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Abstract: Obstacle detection for autonomous navigation through semantic image segmentation using
neural networks has grown in popularity for use in unmanned ground and surface vehicles because
of its ability to rapidly create a highly accurate pixel-wise classification of complex scenes. Due to
the lack of available training data, semantic networks are rarely applied to navigation in complex
water scenes such as rivers, creeks, canals, and harbors. This work seeks to address the issue by
making a one-of-its-kind River Obstacle Segmentation En-Route By USV Dataset (ROSEBUD) publicly
available for use in robotic SLAM applications that map water and non-water entities in fluvial images
from the water level. ROSEBUD provides a challenging baseline for surface navigation in complex
environments using complex fluvial scenes. The dataset contains 549 images encompassing various
water qualities, seasons, and obstacle types that were taken on narrow inland rivers and then hand
annotated for use in semantic network training. The difference between the ROSEBUD dataset and
existing marine datasets was verified. Two state-of-the-art networks were trained on existing water
segmentation datasets and tested for generalization to the ROSEBUD dataset. Results from further
training show that modern semantic networks custom made for water recognition, and trained
on marine images, can properly segment large areas, but they struggle to properly segment small
obstacles in fluvial scenes without further training on the ROSEBUD dataset.

Keywords: semantic segmentation training dataset; unmanned surface vehicle; obstacle detection;
deep learning; computer vision

1. Introduction

Unmanned Surface Vehicles (USVs) are a class of versatile mobile robots for au-
tonomous navigation in water. USV applications range from blue water [1] and shallow
waters [2] to slow moving inland waterways [3]. The use, design, and control of USVs in
open environments is well studied and established in the literature. Simple path generation
and following through basic control methodologies work well in such scenarios when an
obstacle free a priori assumption is valid. However, for a USV to be practical for unsuper-
vised use in dynamic water environments such as harbors, canals, and rivers, robust and
near real-time environmental sensing and obstacle detection is required.

Non-navigable inland waterways are an example of a dynamic environment where
most assumptions prior to operation will likely not hold, and a vehicle must perceive
and understand its environment to update its path continuously to avoid obstacles and
follow the river. River morphology [4] and storm debris can quickly make what limited
maps exist of small river systems obsolete. Seasonal changes to water levels [5] also make
navigation difficult, as the depth and course of the river may change daily, either exposing
or submerging obstacles and barriers to travel. Both man-made structures and natural
debris can also cause navigation problems and require detailed planning for avoidance. All
of these barriers to autonomous operation create a fundamental issue facing autonomous
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navigation in inland waterways: with a lack of existing maps and a finite visual horizon, a
robust perception method must exist to enable the Simultaneous Localization and Mapping
(SLAM) of a river’s course and fluvial obstacles.

Many environmental sensing and obstacle detection methods from the ground domain
have been implemented in the surface domain to provide capabilities of free space and
obstacle detection. These methods typically involve ranging sensors such as LIDAR,
RADAR, or visual sensors such as monocular or stereo cameras to gather high-dimensional
data of the autonomous agents’ surrounding environment. However, due to the reflection
and refraction of light at the water’s surface, and the cost of 3D LIDAR and RADAR
modules, many recent works have focused on passive image-based approaches. This
makes the obstacle and navigable space perception problem one of image processing and
the recognition of water and objects in images.

Many image processing techniques are present in the robotics domain across all
domains. Significant improvements have been made in the ground domain through the
research in Unmanned Ground Vehicles (UGVs). Methods for image processing for robotic
navigation typically fall into either traditional methods that use human selected features or
convolutional network approaches that use trained encoders to extract features from images.
Convolutional network approaches have shown excellent performance in the ground
domain through deployment on UGVs by classifying items in environmental images. This
classification can manifest itself through bounding boxes defining areas in images that
contain objects of interest or through pixel-wise or semantic image segmentation whereby
each pixel is given an associated class. The latter has shown an exceptional capability to
not only recognize and classify objects present in images but also highly accurately locate
objects, which is something that is desired for robotic applications.

Semantic classification enables a network to both classify and locate water within
an image that contains both water and non-water regions. Just as in image classification,
pixel-wise classification is performed by sequential convolution and pooling layers that
summarize the contents of an image in a feature-rich latent space. However, unlike image
classification, instead of flattening the latent space and utilizing fully connected layers and
a soft-max function to create a label for the entire image, the latent space is either processed
through super-pixel representations of the original image, a purpose-built decoder for the
encoded latent space, or a fully convolutional neural network that performs inferences
through subsequent kernels and deconvolutional steps.

Semantic segmentation networks have seen exceptional real-world use in autonomous
ground vehicles such as autonomous cars but have seen very limited experimental validata-
tion for use in marine environmental perception in harbors and littoral zones [6–8] and even
less real world implementation [9] fo the navigation task. To the authors’ knowledge, se-
mantic segmentation networks have not been explicitly applied to the river navigation
and fluvial obstacle avoidance problem for USVs. This is in part because of the lack of
publicly available annotated fluvial datasets that can be leveraged to train existing semantic
networks. The River Obstacle Segmentation Enroute By USV Dataset (ROSEBUD) seeks
to alleviate this data sparsity problem by providing the first of its kind publicly avail-
able dataset explicitly developed to train segmentation networks to recognize water in
fluvial scenes.

