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Abstract: The traditional manual defect detection method has low efficiency and is time-consuming
and laborious. To address this issue, this paper proposed an automatic detection framework for
fabric defect detection, which consists of a hardware system and detection algorithm. For the
efficient and high-quality acquisition of fabric images, an image acquisition assembly equipped
with three sets of lights sources, eight cameras, and a mirror was developed. The image acquisition
speed of the developed device is up to 65 m per minute of fabric. This study treats the problem of
fabric defect detection as an object detection task in machine vision. Considering the real-time and
precision requirements of detection, we improved some components of CenterNet to achieve efficient
fabric defect detection, including the introduction of deformable convolution to adapt to different
defect shapes and the introduction of i-FPN to adapt to defects of different sizes. Ablation studies
demonstrate the effectiveness of our proposed improvements. The comparative experimental results
show that our method achieves a satisfactory balance of accuracy and speed, which demonstrate the
superiority of the proposed method. The maximum detection speed of the developed system can
reach 37.3 m per minute, which can meet the real-time requirements.

Keywords: fabric defect detection; feature pyramid network; deformable convolution; object detec-
tion; online detection

1. Introduction

In the weaving process of fabrics, due to the influence of the technological process,
weaving equipment, or weaving environment, it is inevitable to cause various defects on
the surface of fabrics. The appearance of defects will not only affect the appearance of the
fabric, but also reduce the commercial value of the fabric. Relevant reports [1] show that if
there are obvious defects in the surface of the fabric, its price will be reduced by more than
50%; therefore, defect detection is an important step in fabric quality control; however, at
present, most textile enterprises still rely on manual cloth inspection, which not only has the
shortcomings of low efficiency and high cost, but is also prone to false detection or missed
inspection after visual fatigue. With the advancement of digitization and intelligence, the
development of fabric defect detection towards automation is an inevitable trend.

The automatic detection of fabric defects mainly includes two steps: firstly, images of
the fabric surface are captured by using an industrial camera, and then the existence and
type of defect in the image are judged by designing a recognition algorithm. The detection
methods based on computer vision have the advantages of high precision, high efficiency,
and strong stability; therefore, the automatic detection of fabric defects by machine vision
instead of human vision has become a research hotspot; however, as shown in Figure 1, the
main characteristics of the defects in the fabric are as follows: (1) rich types and different
shapes and (2) low visual significance, which makes the identification task very challenging.
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(a) (b) (c)

Figure 1. Three kinds of defects on the fabric surface. (a) Regional defects in fabrics; (b) Weft defect
in fabric; (c) Warp defect in fabric

Efficient defect detection methods can greatly reduce labor consumption, so many
methods have been proposed. The existing work on fabric defect detection can be roughly
divided into four categories: (1) statistical-based, (2) spectral-based, (3) model-based, and
(4) learning-based. The statistical methods [2,3] employ various statistical properties of
texture and defects to estimate defects; however, the diversity of fabric texture and defect
shape seriously affects the detection accuracy of such methods. In particular, it is very
expensive to design different statistical indicators for defects of different complexity; there-
fore, statistical methods have great limitations in actual fabric defect detection. The spectral
methods [4,5] convert the image in the spatial domain to the frequency domain and achieve
the detection of defects in the fabric by using the strong periodicity in the fabric image;
however, such methods do not work well when the contrast between defect areas and
defect-free areas is low or when the defects are small. The model-based methods [6,7] rep-
resent fabric texture as a stochastic process and assume that texture images can be viewed
as samples generated by stochastic processes in the image space. Defect detection is treated
as a hypothesis testing problem with statistics from the model. Such methods usually
have large computational overhead, and thus cannot meet the real-time requirements of
detection; however, if a model-based algorithm is introduced into defect detection of fabric,
a specific model for each texture is required, and the cost of each model is prohibitive.

Recently, significant progress [8–11] has been made on image analysis by moving
low feature-based algorithms to deep-learning-based end-to-end frameworks. Compared
with other kinds of methods, the deep-learning-based methods weaken the influence of
feature engineering on recognition accuracy, adopt supervised or semi-supervised learning
to make the network automatically extract the most representative features, simplify the
design difficulty of the algorithm, automatically learn the salient features of the image, and
complete the recognition task. Many researchers [12,13] use deep learning technology to
solve the problem of fabric defect detection. Compared with earlier combined methods,
deep-learning-based methods can extract higher-level features of images. According to the
different learning manner, it can be divided into supervised learning and unsupervised
learning. In the unsupervised manner, model learning is guided through designed pre-
tasks. The general steps are: first reconstruct the fabric image, then compute the residual
between the reconstructed image and the original image, and finally determine the location
and category of the defect by identifying the residual image. Convolutional autoencoders
(CAE) [14] and generative adversarial networks (GAN) [15] are the commonly used recon-
struction models. Li et al. [16] first introduced deep learning technology into field of fabric
defect detection by proposed an autoencoder model. Even with some success, such indirect
methods are difficult to identify for many non-obvious defects.

