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Abstract: Emerging Air Traffic Management (ATM) and avionics human–machine system concepts
require the real-time monitoring of the human operator to support novel task assessment and system
adaptation features. To realise these advanced concepts, it is essential to resort to a suite of sensors
recording neurophysiological data reliably and accurately. This article presents the experimental
verification and performance characterisation of a cardiorespiratory sensor for ATM and avionics
applications. In particular, the processed physiological measurements from the designated commer-
cial device are verified against clinical-grade equipment. Compared to other studies which only
addressed physical workload, this characterisation was performed also looking at cognitive workload,
which poses certain additional challenges to cardiorespiratory monitors. The article also addresses
the quantification of uncertainty in the cognitive state estimation process as a function of the uncer-
tainty in the input cardiorespiratory measurements. The results of the sensor verification and of the
uncertainty propagation corroborate the basic suitability of the commercial cardiorespiratory sensor
for the intended aerospace application but highlight the relatively poor performance in respiratory
measurements during a purely mental activity.

Keywords: Air Traffic Management; cognitive ergonomics; cardiorespiratory; ECG; fuzzy systems;
heart rate; mental workload

1. Introduction

In complex missions dealing with large amounts of information in time-critical sit-
uations, such as in the case of Air Traffic Management (ATM), human operators need to
work with high levels of automation support to improve operational performance. Dy-
namically adaptive Human–Machine Interfaces and Interactions (HMI2) have the potential
to modulate the cognitive load, supporting increased autonomy in decision support sys-
tems [1,2]. Several researchers proposed the use of neurophysiological monitoring to drive
HMI2 adaptation [3]. The main physiological observables that can be monitored include
brain [4], cardiorespiratory [5], and eye [6] activity, though research is also addressing facial
expression [7,8] and voice pattern analysis [9–12] to estimate the human operator’s cogni-
tive states. Each physiological observable provides a diverse perspective on the physical
and mental state of the monitored human and has a different level of intrusiveness and
ergonomics impact [13]. In metrological terms, some sensors are faster but more susceptible
to Electro-Magnetic Interference (EMI), while others are slower but more resilient to noise
and disturbances. For these important reasons, there is considerable research interest
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in various neurophysiological observables and associated sensing technologies for the
aerospace sector.

Recent research has characterised the performance of eye tracking sensors [14], which
showed great promise for avionics and ATM applications. Cardiorespiratory sensors are
simpler and have more clinical heritage than Electro-Encephalography (EEG) and eye-
tracking. They are also less susceptible to interference and several cardiorespiratory moni-
tors are much less intrusive (and obtrusive) compared to EEG. In this article, we therefore
focus on the application of cardiorespiratory sensors to support adaptive HMI2 in aviation.
While the performance of cardiorespiratory sensor technology has been widely studied,
notable works only addressed physical activity [15–25]. A number of studies have looked at
utilizing cardiorespiratory observables for cognitive state estimation in the air traffic control
context [26,27]. However, the quality of data, which depends on the actual performance
of the sensors, needs to be assessed to ensure repeatable and conclusive findings [28].
Therefore, for more complex aviation tasks, it is essential to characterise the performance
of Electrocardiographic (ECG) sensors by comparing the correlation of cardiorespiratory
features against objective measures such as task performance. ECG sensors were used in
flight applications to estimate mental workload of the pilot [29–31], but the medical-grade
devices used in these studies are typically not suitable for real-time applications due to their
high level of intrusiveness and lack of support for real-time data sharing. However, the
emergence of new consumer-grade devices in the market offers great promise for adaptive
HMI2 applications as they have the ability to measure cardiorespiratory observables with
relatively high accuracy while overcoming the aforementioned shortcomings.

Significant aerospace research focusses on consumer-grade, wearable sensors, for
which there are a number of published studies as reviewed in [23]. None of these studies
followed a mental testing protocol and the wearable cardiorespiratory monitoring device
featured in these studies was neither monitoring mental Workload (WL) nor used for
aerospace human factors purposes. This lack of pre-experiment characterisation and
performance analysis is particularly critical considering the significant body of research
featuring these sensors in aviation [26,27,29–32]. Because of this growing adoption of
cardiorespiratory monitoring in aerospace human factors research, it is of paramount
importance to investigate their performance in cognitively complex tasks.