The novelty of this work is thus in three parts: (1) The creation of the first of its
kind fluvial segmentation dataset ROSEBUD with ground truth segmented images taken
by the authors within fluvial scenes, (2) A study on the difficulty of the unique dataset
by testing two state-of-the-art (SOA) water segmentation networks on ROSEBUD, and
(3) A comparison of SOA methods and their ability to generalize to both fluvial and
marine scenes.

In the remainder of this work, a review of methods for segmenting water and asso-
ciated datasets is provided in Section 2. The ROSEBUD dataset is reviewed and detailed
in Section 3. The experimental validation of the dataset on three semantic segmentation
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neural networks is detailed in Section 4. Finally, a conclusion and details on future work
are provided in Section 5.

2. Related Work

Water recognition in images is an important aspect for both ground-based and un-
manned surface vehicles. Ground-based vehicles must be able to recognize water for
avoidance, while USVs must recognize water to determine navigable paths through mis-
sion areas. Throughout the literature, water recognition is performed using one of three
methods: (1) algorithmic approaches that leverage hand selected image features, (2) tradi-
tional machine learning methods, and (3) Convolutional Neural Networks (CNNs).

Algorithmic approaches leverage assumptions about water and its surrounding en-
vironment to define rigid features such as image phase correlations [10], planes of reflec-
tion [11], and super-pixel reflectively and hue with linear binary patterns [12]. While these
methods are exceptionally accurate for images that align with the a priori beliefs, they
severely under perform when asked to perform in environments that exist outside of the a
priori assumptions. Examples where certain assumptions may not hold include water on
cloudy or dark days, water that is turbulent and thus does not have reflections, and rivers
and lakes with poorly defined or shaded shorelines.

Traditional machine learning (ML) techniques used in water identification for USVs in-
clude decision forests [13] and Support Vector Machines (SVMs) [14]. While these methods
generalize to varying conditions better than hand-crafted algorithms, they still struggle,
as many of the features that machines are trained on are still hand selected, and forward
inferences can be slow for high-dimensional feature spaces. Works such as [14] that leverage
traditional machine learning techniques must use continuous unsupervised learning to
achieve high accuracy (greater than 95%). This is both a time and energy-intensive task
that is not well suited for rapid autonomous agent control.

Other methods such as active contouring modeling [15] have been used for image
segmentation in addition to traditional ML-based approaches. These methods do not
require significant a priori knowledge to find the boundary of water and have been used to
segment lakes and other bodies of water in satellite imagery [16,17]. However, these meth-
ods struggle to rapidly reach solutions due to high computational loads and thus are not
ideal for in situ ASV deployment. Recent works focus on improving the efficiency of such
models through pre-fitting energy and adaptive functions [18] and by using additive bias
methods [19]. However, even with these advances, the computational speed is generally
still well below half a frame per second, proving dangerous to robotic operations using
segmented outputs for navigational purposes. Therefore, active contouring modeling is
not typically used for robotic applications, such as navigation, and it is not applied to the
dataset presented in this work.

Image classification with CNNs can be further sub-categorized into work that lever-
ages CNNs for either image classification, object localization, or semantic segmentation
(pixel-wise classification) of water within images [20,21]. Advancements in semantic seg-
mentation recently include Atrous convolution [22], Atrous Spatial Pyramid Pooling [22],
Skip Layers that combine various resolutions of encoding and thus contain both dense
features and location information [23], and residual layers [24].

Many recent advancements in semantic segmentation networks have made the net-
works easier to train, more generalizable, and better at resolving finer details for higher
pixel-wise classification accuracy. This has made them the leading technique for visual
perception for SLAM and robotic control. Significant work has been completed in the past
decade to use semantic networks in the ground and air domain for self-driving cars and
UAVs [25,26]. However, only recently have semantic networks been applied to water detec-
tion in robotic applications for the purposes of obstacle detection for USV avoidance [9],
river level monitoring [20], and general USV SLAM/Control [6–8]. The lack of uptake in
the use of semantic networks in marine domains is directly tied to the data-hungry nature
of the networks themselves.
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Most segmentation networks follow the supervised learning paradigm and thus
require hand-annotated image masks that are used in loss function calculations. The masks
are hand-annotated images that encode the ground truth information within an image.
In general, the more data that are available for training and testing, the more generalizable
a network can become. In the ground and air domains, a significant number of large
publicly available and fully annotated datasets exist for the training of segmentation
networks [27–34]. However, only a few small and publicly available annotated marine
image segmentation datasets exist [6,9,35,36], and to the best of the authors’ knowledge, no
publicly available semantically annotated datasets specifically designed for fluvial scenes
as viewed on an USV on an inland river exist. Other works that have been completed
with the specific intent of segmenting or identifying shorelines of fluvial scenes for USV
navigation [10–12] do not use semantic networks and thus either have no associated
datasets or did not publish their respective datasets. Other works for ground-level imaging
of rivers for semantic segmentation such as [20] no longer have publicly available datasets,
and works such as [9,37] either do not provide annotated data or have fluvial images that
only contain the imagery of a single shoreline taken from the opposing shore, as would be
present in large bodies of water.