In fact, fabric defect detection can be regarded as an object detection task, where the
object is the defect. Compared with unsupervised methods, object detection can obtain
more sufficient defect information, which is convenient for subsequent visual display and
equality in judgment. Due to the different emphasis on detection speed and detection
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accuracy, object detection methods are gradually developed in two directions: one stage
and two stage. The two-stage methods, of which RCNN [17–19] is the most representative
method, achieve high accuracy, but lose a certain detection speed. According to reports,
the detection speed of Cascade RCNN [20] can only reach 14 fps, which cannot meet the
real-time requirements of fabric defect detection. The classic one-step object detection
methods are SSD [21] and YOLO [22]. Jing et al. [23] used the improved YOLOv3 to
achieve efficient detection of six classical defects. The defect area in the fabric usually only
occupies a small part, that is, the background area is much larger than the foreground
area. This characteristic of fabric defects limits the performance of these methods. Recently
Duan et al. [24] proposed a detector, named CenterNet, which detects each object as triplet
keypoints, which can avoid the confusion brought by a large amount of background.
CenterNet achieves a good trade-off between accuracy and speed, promising real-time
defect detection.

Although deep-learning-based object detection methods have been partially studied
in the industrial field, most of them are still in the laboratory stage and are difficult to
implement for two reasons: (1) fabric defects are complex and diverse, making it difficult
to detect and locate them in complex background areas; (2) online detection has high
requirements for real-time performance, but most of the existing research ignores its speed;
however, there is still potential for improvement when it is applied to fabric defect detection.

In this paper, we propose a fabric defect detection method based on CenterNet with
deformable Convolution for online detection.

2. Theoretical Basis
2.1. Multi-Resolution CenterNet Module

CenterNet is an efficient bottom-up object detection method, which solves the problem
that traditional methods have, i.e., they lack additional attention for proposed regions. The
authors design a real-time version of CenterNet, whose framework is shown in Figure 2.
In the framework of CenterNet, ResNet-50 [25] is used as backbone. The feature maps
extracted by C3-C5 then connected to a FPN, to capture multi-scale feature of the input
image. Then, the outputs P3-P5 of FPN are mapped as the final prediction layers. In
each prediction layer, the regression is used to prediction the keypoints. In fact, the main
innovation of CenterNet is a key point prediction network named KPN. The architecture
of KPN is shown in Figure 3. As shown in Figure 2, KPN receives the output of FPN, and
then outputs the predicted keypoints through some convolutional transformations. After
obtaining the keypoints, the location of the bounding box can be determined. The learning
of KPN is driven by the IoU loss, which is defined by:

LIoU =
Bg ∩ Bp

Bg ∪ Bp
−

d2(Cg, Cp)

d2
m

(1)

where Bg and Bp denote the ground truth and predicted bounding box, respectively; Cg
and Cp are the center points of Bg and Bp; d(·, ·) represents the Euclidean distance of the
two points; dm represents the diagonal distance of the smallest closure region that can
contain both the predicted and ground-truth boxes. In regression-based regression, to
decouple the top-left and the bottom-right corners, the ground truth box is divided into
four sub-ground truth boxes along the geometric center. Among the sub-ground truth
boxes, the top-left and bottom-right are selected to supervised the regression, respectively.
During the inference, the regressed vectors act as a cue to find the nearest keypoints on the
corresponding heatmaps to refine the locations of the keypoints. Next, each valid pair of
keypoints defines a boundary box. Finally, a central region is defined for each bounding
box and check if the central region contains both the predicted center keypoints. If there
is at most one center keypoint detected in its central region, the bounding box will be
removed. The score of the bounding box will be replaced by average scores of the points.
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Figure 2. Real-time detection framework of CenterNet. The backbone outputs three feature maps,
which are C3-C5, to connect a feature pyramid network (FPN). Then FPN outputs P3-P5 feature maps
as the final prediction layers.

CenterNet draws on the residual structure to extract deep feature information and
multi-scale feature to improve the performance of different scale objects. While improving
the detection performance, the used explicit FPN tends to obtain limited receptive field.
Simply increasing the number of block will result in large parameter burden and memory
consumption. So CenterNet still has some room for improvement in speed.

Figure 3. The architecture of key prediction network (KPN). TL is top-left corner, TR is top-right
corner, BL is bottom-left corner, BR is bottom-right corner, and IoU is intersection over union.

