRef]

35. Catal, C. On the application of genetic algorithms for test case prioritization: A systematic literature review. In Proceedings of the
2nd International Workshop on Evidential Assessment of Software Technologies, Lund, Sweden, 22 September 2012; pp. 9–14.

36. Kirk, D.; Catal, C.; Tekinerdogan, B. Precision nutrition: A systematic literature review. Comput. Biol. Med. 2021, 133, 104365.
[CrossRef] [PubMed]

37. Catal, C.; Diri, B. A systematic review of software fault prediction studies. Expert Syst. Appl. 2009, 36, 7346–7354. [CrossRef]

https://www.scitools.com/
http://doi.org/10.1109/MIC.2019.2951094
http://doi.org/10.1016/j.infsof.2019.106214
http://doi.org/10.1002/stc.2751
http://doi.org/10.1049/sfw2.12040
http://doi.org/10.1007/s11277-017-5069-3
http://doi.org/10.1007/s11704-021-1013-5
http://doi.org/10.3390/s22072551
http://doi.org/10.1007/s00521-021-06597-0
http://doi.org/10.1007/s10115-022-01672-x
http://doi.org/10.4018/IJHISI.20210701.oa4
http://doi.org/10.1002/jemt.23686
http://doi.org/10.1007/s10462-021-09973-3
http://doi.org/10.1016/j.infsof.2021.106589
http://doi.org/10.1016/j.compbiomed.2021.104365
http://www.ncbi.nlm.nih.gov/pubmed/33866251
http://doi.org/10.1016/j.eswa.2008.10.027

	Introduction
	Background and Related Work
	Research Methodology
	Model Development
	Datasets
	Data Processing
	Validation
	Feature Engineering
	Data Balancing
	Deep Learning Algorithms
	Accuracy Metrics

	Experimental Results
	Discussion
	Conclusions
	References