3. ROSEBUD Dataset

To capture the realism and variance of images from a USV operating in fluvial envi-
ronments, ROSEBUD [38] (see Data Availability Statement) consists of 549 images collected
on two rivers in the US state of Indiana during the summer and fall of 2021 from a vehi-
cle traversing the river. All video was recorded by the authors at 30 Frames Per Second
(FPS) and with a resolution of 1920× 1440 pixels from a GoPro Hero4 camera mounted
approximately half a meter above the waterline.

A total of 249 unique image frames were extracted from over 2 h of video recorded on
the Wabash River on 15 July 2021, while 300 images were extracted from over 3 h of video
recorded on Sugar Creek on September 30 2021. The Wabash River images were taken from
a USV developed at Mahmoudian lab’s BREAM [39] that semi-autonomously traversed
the Wabash River in Tippecanoe County. Sugar Creek images were taken from a Canoe
that was piloted by a human operator over 2.5 h for 7.25 km between US Route 41 and
B’Dale Road in Parke County. The two rivers were chosen because of the fluvial dichotomy
between both river systems due to their differences in width, course, water clarity, obstacle
types, sediment load, and environmental settings. While the dataset is gathered during the
summer and fall months, augmentation can be performed on the dataset to present training
data representative of winter and spring, as is discussed and performed on training data in
Section 4.3.

The dataset contains three primary difficulties: (1) determining river shorelines at
varying water levels and types, (2) identifying and segmenting navigation obstacles in the
river, and (3) segmenting water when the river’s bottom and submerged obstacles can be
seen through the water. The images from the Wabash River were taken during exceedingly
high water, and they have no clear river shoreline evident due to sediment, rocks, or a
change in flora. In contrast, images from Sugar Creek were taken during exceedingly
low water levels, and they contain significant amounts of exposed river-bed. The latter
problem is furthered by the water clarity, at times allowing visual imaging of the river
bottom in the same image frame as the exposed river banks. The obstacles present on
both rivers are also unique. The area of the Wabash River that was imaged does not have
significant amounts of debris to avoid; the more urban nature of the river means that there
are bridges and varying amounts of inorganic obstacles to avoid. As Sugar Creek runs
through farmland, wooded areas, and alongside cliffs, it contains many boulders, rocks,
downed trees, stumps, and exposed sand bars that must be segmented. An example from
the Wabash River is shown in Figure 1a,b, while an example from Sugar Creek is shown in
Figure 1c,d.
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(a) (b)

(c) (d)

Figure 1. (a) Image captured on the Wabash River from a USV going through downtown Lafayette in
Tippacanoe County, Indiana, (b) Annotation of (a) showing segmentation of the fluvial scene with
annotations of bridge, sky, obstacles, and trees (river is disjoint of other classes), (c) Image captured
from a canoe on Sugar Creek in Parke County, Indiana, (d) Annotation of (c) showing the annotation
of the fluvial scene with annotations of the sky, trees, obstacles, and sandbar/riverbed [38].

All 549 images were manually annotated by human annotators utilizing a custom
segmentation tool developed in Python that uses OpenCV to enable users to scroll through
video frames, extract video frames, and augment the frames into trainable images. Anno-
tation is carried out for seven fluvial classes: (1) water, (2) exposed river shore/bank, (3)
bridge, (4) boat, (5) flora, (6) debris (logs, trash, rocks, debris), (7) sky, and then automat-
ically saved as two masks and an over image as JPEG images. The first mask contains a
label for all class regions as defined by the user as shown in Figure 2d; this is then overlaid
onto the original image for user visualization and confirmation, as shown in Figure 2b.
The second mask transforms the scene into a binary segmentation problem by concatenat-
ing all non-water classes together. Thus, the entire ROSEBUD set contains 4392 images
with 549 original images, 549 binary classification masks, 549 seven-way segmentation
masks, 549 ground-truth image labels, and all images/masks given at resolutions of both
1920× 1440 and 512× 384. In this way, the dataset can be utilized for training a network
for two different tasks: identification of river paths for navigation and recognition of fluvial
environment scenes for scientific surveys. While this work focuses on the binary classifica-
tion problem for USV navigation, the fluvial segmented masks are provided in the public
dataset for use by others.
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(a) (b)

(c) (d)

Figure 2. (a) An example of one of the 549 dataset images (b) Multi-Class Mask overlaid onto
the image, (c) Binary classification mask for navigational purposes showing non-water and water
segmented regions, (d) Multi-class segmentation mask [38].