2.2. Deformable Convolution Module

In recent years, with the popularity of deep convolutional neural networks, many
difficult vision problems have achieved major breakthroughs. Image recognition [9] first
surpassed human recognition abilities more than two years ago. The accuracy of object
detection [17–19,26], image segmentation, etc., has also reached a height that is difficult to
achieve by traditional methods. Due to the powerful modeling ability and automatic end-
to-end learning method, deep convolutional neural networks can learn effective features
from a large amount of data, avoiding the drawbacks of artificially designed features in
traditional methods; however, the adaptability of existing network models to the geometric
deformation of objects almost entirely comes from the diversity of the data itself, and the
model does not have a mechanism to adapt to the geometric deformation. The fundamental
reason is that the convolution operation itself has a fixed geometric structure, and the
geometric structure of the convolutional network built by its stacking is also fixed, so
it does not have the ability to model geometric deformation. Tracing the source, the
above limitations come from the basic building block of the convolutional networks—the
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convolution operation. This operation performs sampling based on the regular grid point
position at each position of the input image, and then convolves the sampled image value
as the output of that position. Through end-to-end gradient back-propagation learning,
the system will obtain a matrix of convolution kernel weights. This is the basic unit
structure that has been used for more than two decades since the birth of convolutional
networks. Researchers at Microsoft Research Asia found that regular lattice sampling in
standard convolutions is the “culprit” that makes the network difficult to adapt to geometric
deformations [27]. To weaken this limitation, the researchers added an offset variable to
the location of each sampling point in the convolution kernel. Through these variables, the
convolution kernel can be randomly sampled near the current position, instead of being
limited to the previous regular grid points. This expanded convolution operation is called
deformable convolution, as shown in Figure 4.

Figure 4. Illustration of 3 × 3 deformable convolution [27].

The 2D convolution consists of two steps: (1) sampling using a regular grid A over the
input feature map x; (2) summation of sampled values weighted by w. The grid A defines
the receptive field size and dilation. For example,

A = {(−1,−1), (−1, 0), ..., (0, 1), (1, 1)} (2)

defines a 3× 3 kernel with dilation 1. For each location p0 on the output feature map y, we have

y(p0) = ∑
pn∈A

w(pn) · x(p0 + pn) (3)

where pn enumerates the locations in A. In deformable convolution, the regular grid A is
augmented with offsets {M pn|n = 1, ...N}, where N = |A|. Then, the above equation can
be rewritten as:

y(p0) = ∑
pn∈A

w(pn) · x(p0 + pn+ M pn) (4)

Thus the sampling is on the irregular and offset locations pn+ M pn. As the offset M pn
is typically fractional, Equation (4) is implemented via bilinear interpolation as

x(p) = ∑
q
B(p, q) · x(q) (5)

where p denotes an arbitrary (fractional) location (p = p0 + pn+ M pn for Equation (4),
q enumerates all integral spatial locations in the feature map x, and B(·, ·) is the bilinear
interpolation kernel with 2D; it is separated into two one-dimensional kernels as

B(p, q) = β(qx, px) · β(qy, py) (6)

where β(a, b) = max(0, 1− |a− b|). Then, B(p, q) can be computed quickly.
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In fact, the added offset in the deformable convolution unit is part of the network
structure, calculated by another parallel standard convolution unit, which in turn can also
be learned end-to-end by gradient back-propagation. After adding this offset learning,
the size and position of the deformable convolution kernel can be dynamically adjusted
according to the current image content to be recognized. The intuitive effect is that the
positions of the convolution kernel sampling points at different positions will adaptively
change according to the image content, so as to adapt to the geometric deformations, such
as the shape and size of different objects.

As shown in Figure 5, the shape of defects in the fabric is irregular, so this paper
proposes to use deformed convolution to adapt to the shape of different defects. Using this
type of convolution allows the model to more precisely locate the defective area, and thus
more accurately identify the defect type.

(a) (b) (c)

Figure 5. Different convolutions. (a) Defective image; (b) traditional convolution with the kernel size
of 3 × 3; (c) deformable convolution with the kernel size of 3 × 3 .

3. Hardware System

In this section, the key components in hardware system are introduced in detail.
Figure 6 shows the overall diagram of the developed equipment, which consist of an
unwinding mechanism, traction mechanism, winding mechanism, image acquisition com-
ponent, and computer. The frequency conversion motor realizes the unwinding, pulling
and winding of the cloth by controlling the rotation of the roller. When the cloth passes
through the image acquisition area, the camera automatically captures the fabric image
and sends it to the software system in the computer for detection, as shown in Figure 7.
Apart from the image acquisition component, the developed equipment is similar to other
automatic defect inspection equipment; therefore, this section focuses on the introduction
of image acquisition component.

(a) (b) (c)

Figure 6. Hardware system. (a) Overall diagram of the equipment; (b) front view of the equipment;
(c) rear view of the equipment.
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In real-time inspection, the choice of camera is an important factor to obtain high-
quality fabric images. There are two types of industrial cameras commonly used in defect
detection: line-scan cameras and area-scan cameras. This paper studies defect detection
technology on the basis of surface images, so the area-scan camera was selected as the
image acquisition device. In the developed equipment, eight industrial cameras (MER-502-
79U3M) were arranged linearly, which can realize the rapid acquisition of fabric images. To
ensure stability, a lighting system with three light sources and a reflector was designed.

In practical applications, the size of the fabric image captured by each camera is
2430 × 1200 pixel, which corresponds to the actual size of the fabric is 29.0 × 14.3 cm
(84 pixels/cm, 0.119 mm/pixel). The width of the overlapping area between the images
captured by adjacent cameras is about 1.8 cm. The equipment can realize defect detection
of fabrics with a maximum width of 2.2 m. If the detection time is ignored, the developed
device can achieve image acquisition of 65 m of cloth per minute.

Figure 7. The internal structure diagram of the developed automatic cloth inspection equipment.

4. Detection Algorithm

In this section, we introduce the proposed detection algorithm in detail, and the
network architecture is presented in Figure 8. Similar to the original CenterNet, we still
use ResNet50 [25] as the backbone, but some of the convolutional layers are replaced
by deformable convolutions. Secondly, an implicit feature pyramid network (i-FPN) is
introduced for two purposes: (1) to enhance the detection performance of the model for
small defects; (2) to speed up the detection. Then, we introduce the objective function of
the improved CenterNet. Finally, an online detection framework for fabric defects is built
using the trained model. It is stated here that Figures 2 and 8 are not the same, we replace
the original explicit FPN with i-FPN.
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Figure 8. Architecture of object detector with implicit feature pyramid network. The ResNet50 [25]
is adopted as the backbone network to extract backbone features. The initial pyramid features, which
are all initialized to zeros, together with the backbone features are input to the i-FPN. In the i-FPN,
the nonlinear transformation function Gθ is employed to construct the implicit function and the
equilibrium feature pyramid is injected into detection head to generate the final detection predictions.

4.1. Backbone Network

Although defects of various shapes and sizes only destroy the original texture struc-
ture of the fabric, the task of defect detection is a highly abstract task to a certain extent,
because many defects are not the most prominent in the fabric image. In general, the deeper
the convolutional neural network can extract, the more abstract features present; however,
increasing the network depth brings some problems: (1) difficulty of convergence and
(2) overfitting. ResNet introduces a residual structure into the network model, making
it possible for the network depth to exceed 100 layers. The introduced residual makes it
easier for the network to learn the identity mapping at some layers, which is a constructive
solution. Residual networks behave similar to an ensemble of relatively shallow networks.
In addition, the residual network allows information to flow between layers, and features
can be reused during forward propagation, which alleviates the risk of gradient disappear-
ance or gradient explosion during back propagation. In summary, ResNet can extract more
abstract features without overfitting. ResNet50 and ResNet101 are two architectures that
are often used as backbones; however, considering the real-time requirements of defect
detection, we chose the former as the backbone of the proposed detection model.

To accommodate defects of different shapes, we introduce deformable convolutions
in the backbone network. The idea of deformable convolution is very simple, that is, the
original fixed-shape convolution kernel becomes variable. Taking the 3 × 3 convolution
kernel as an example, the mathematical expression is as follows:

y(p0) = ∑
pn∈R

w(pn) · x(p0 + pn) (7)

where R represents the set of points in the neighborhood of p0, and n is the index of
the point in the R. For the output y(p0) of each convolution, it needs to sample from
nine positions on the feature map x, of which, nine positions are determined by the
center position p0. The deformable convolution operation does not change the calculation
operation of the convolution, but adds a learnable parameter∇pn to the convolution region.
Similarly, for each output y(p0), nine positions must be sampled from the input feature map.
These nine positions are obtained by diffusing the center position p0 to the surroundings,
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but with more ∇pn, the sampling points are allowed to spread into a non-grid shape. The
deformable convolution operation can be expressed as:

y(p0) = ∑
pn∈R

w(pn) · x(p0 + pn +∇pn) (8)

To learn the offset ∇pn, another 3 × 3 convolutional layer needs to be defined. In fact,
as shown in Figure 4, the size of the output offset field is the same as that of the original
feature map, but the number of channels is twice the original (representing the offset in the
x and y directions, respectively). In this case, with the input feature map and the offset field
of the same size as the feature map, we can perform deformable convolution operations.
The above operations are all differentiable processes, so the parameters can be learned
through backpropagation.

To combine the advantages of ResNet and deformable convolution, we improve some
residual blocks of ResNet50. As shown in Figure 8, the improvement is mainly reflected in
the latter three series of residual blocks. Specifically, as shown in Figure 9, for each residual
structure, we use a 3 × 3 deformable convolution to replace the original 3 × 3 ordinary
convolution; the other architectures are exactly the same as the original ResNet50—we refer
the interested reader to [25].