When studied from an obstacle identification perspective, the dataset stands in contrast
to the current largest annotated segmentation marine dataset MaSTr1325 [6]. MaSTr1325 is
dominated by obstacles in marine environments at large scales at an image resolution of
512× 384. In comparison, ROSEBUD contains objects present in the rivers path on sizes
of varying smaller scales at a resolution of 1920× 1440 pixels. The obstacles present in
the dataset also exist in many areas outside of the waterline, which poses a significantly
more challenging localization problem for networks, as they must identify segmented class
enclaves. Examples of obstacle and environment types are shown in Figure 3. Furthermore,
unlike other publicly annotated water segmentation datasets that are dominated by the sea
and sky, ROSEBUD also provides masks for seven unique fluvial classification providing
a difficult classification task as well. In this regard, ROSEBUD provides data toward
both river navigation and fluvial classification network development that the research
community can leverage. A comparison between the ROSEBUD dataset and other current
marine datasets is presented in Table 1.

To be as helpful to the AI community as possible, the ROSEBUD images and masks
are given at a resolution of 512 × 384 in addition to the native 1920 × 1440 resolution.
The masks for both image resolutions are also given in several different popular formats
that can easily be utilized by segmentation network developers. The default binary masks
are given as grayscale images with pixel representation of water (255) and non-water (0)
given as 8-bit grayscale values. Binary masks are also given as 8-bit RGB images where
the b-bit grayscale image is copied to each separate channel in the RGB image. Lastly, each
binary mask is reported as a grayscale 8-bit image where the value of each pixel is tied
to a class number of 1 or 0 for water and non-water, respectively. The fluvial masks are
provided in a similar way as 8-bit RGB (3 channel) and grayscale (1 channel) masks.
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Table 1. Dataset comparison between MaSTr1325 [6], Waterline [9], Tampere-WaterSeg [35,40],
and ROSEBUD.

Dataset Resolution Number Classes Environment Types of Obstacle

MaSTr1325 512 × 384 1325 4 Coastal waters Boats

Waterline 1920 × 1080 400 2 Lake and river Buoys, sailboats,
motorboats, and swans

Tampere-
WaterSeg 1920 × 1080 600 2 Lake, canal, dock

Shoreline, docking
areas, boats, rocks,
maritime signs

ROSEBUD 1920 × 1440
512 × 384 549 2 and 7 River and creeks

Logs and branches,
shore, fallen trees,
rocks, sandbars, boats,
canoes, and bridges

Figure 3. Examples from the ROSEBUD dataset [38] qualitatively showing variance in sizes of
obstacles and scenery.

4. Experimental Evaluation

To evaluate the novel need and difficulty of ROSEBUD, two current state-of-the-art
segmentation architectures designed for water pixel classification in marine environments
are used (Section 4.1). Each network is trained to classify water and non-water pixels on
a combined dataset of the MaSTr1325 [6] and Tampere-WaterSeg [35,40] datasets, which
together total 1925 images across several seasons and weather types. These images are
then augmented to 26,950 images (Section 4.3). As both networks require different mask
formats for training, the augmented image masks were turned into both three-channel 8-bit
RGB masks (white and black for water and non-water) and 8-bit class identifier mask (pixel
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values of 1 or 0 for water and non-water pixels). After training each network for a number of
epochs of the augmented dataset, the trained networks are tested on the ROSEBUD dataset
binary classification masks (Section 4.4), and the performance is reported (Section 4.5) using
the metrics defined in Section 4.2. Finally, the networks are trained for additional epochs on
both ROSEBUD subsets (Wabash River and Sugar Creek) to identify if one type of fluvial
environment would help the networks generalize to the other. All of the final results are
detailed in Section 4.6.

4.1. Segmentation Architectures

Two state-of-the-art segmentation architectures are used to evaluate and baseline
the ROSEBUD dataset. Both networks utilize a ResNet-101 backbone [41], with a fixed
size CNN auto-encoder and a decoder back-end. Both of the selected networks have
achieved high accuracy and F-1 scores on several existing marine datasets. While many
other segmentation architectures exist including SEGnet [42], ESPNet [43], PSPNet [44],
vanilla ResNet-101 [41], Fast FCN [45], and BiSeNet [46], only networks were chosen
that were explicitly designed for, and evaluated on, the water recognition task. This way,
the networks have the greatest chance of generalizing between marine datasets and the
ROSEBUD dataset during testing.