(a) (b)

Figure 9. Two residual blocks (three layers) with deformable convolutions. (a) The bottleneck layer
that makes the shape of the feature map invariant; (b) the bottleneck layer that reduces the length
and width of the feature map to half.

4.2. Implicit Feature Pyramid Network

To enhance the performance of the detector for objects of different scales, the commonly
used method is explicit feature pyramid network (FPN), which stacks several cross-scale
blocks to obtain large receptive field. It has been proved that implicit FPN (i-FPN) has
better performance than explicit FPN, mainly in terms of detection speed and robustness.
Different from explicit FPN, i-FPN directly produces equilibrium feature of global receptive
field based on fixed point iteration. In addition, a recurrent mechanism, named residual-like
iteration, is introduced to efficiently update the hidden states for feature pyramid design.

The architecture of i-FPN can be seen in Figure 8. i-FPN generates an equilibrium
feature pyramid based on fixed point iteration. The initial features P0

3–P0
5 are all initialized

to zeros. It is then fed into the i-FPN along with the backbone feature. The summed
feature is input into the nonlinear transformation Gθ , which serves as the implicit function.
The equilibrium feature solver is further employed to generate the equilibrium feature
pyramid by solving the fixed point of the implicit model. Finally, the resulting equilibrium
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feature pyramids are injected into the detection head to generate the final classification and
regression predictions.

Figure 10 presents the explicit form of i-FPN, which is named residual-like iteration, to
simulate explicit FPN with infinite depth. The residual-like iteration can be formulated as:

P∗ = Gθ(P∗ + B) (9)

where P∗ can be computed by the unrolling solver or Broyden solver in DEQ [28]. Similar
to ResNet [25], the residual-like iteration can also benefits from the residual learning by
shortcut connection. The backbone features, which are extracted by backbone network and
served as the strong prior, guide the residual learning of nonlinear transformation Gθ , as
shown in Figure 11; therefore, the residual-like iteration can prevent i-FPN from suffering
from the vanishing gradient problem, and theoretically, an FPN of infinite depth can be
obtained. The ingenious structure of iFPN enables smooth information propagation, which
enhances feature learning. Consequently, the equilibrium feature pyramid is input into
detection head to recognize the keypoints, bounding boxes, and classes.

Figure 10. The pipeline of residual-like iteration. Note that n = 3 in this paper.

Figure 11. The architecture of the nonlinear transformation Gθ . The dash lines denotes pyramid
convolution to reduce the computation redundancy and efficiently fuse cross-scale features.

4.3. Detection Head

As shown in Figure 3, the keypoints serve as the basic object representation throughout
CenterNet. The keypoints are obtained via regressing offsets over the center points, which
are predicted by KPN (mentioned in Section 2.1). The learning of the keyponts are driven
by two loss function: the bottom-right and top-left IoU loss between the induced pseudo
box and the ground truth bounding box; the object recognition loss of the subsequent
stage. The architecture of the detection head is illustrated in Figure 12. The proposed head
architecture consists of two non-shared subnets, aiming at localization and classification,
respectively. The localization subnet first uses three 3 × 3 convolutional layers, followed by
two consecutive small networks to compute the offsets of the two sets of keypoints. The
classification subnet also uses three 3 × 3 convolutional layers to abstract the feature maps,
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followed by a deformable convolutional layer whose input offset field is shared with the
first deformable convolutional layer in the localization subnet. The group normalization
layer is applied after each of the first three 3 × 3 convolutional layers in the two subnets.
The anchor-free design reduces the burden on the final classification layer, resulting in a
slight reduction in computation.

As shown in Figure 12, localization subnet consist of two stages: generating the first
set of keypoints by abstraction from object center point hypotheses (feature map bins);
generating the second set of keypoints based on the first set of keypoints. During training,
only positive target hypotheses are assigned to localize targets for both stages. For the
first localization stage, there are two conditions for a feature map bin to be considered
positive: (1) the pyramid level of this feature map bin is equal to the logarithmic scale
of the real object; (2) the projection of the center point of this real object is located in this
feature map bin. For the second localization stage, it is positive if the induced pseudo-
box of the first keypoints have enough overlap with a real object, and their intersection
over-union is greater than 0.5. Classification is only conducted on the first set of keypoints.
The classification assignment criteria follow: IoU (between the induced pseudo-box and
the ground-truth bounding box) greater than 0.5 means positive, less than 0.4 means
background, otherwise ignored. Focal loss [29] is used for classification task training.

Figure 12. The pipeline of detection head.