4.1.1. Water Segmentation and Refinement (WaSR)

WaSR[7,47] is a novel marine water semantic segmentation network that builds on
the work of [6] and the analysis of different CNN architectures on the MaSTr1325 dataset.
The WaSR encoder employs a segmentation backbone of ResNet-101 [41] in four residual
blocks in combination with max-pooling layers and a hybrid atrous-convolution in the last
two layers to increase the local spatial context. The decoder uses a combination of Attention
Refinement Modules (ARFs) and Atrous Spatial Pyramid Pooling (ASPP) in parallel with a
sequence of Feature Fusion Modules (FFMs) and ARMs that each take in residual spatial
information from each residual block of the decoder. Training is performed with a novel
Semantic Separation loss function that aides in the elimination of False Positives (FP) and
False Negatives (FN). Finally, through an ASPP and softwmax layer, a color inference image
is created. The network was trained on the MaSTr1325 dataset and tested on the MODD2
dataset. The network is present in a form that leverages in situ IMU information to infer
the horizon and one that does not; this work utilizes the latter form.

4.1.2. Water Obstacle Detection Network Based on Image Segmentation (WODIS)

WODIS [8] is a more traditional encoding and decoding framework that uses a U-Net
inspired encoder–decoder structure to segment an input 512× 384 image of marine scenes
into water, sky, and obstacles. The encoder utilized is derived from the Xception net-
work [48] that utilizes depth-wise separable convolutions in lieu of traditional convolution
to extract deep features from the image. Three such convolutions are run in series and then
run through an ARF; this is completed in two subsequent sub-stages that concatenate the
dense information from the previous sub-stages at each separable convolutional layer, thus
capturing the spatial data between each serialized convolution. The decoder works much
the same way in reverse with FFMs taking the place of the convolutional block. The dataset
was trained on the MaSTr1325 dataset and cross-referenced on the SMD, MID, and MODD2
datasets. The WODIS network can be trained with and without initializing the RESNET
backbone with trained Xception model weights. Thus, to test the importance of pretrained
weights on the fluvial water recognition learning task, WODIS was implemented both with
and without the pretrained Xception weights provided by the authors.
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4.2. Performance Evaluation Protocol

Performance of the networks in segmenting water in fluvial environments is completed
through inference on ROSEBUD. The effectiveness and usefulness of the networks in USV
fluvial navigation is reported with four scores relative to the binary segmentation task
at hand:

• Specificity: TN
TN+FP .

• F1 Score: Pr×Se
Prc + Se Where Precision (Pr) and sensitivity (Se) are defined as: Se = TP

TP+FN
and Pr = TP

TP+FP , respectively.
• Mean Intersection Over Union: TP

TP+FP+FN .
• Mean Pixel Accuracy (Pa): TP+TN

TP+TN+FN+FP .

Here, n is the number of samples in ROSEBUD. TP, TN, FP, and FN are all the con-
ventional terms for total dataset classification of True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN). Other typical segmentation metrics such as
a confusion matrix are not reported as this work, as it only deals with the binary semantic
segmentation aspect of ROSEBUD.

Specificity was chosen to be explicitly reported for its importance to the navigation
task of water segmentation. Having some water classified as non-water (FP) for naviga-
tion purposes is less detrimental to USV health than non-water classified as water (FN).
Therefore, a tradeoff between specificity and accuracy is allowable for the networks. Pixel
Accuracy (Pa) and F1-score are also given to provide insight into how well each network
grasps river scenes in total. The Mean Intersection Over Union (MIOU) is reported as it
gives insight into the overlap between binary classes at the water’s edge.

4.3. Data Augmentation

As water is exceptionally dynamic spatially and temporally in color, texture, and re-
flectively, care is taken to prevent overfitting to a specific time of day, season, or water state
through augmentation. Augmentation is also completed to provide invariance to the USV
position and thereby camera roll due to currents and waves. Dataset augmentation was
carried out as shown in Figure 4, whereby each image in the original dataset is augmented
13 different ways from the original image, bringing the total training dataset size from
1925 to 26,950 images. Augmentation was completed independently of training with a
developed augmentation tool that utilizes the skimage python library.

A horizontal flip and ±30 degree rotation was performed to provide orientation
invariance. Three brightness augmented images are produced to provide incident light
invariance by raising and lowering the F-stop of the image, where each ±n f stop is
approximated by a channel pixel value change of ±2n capped at [0, 255]. A Gaussian blur
is added to the image to account for fast movements of water (including rain) and objects
in static images. Finally, six color augmentations are completed to account for changes in
how water hue can change with season, time of day, and sediment loading.

Image hue was changed by changing the original images color histogram to match
that of what we call a “donor image”. The six donor images contain: (1) an image taken of
a park in West Lafayette at sunset during “golden-hour” and thus containing redder light
(Figure 4i), (2) an example image from the Tampere-WaterSeg open-water subset during
overcast and light rain, resulting in diffused light (Figure 4j), (3) an over-saturated image
taken from the MaSTr1325 dataset (Figure 4k), (4) an image taken on the water of Fairfield
Lakes park in Tippecanoe County, Indiana, during winter (Figure 4l), (5) an image taken of
the Wabash River at high noon in mid summer while the river is exceptionally sediment
laden (Figure 4m), and (6) an image taken of Fairfield Lakes park in mid-summer in the
afternoon (Figure 4n).
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(a) Original (b) Horz-flip (c) 30◦ rotation (d) -30◦ rotation (e) -2 F-stop

(f) -1 F-stop (g) +1 F-stop (h) Blur (i) Color-shift 1 (j) Color-shift 2

(k) Color-shift 3 (l) Color-shift 4 (m) Color-shift 5 (n) Color-shift 6

Figure 4. Each training image is augmented in 13 different ways as shown above. Example sequence
uses images from Sugar Creek ROSEBUD Subset [38].

4.4. Network Implementation and Training

As the WaSR and WODIS networks were designed for inferences of the MaSTr1325
dataset (four classes), both networks had to be modified for use in a binary segmentation
schema. The WaSR and WODIS network dataloaders were changed to accept the binary
classification images made from the MaSTr1325 and Tampere-WaterSeg datasets. Outside
of configurable parameters, no major modifications to either network beyond that which
was published were made. All networks were trained for several epochs using an 80–20%
training and validation split. Each network was trained on a different randomized subset of
the augmented dataset (26,950 images) of size 21,560 images and validated on the remaining
5390 images. Both networks were trained with Pytorch API version 1.10 running on Python
3.8 using the best hyperparameters reported in each networks respective paper and code
base. The batch sizes and epochs used throughout all training present in the work are
summarized in Table 2.

Initial training of the WaSR network was completed over 20 epochs in total spread
across a training session of 15 epochs and five epochs. Both training sessions had a batch
size of 10 images. To resume the second training session, the checkpoint was loaded of the
previous training run. Training took place on a NVIDIA RTX3090 with 24 GB of VRAM and
clock speed of 1.4GHz. The hyperparameters used for the optimizer were those reported in
the WaSR publication and associated published code. The ResNet-101 backbone of WASR
was initialized with pretrained weights available from the Pytorch API.

Initial training of the WODIS network was completed over 100 epochs with a batch
size of 6. The network was trained on a NVIDIA RTX3080 with 8 GB of VRAM and a
clock speed of 1.4 GHZ. The hyperparameters used for the training were as reported in the
WODIS publication and associated code repository [8], except for the change in learning
rate at 50 epochs, as performed in the author’s online repository linked to in [8]. Instead
of jumping from 0.0001 to 0.003 as in the publication, the learning rate is halved after
50 epochs, as shown in Equation (1). This reflects the current state of the code in the
WODIS repository as of April 2022. The WODIS training was repeated again in the same
manner but with an initialized ResNet-101 backbone from the Xception weights provided
in the WODIS GitHub Repository. This pretrained backbone network is referred to as
WODIS_Xcept in subsequent sections of this work.

lrold =

{
if epoch < 50: 0.0001
else: 0.003

−→ lrnew =

{
if epoch < 50: 0.0001
else: 0.00005

(1)
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Table 2. Training parameters and weight initialization used for all the networks for each training
session. Initial training is training the network on the augmented dataset as detailed in Section 4.3.
The Wabash and Sugar Creek training each continue training for the epochs listed. During both
instances, the networks are initialized with their respective weights from the initial training.

Information

Model Batch Size Pretrained
Weights Epochs

Initial
Training

WaSR 10 ResNet 101 20
WODIS_Xcept 6 Xcept 100

WODIS 6 Random 100

Wabash
Training

WaSR 10 Base
Training

4

WODIS_Xcept 6 Base
Training

20

WODIS 6 Base
Training

20

Sugar
Creek

Training

WaSR 10 Base
Training

4

WODIS_Xcept 6 Base
Training

20

WODIS 6 Base
Training

20

4.5. Network Architecture Benchmark of ROSEBUD

After training of the WaSR and WODIS networks on the augmented datasets, all three
networks were baselined against the ROSEBUD dataset as a whole as well as the Sugar
Creek and Wabash River subsets, all three of which are unseen by the network. The WaSR
network outperformed WODIS in prediction accuracy on the ROSEBUD dataset and all
three subsets. The WODIS network with pretrained weights (WODIS_Xcept) achieved
better accuracy than the WODIS implementation initialized with random starting weights
after being trained for the same amount of epochs. This is shown in Table 3.

The obstacle-ridden Sugar Creek data subset was harder for the networks to accurately
process, with the Wabash data fairly closely approximating open water situations on USVs,
as illustrated in Figure 5, and with all trained networks able to have an extremely high
MIOU and MPA on the dastaset. Baselining on the entire ROSEBUD dataset worked well
for both networks that were initialized with pretrained weights.

(a) (b) (c)

Figure 5. Cont.
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

(v) (w) (x)

Figure 5. Qualitative outputs of Wasr and WODIS_Xcept networks on the ROSEBUD dataset [38]
after completion of training as detailed in Section 4.4. From left to right, the columns show the
test image, ground truth annotation, and the output mask by the network. Images (a–l) are WaSR
Network Outputs, while (m–x) are WODIS_Xcept network outputs.
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Table 3. Quantitative comparison of networks after completing training on the augmented dataset as
detailed in Section 4.3 and summarized in Table 2. Each network was baselined against the Wabash
and Sugar Creek Subsets of the ROSEBUD dataset as well as the dataset as a whole.