5. Experiment
5.1. Experimental Dataset

As we all know, the defect detection method based on deep learning learns the defect
localization and recognition ability from a certain amount of training data; therefore, data
are the basis for model learning. To train the model and verify the effectiveness of the
method, we use the public fabric defect dataset (Smart Diagnosis of Cloth Flaw Dataset,
SDCFD) [30], in which the samples are all from the production line of the textile factory.
SDCFD contains 11,918 fabric RGB images, of which 2842 are used as a testing set to test
the method performance and 9076 are used as a training set to train the model. There are
5913 defect images in the training set, which cover 34 defect types. The size of the images in
this dataset is 2446 pixel × 1000 pixel. For defect detection, SDCFD provides bounding box
annotations which are saved as an json document, indicating the category and the location
of defect in each image. To facilitate the analysis, the fabric defects are visually divided into
three categories: warp defects (length-width ratio less than 0.5), weft defects (length-width
ratio greater than 2), and regional defects (otherwise).

The size of the fabric image collected by the proposed equipment in this paper is
2430 × 1200 pixels, which is similar to the image resolution of SDCFD, and the shooting
scale is basically the same; therefore, the model trained on this dataset can be directly
grafted onto the equipment for online detection.
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5.2. Evaluation Criteria

Different from the classification task, the fabric defect detection not only needs to
predict the correct category but also the location information of the defect. In this study, we
use three types of indicators to evaluate the performance of the defect detection methods
from different perspectives; we also use three types of metrics to evaluate the performance
of the defect detection methods from different perspectives. The recall R, detection rate DR,
false detection rate FR, and detection accuracy DACC are used to evaluate the recognition
performance of the detection method; the mean average precision mAP is used to evaluate
the localization performance of the detection method; the FPS (frames per second) is used
to evaluate the time complexity of the method.

R and DR measure the ability of the model detection for positives, DACC measures the
accuracy of the model prediction, and FR reflects the robustness of the model. The three
metrics are computed as follows:

R =
TP

TP + FN
(10)

DR =
TP

Ndefect
(11)

FR =
FP

Ndefect-free
(12)

DACC =
TP + TN

FP + FN + TN + TP
(13)

where Ndefect and Ndefect-free, respectively, denote the total number of detective and defect-
free images. The definitions of TP, FN, FP, and TN are presented in Table 1.

Table 1. Definition of TP, FN, FP, and TN in fabric defect detection.

Detected as Defective Detected as Defect-Free

Actually defective True Positive (TP) False Negative (FN)
Actually defect-free False Positive (FP) True Negative (TN)

AP is the area under the P-R curve corresponding to a certain category of detection
results, and mAP is the average value of the area under the P-R curve corresponding to
the detection results of all categories. In this study, we calculate the AP based on 11-point
interpolation method, which can be defined as:

AP =
1
11 ∑

r∈{0,0.1,...,1}
ρinterp(r) (14)

where
ρinterp(r) = max

r̄≥r̃
ρ(r̃) (15)

where ρ(r̃) is the measured precision at recall r̃. When AP for classes are obtained, the mAP
can be computed by:

mAP =
∑K

i=1 APi

K
(16)

where K represents the number of classes.
FPS represents the number of images that can be recognized per second, which is used

to measure the time complexity of the detection algorithm. It is stated here that smaller FR
values indicate better model performance, while the values of other metrics are positively
correlated with method performance.
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5.3. Implementation Details

The appearance of defects in solid-colored fabrics generally destroys the original
texture characteristics of the fabrics; therefore, defects can be visually identified only
from grayscale images. To meet the real-time requirements of defect detection, this paper
proposes to grayscale the RGB image first, and then input the model for training or testing.

Compared to large-scale datasets, such as COCO [31], the SDCFD used in this paper
are relatively small. Under such conditions, data augmentation is an effective means to
enhance the recognition accuracy and generalization of the model. During the training
process, we randomly perform some transformations on the input fabric image, including
grayscale transformation, rotation transformation, flip transformation, cropping, affine
transformation, and so on. In terms of parameter setting, the input size is 1333 × 800 pixel,
the initial learning rate is 5× 10−3, weight decay is 5× 10−4 and the total epoch is 50. To
avoid training falling into local optimum, at the 30th and 40th epoch, the learning rate is
adjusted to 1

10 of the previous epoch.
In this study, the proposed method is implemented by using the Pytorch toolkit 1.9.0 +

CUDA11.4 + cuDNN8.2.1. The hardware environment is as follows: CPU = E5 2623V4@
2.60 GHz, RAM = DDR4 32G, and GPU = GeForce RTX 3090(24 G) × 2. Partial of visual
results of detection on SDCFD-testing dataset are shown in Figure 13.

Figure 13. A partial visual result of the fabric defect detection. In each fabric image, the color boxes
are the predicted bounding boxes. The color of the box represents the defect of the specified category.
Among them, sub-images (a1, d1, a2, b2, c2, a3, b3, c3, e3) are warp defects; sub-images (b1, d2, e2)
are weft defects; sub-images (c1, e1, d3) are regional defects.