Network MPA MIOU F1 Score Spe

Wabash River Stats after Initial Training

WaSR 0.978 0.948 0.973 0.993
WODIS_Xcept 0.965 0.921 0.97 0.935

WODIS 0.929 0.842 0.94 0.872

Sugar Creek Stats after Initial Training

WaSR 0.960 0.92 0.959 0.985
WODIS_Xcept 0.959 0.914 0.96 0.931

WODIS 0.929 0.855 0.936 0.871

ROSEBUD Stats after Initial Training

WaSR 0.986 0.97 0.947 0.99
WODIS_Xcept 0.962 0.917 0.966 0.931

WODIS 0.9294 0.849 0.938 0.8714

In general, it can be seen from Table 3 that each network, especially those with loaded
pretrained weights, had quantitative results on the ROSEBUD dataset comparable to that
reported in their respective papers where they were tested on the MaSTr1325 and/or SMD
datasets. All networks have MPA and MIOUs in the mid 90s, with F1 scores in similar
ranges. However, this differs from some of the qualitative results shown in Figure 5 and 6
that show the network occasionally struggling with the more complex fluvial scenes that
are ridden with small obstacles. We hypothesize this is due to three main factors: (1) while
the small size of areas/obstacles to segment in the ROSEBUD dataset makes the dataset
more challenging, the smaller obstacles contribute less to typical quantitative results, (2)
while the dataset contains some images of complex shapes, other images lack such obstacles
in ground truth masks and are exceptionally well segmented by the network increasing the
network’s accuracy on the dataset as a whole, and (3) while aspects of the dataset are more
challenging, the binary classification tasked used in this work is a simpler problem for the
network architectures to learn over the multi-classification data they were built for.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 6. Illustration of network outputs on Sugar Creek scenes after further training on the ROSE-
BUD Wabash River image subset [38]. Images (a–h) are WaSR outputs after training 4 epochs on
Wabash River images, and (i–p) are WODIS_Xcept network outputs after training an additional 20
epochs. Columns from left to right are the test image, the ground truth mask, the output of the
network after initial training, and the output of the network after further training on the Wabash
River dataset.

The WODIS implementation that was initialized without pretrained weights signifi-
cantly struggled on all datasets with MIOU that were always under 0.86. This reinforces
the need for increased context recognition that is brought into the network by pretrained
weights. Across all of the networks that were baselined, the MIOU was either marginally or
significantly lower than the MPA. This in part due to the nature of the dataset and especially
the Sugar Creek data subset, which contains many enclaves of segmented classes within
areas of other classes (i.e., obstacles, rocks, logs, and branches).

The qualitative data for network accuracy shown in Figure 5 stand in contrast to the
quantitative results of the baseline. With fluvial dynamic environments, the environment
can change rapidly. In some instances, such as that shown in Figure 5j, the river can dry
up or become extremely narrow, providing a scene that is unrecognizable to the network.
In addition, while MPA can be high, the network may fail to recognize obstacles that
suddenly enter the frame in both the foreground and the background at the same time, as
shown in Figure 5v. While these and many smaller obstacles may not contribute highly
to accuracy and other quantitative stats, they can prove detrimental to a USV navigating
in such an environment. This is the fundamental challenge of the dataset. Images in open
river environments such as Figure 5a,s,m are easily recognizable by all of the networks due
to the similarities with the marine datasets the network was trained on. The largest issue
for the networks in general is the reflections and accompanied drastic changes in the hue of
the water in some images, as shown in Figure 5p.
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4.6. Fluvial Training and Testing

After all three networks were trained and baselined against the subsets of the ROSE-
BUD datasets, they were further trained on both the Wabash River and Sugar Creek subsets
of ROSEBUD and cross-validated against the other subset. For additional fluvial training,
each network was initialized with the weights, as reported in Section 4.5 and trained for
another four (WaSR) or 20 (WODIS) epochs using the same hyperparameters as detailed
in Section 4.4. After the additional training was completed, the networks were baselined
against the opposing subset of ROSEBUD. All 249 Wabash River and 300 Sugar Creek
images were augmented as detailed in Section 4.3 into 3486 images and 4200 images,
respectively, to be used for training.

Both versions of the WODIS network were trained for an additional 20 epochs with a
batch side of 6 on the Sugar Creek and Wabash subsets of ROSEBUD separately. The WaSR
implementation was also again trained in the same way but with a batch size of 10 and
for four epochs. Quantitative results of all three networks after the additional training on
the Wabash River subset and subsequent testing on the 300 Sugar Creek images are shown
in Table 4. Results from Sugar Creek training and testing on the 249 Wabash images are
shown in Table 5.

Table 4. Quantitative capability of networks on segmenting the Wabash River subset of ROSEBUD
after training on the Sugar Creek subset for the number of epochs as summarized in Table 2.