5.4. Ablation Study

To validate the efficacy and efficiency of the proposed approach, we conduct a thor-
ough ablation study in this subsection. Compared with the original CenterNet, our main
improvements are as follows: (1) Deformable convolution is introduced to improve the
adaptability to defects of various shapes; (2) FPN is replaced with i-FPN to improve the
accuracy of small targets. All ablation experiments are conducted with ResNet50 backbone
and evaluated on SDCFD-testing dataset.

We first explore the effect of using two different convolutions, namely common convo-
lution and deformable convolution. Table 2 presents the performance comparison results.
It is stated here that “Common convolution” in the table indicates that all the convolutions
in the model are common convolutions, and “Deformable convolution” indicates that
the partial convolutions (mentioned in the previous section) in the model are deformable
convolutions. The baseline is “Common convolution”, producing 0.527 box mAP. From the
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results, it can be found that the model has a higher recognition rate for regional defects, but
lower for warp and weft defects. It has been demonstrated that deformable convolution
has strong detection performance for irregular objects. Moreover, most fabric defects are
often irregular in shape. The model with deformable convolution achieves a average mAP
of 0.648 with +0.121 improvement. Except mAP, other detection performance indicators
for all categories have been improved to a certain extent, which proves the rationality and
effectiveness of using deformable convolution instead of common convolution.

As mentioned before, i-FPN is another key component used to improve the recognition
accuracy of the model for small defects. Here, we conduct the comparative experiment on
SDCFD to analyze the effect of it, and define the defects that occupy an area less than 300
(the number of pixels in the area) in the original image as small defects. Table 3 and Figure 14
present the quantitative comparison results when adopting different FPN architectures as
the cross-scale connection. The baseline is “None” (the first row in the Table 3) without
the cross-scale connection. It is clearly observed that the detection performance of the
model is significantly improved when cross-scale connection is adopted, especially for
small defects. For example, comparing “None” and “FPN”, DR achieves an improvement
of 0.102 for small defects. In addition, adopting Bi-FPN [32] or NAS-FPN [33] as cross-
scale connection produces a decent performance with the mAP score of 0.531 and 0.548
while Dense-FPN provides more improvements. Moreover, as shown in Figure 14, i-FPN
has great advantages in the detection performance of each category of defects. Further,
i-FPN achieves more improvements on all evaluation criteria; therefore, using iFPN as the
cross-scale connection can effectively improve the detection performance of the model for
various defects, especially small defects.

Table 2. Performance comparison of the proposed model using common convolutions and de-
formable convolutions.

Configurations Type R DR FR DACC mAP

Common convolution

warp defects 0.818 0.827 0.108 0.854 0.481
weft defects 0.809 0.823 0.112 0.848 0.469
regional defects 0.847 0.859 0.057 0.882 0.586
average 0.825 0.842 0.092 0.869 0.527

Deformable convolution

warp defects 0.876 0.924 0.051 0.927 0.624
weft defects 0.881 0.931 0.047 0.924 0.623
regional defects 0.960 0.983 0.017 0.958 0.752
average 0.894 0.938 0.043 0.942 0.648

Table 3. Performance comparison between different design choices of cross-scale connection, include
None, Bi-FPN, NAS-FPN, Dense-FPN, and i-FPN on SDCFD.

Types
Performance for Small Defects Average

R DR FR DACC mAP R DR FR DACC mAP

None 0.737 0.732 0.177 0.769 0.437 0.759 0.764 0.164 0.783 0.477
FPN [34] 0.796 0.834 0.104 0.842 0.517 0.828 0.826 0.095 0.834 0.529
Bi-FPN [32] 0.818 0.829 0.091 0.859 0.531 0.831 0.837 0.081 0.852 0.546
NAS-FPN [33] 0.825 0.864 0.084 0.868 0.548 0.839 0.875 0.076 0.879 0.568
Dense-FPN[35] 0.841 0.873 0.072 0.880 0.562 0.868 0.889 0.062 0.902 0.593
i-FPN 0.875 0.915 0.057 0.926 0.614 0.894 0.938 0.043 0.942 0.648
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(a) (b)

(c) (d)

Figure 14. Performance comparison between different design choices of cross-scale connection on
different type of defects. (a) Comparison of recall of different methods; (b) Comparison of Detection
Rate of different methods; (c) Comparison of False-alarm Rate of different methods; (d) Comparison
of mAP of different methods

To verify the superiority of the proposed method for fabric defect detection, we com-
pare it with 10 other classical object detection methods, including one two-stage method:
Faster R-CNN [19]; one multi-stage method: Cascade R-CNN [20]; two transformer-based
methods: DETR [36] and Deformable DETR [37]; seven one-stage methods: YOLOv3 [38],
SSD [21], CornerNet (anchor-free method) [39], M2det [40], RetinaNet [29], CenterNet-
RT (anchor-free method), [24] and FCOS (anchor-free method) [41]. The performance
comparison results are reported in Table 4.

Table 4. Comparison of the speed and accuracy of different object detector on SDCFD. We compare
the results with batch = 1 without using tensorRT.

Methods Backbone R DR FR DACC mAP FPS

Faster R-CNN [19] ResNet50 0.806 0.816 0.128 0.825 0.427 13.5
Cascade R-CNN [20] ResNet50 0.872 0.863 0.095 0.893 0.528 11.8
DETR [36] ResNet50 0.859 0.861 0.098 0.860 0.492 10.8
Deformable DETR [37] ResNet50 0.882 0.898 0.069 0.896 0.535 11.3
YOLOv3 [38] DarkNet53 0.763 0.782 0.168 0.776 0.358 45.0
SSD [21] VGG16 0.718 0.721 0.218 0.729 0.309 43.0
CornerNet [39] Hourglass 0.749 0.763 0.231 0.752 0.349 6.5
M2det [40] VGG16 0.763 0.775 0.184 0.769 0.319 33.4
RetinaNet [29] ResNet50 0.792 0.785 0.163 0.791 0.315 16.2
CenterNet-RT [24] ResNet50 0.858 0.875 0.073 0.862 0.593 30.5
FCOS [41] ResNet50 0.834 0.847 0.105 0.851 0.549 26.1
Proposed ResNet50 0.894 0.938 0.043 0.942 0.648 34.8
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5.5. Comparisons

Regardless of the detection speed, Faster R-CNN and Cascade R-CNN must be the
best choices for fabric defect detection. As shown in the first two rows of Table 4, these two
methods achieve certain advantages in detection accuracy; however, their FPS indicators
only reach 13.5 and 11.8, which cannot meet the real-time requirements of defect detection.
DETR and Deformable DETR are all based on the transformer architecture [42], which is
greatly affected by the size of the training data and thus achieve limited performance. As
classic one-stage object detectors, YOLOv2 and SSD have great advantages in detection
speed, which can detect 43 and 45 images per second, respectively; however, the perfor-
mance achieved by these two detectors is not ideal in terms of accuracy, mainly due to
their limited detection capability for small defects. Moreover, their false detection rate
FR is relatively high, which cannot be tolerated by textile enterprises. Although the three
anchor-free methods CornerNet, CenterNet-RT, and FCOS have certain advantages in
terms of computational complexity, their performance cannot meet the needs of defect
detection. It is clear that the proposed method outperforms other methods for fabric defect
detection, in terms of all evaluation criteria. The proposed method can detect 34.8 images
per second, and when this model is grafted onto the proposed online detection device,
the maximum detection speed can reach 34.8 × 14.3 × 60 ÷ 8 ÷ 100 = 37.3 m/min. The
average speed of manual cloth inspection is only 30m/min. In summary, the comparison
results demonstrate that our methods achieves the best performance in all indicators, which
proves the superiority of our proposed method. Combined with the proposed detection
algorithm and the developed equipment, the detection speed can reach 37.3 m/min, which
can meet the real-time requirements of defect detection.

5.6. Error Detection Analysis

By analyzing the samples of false detections, it is found that false detections mainly
include over detection and missing detection. In Figure 15, we present some examples of
false detections. The proposed method detects defects based on key points, and repeated
detection may occur for independent defects that are close to each other, as shown in
Figure 15(r1,g1); however, this false detection generally does not affect the final result of
detection. Wrinkles and imperfections in fabrics are visually very similar and can therefore
cause false detections, which are difficult to avoid, as shown in Figure 15(r2,g2). In addition,
some defects only have a small number in the training set, making it difficult for the model
to locate and identify them, as shown in Figure 15(r3,g3,r4,g4,r5,g5); however, we believe
that when there are enough training samples in the training set, the proposed model can be
sufficiently trained to accurately identify such defects.

Figure 15. Some examples of false detections, where the first row shows the detection results and the
second row shows the ground truth. Overdetection occurs in r1, g1, r2 and g2; and missed detection
occurs in r3, g3, r4, g4, r5, g5.
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6. Conclusions

In this paper, a novel automatic detection system for fabric defects was developed,
which includes hardware system and detection algorithm. In the hardware system, three
light sources and one mirror are configured to achieve efficient and high-quality acquisition
of fabric images. This study defines the task of fabric defect detection as an object detection
problem. Considering the real-time and accuracy requirements, we propose a defect detec-
tion method based on the improved CenterNet. Defects in fabric images generally have
the characteristics of various shapes and sizes, so we introduce deformable convolution
and i-FPN in CenterNet. Ablation experiments demonstrate that the two components
can effectively improve the detection performance. Compared with other object detectors,
the proposed method achieves the best performance in all indicators, which proves the
superiority of proposed method. Moreover, compared with proposed detection method,
the maximum detection speed of the developed equipment can reach 37.3 m/min, which
can meet the real-time requirement of fabric defect detection.
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