Wabash River Stats after Further Training

Network MPA MIOU F1 Score Spe

WaSR 0.978 0.955 0.977 0.976
WODIS_Xcept 0.976 0.950 0.976 0.974

WODIS 0.959 0.916 0.960 0.942

Table 5. Quantitative capability of networks on segmenting the Sugar Creek subset of ROSEBUD
after training on the Wabash River subset for the number of epochs as summarized in Table 2.

Sugar Creek Stats after Further Training

Network MPA MIOU F1 Score Spe

WaSR 0.984 0.964 0.982 0.991
WODIS_Xcept 0.966 0.921 0.970 0.957

WODIS 0.925 0.844 0.934 0.954
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Table 4 shows that training on the Wabash subset aided in segmentation of the
Sugar Creek data. All three network implementations increased the MPA of the Sugar
Creek dataset between 3 and 1.8% and increases in the F1 scores on networks around 2%.
The largest increase was in the MIOU with increases between 3.2 and 9%. This increase can
be seen qualitatively in Figure 6a,i. While large-scale areas of water and non-water stayed
largely the same, many artifacts and enclaves disappeared, and the waterline was cleaned
up, producing cleaner masks. Furthermore, even for images that did not improve with
further training such as Figure 6e,m the quality did not degrade at all. It is likely that this is
due to the network being exposed to certain aspects of water recognition unique to fluvial
environments such as reflections, shading of the river (non-uniform water brightness),
and likely the curvature of the GoRro used for the ROSEBUD dataset. Of interest is the
decrease in specificity across the board for both the WaSR and Wodis_Xcept networks.

Qualitative results of the opposite training and testing procedure are shown in Table 5.
Based upon the results, generalization appears to be only in a single direction for the
ROSEBUD dataset. While large gains were made toward recognizing the Sugar Creek
ROSEBUD subset through training on the Wabash River data subset, only minimal gains
were made doing the opposite direction. For the most part, the F1 scores largely stayed
the same or increased slightly. In the extreme example of the WODIS network, the F1
score actually decreased. The Mean Pixel Accuracy also remained largely unchanged. This
is likely due to the difference in obstacle presence and camera position between the two
datasets. As the Wabash images statically contain the pontoons of the USV used to collect
that data, the network over-trained on the obstacle dense Sugar Creek subset and began to
identify the reflections and hue variances as obstacles present in the image. This can be
seen in Figure 7m.

This activity in cross-training and validation illustrates how well images from a
navigable and obstacle-free river environment can aid network generalization to non-
navigable and obstacle-filled fluvial scenes. The reverse is also true to identify if a network
trained on obstacle dense scenes overfits and fails in more open areas. The approach to
move from less to more densely cluttered scenes is completed in Table 4 and shown in
Figure 4 works, as it follows a curriculum learning-based approach.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 7. Illustration of network outputs on Wabash River scenes after further training on the
ROSEBUD Sugar Creek image subset [38]. Images (a–h) are WaSR outputs after training 4 epochs
on Sugar Creek images, and (m–p) are WODIS_Xcept network outputs after training an additional
20 epochs. Columns from left to right are the test image, the ground truth mask, the output of the
network after initial training, and the output of the network after further training on the Sugar
Creek dataset.

5. Conclusions and Future Work

In this paper, a first of its kind fluvial semantic segmentation dataset ROSEBUD was
presented. The dataset aims to bridge the data sparsity problem that exists for marine
systems and especially autonomous systems navigating in river environments and enable
the use of supervised learning image segmentation techniques for navigation in fluvial
applications. The dataset contains 549 hand-annotated binary class images that can be
used to identify water in images as well as 549 images annotated with seven distinct
fluvial classes.

To identify how different ROSEBUD is from existing marine segmentation datasets,
two state-of-the-art semantic segmentation networks built for water recognition were
trained on existing marine datasets. The trained networks were then tested to see how
well they generalized to the ROSEBUD dataset and the Wabash River and Sugar Creek
subsets. Both networks performed exceptionally well across the dataset as a whole, but they
struggled with some images in the dataset that contain small amounts of water, dense
obstacle scenes, or rapid changes in lighting from shadows. While such images do not
detrimentally affect dataset performance, they can be detrimental for autonomous vehicles
operating in dynamic environments. Further training networks on subsets of the ROSEBUD
dataset helped both networks generalize to the fluvial environment, especially when
pretrained weights were not incorporated into the network.

In the future, the ROSEBUD dataset will be used to fully train a lightweight segmen-
tation network for implementation on a real USV platform for use in navigation river
environments without any a priori understanding of its environment. In addition, the flu-
vial class masks can also be baselined and used for training with other network architectures
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to tackle more complex tasks. In the future, images can also be added to the dataset to
provide data for fluvial scenes during winter months. The hope is that by making this
dataset publicly available, it can add to the limited surface water annotated data and also
allow others to train and develop networks for use in inland waterways.
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