This article addresses the verification and performance characterisation of commercial
cardiorespiratory sensors in monitoring cognitive tasks, focussing on aerospace applica-
tions. The paper is a substantially extended version of the initial work presented in [33].
In addition to extending the characterisation beyond the sole cardiac measurements, this
article introduces a strategy to apply the classic propagation of uncertainty theory through
a machine learning classifier, allowing to determine the uncertainty in the final cognitive
state estimations. Because of the limited experimental data available in the literature,
this paper does not claim to conduct a statistically representative analysis, but instead
to complete a preliminary verification in a mental workload setting and to propose and
demonstrate a new approach to uncertainty propagation through neuro-fuzzy inference
systems. Both of these aspects are novel and important for the research conducted in Air
Traffic Management (ATM) around the world.

Cardiorespiratory Sensing in the CHMI2 Framework

Spikes in WL in human pilot and ATM operator roles are particularly hazardous
and therefore are being addressed by a number of ongoing human factors engineering
studies [3]. A key objective for most of these studies is the development of HMI2 which not
only allows the operator to maintain a better awareness of the system’s actions, but also
prevents cognitive overload and hazardous instances, including attention tunnelling or
being left “out-of-the-loop”. One emerging concept holding significant promise to enhance
operational safety and efficiency optimisation is termed Cognitive HMI2 (CHMI2), where
a system senses the cognitive state of the human operator and dynamically adapts HMI2

formats to provide real-time support [34,35].
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The CHMI2 cognitive state estimation algorithms receive input data from a combina-
tion of wearable and stand-off biosensors and from other avionics systems and data sources
and convert these physiological, operational, and environmental variables into cognitive
states exploiting a machine-learning based classifier which was previously trained on
the particular human operator following a specifically designed pattern. Figure 1 shows
the top-level CHMI2 system architecture tailored for adaptation of: Level of Autonomy
(LOA), Human–Machine Interface (HMI) formats, and ATM task scheduling. A detailed
description of the CHMI2 system with a focus on the currently adopted neurophysiological
sensor network is provided in [13].
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Figure 1. Top-level architecture of the CHMI2 system.

The real-time sensing of cardiorespiratory parameters is important in the CHMI2

system because, among other states, these have shown to provide an accurate indication
of the level of effort (either mental or physical) of the subject. Moreover, they have been
studied for a considerable time, so a significant body of literature is available, and the
sensing technology is mature. One notable practical disadvantage is that both cardiac
and respiratory responses have a relatively low temporal sensitivity (lagging around four
to six seconds) [36] compared to other physiological signals (eye-based parameters have
a relatively higher temporal sensitivity in the order of milliseconds [37]) which leads to
inaccuracies during fusion of different physiological features, therefore a careful mapping
of stimulus time with physiological responses is also needed.

2. Models and Methods

The consumer-grade sensor under investigation is the Zephyr BioHarness (BH) shown
in Figure 2, which is widely available commercially and frequently used for activity moni-
toring (particularly of the physical type). Such a device, henceforth referenced as commercial
device, also serves as a good reference for similar wearable consumer-grade devices. The
BH is a lightweight chest-mounted sensor with a chest strap weighing 71 g and a process-
ing module weighing 18 g that logs and transmits the data in real time. It can measure
five physiological parameters simultaneously: Heart Rate (HR), Breathing Rate (BR), skin
temperature, tri axial accelerometery, and posture. BH reports frequencies of 250 Hz for
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the ECG waveform and 18 Hz for the breathing waveform. These raw measurements are
processed into HR, HRV, and BR indicators, which are logged or streamed either upon
detected variations or at predefined intervals, with the most common choices being 1 or
2 Hz. The literature suggests that these sampling frequencies are adequate for HR, HRV,
and BR indicators as these are only defined as a function of the peak-to-peak interval (e.g.,
RtoR) in the raw signal, which for adult non-athletic participants lies between 0.3 and
4 Hz [38]. The technical documentation provided by the manufacturer quotes that readings
can deviate ±2 bpm for heart rate and ±3 bpm for breathing rate in low activity or static
mode. The cardiorespiratory data measured from BH includes raw Electrocardiogram
(ECG) signal (electric potential), raw respiratory waveform, as well as processed HR and BR.
The BH determines HR by capturing cardiac electrical impulses for electronic filtration and
analysis by conductive silver-coated nylon skin electrodes, which are subsequently relayed
to the transmitter. For BR, a strain gauge is exploited, so that the conductor’s resistance
increases proportionally to the length of the conductive fabric, flexible Mylar, and foam.
This variation in resistance is measured using a proprietary capacitive sensor. The chest
expansion and contraction lead to size differentials that induce capacitance changes due to
impedance changes. The waveform of such variations is recorded [39]. For processed HR
signal, high-pass and low-pass filters are applied on the raw ECG with 15 Hz and 78 Hz
cut-off frequencies, respectively [40]. These cut-off frequencies allow measurement of HR
under vigorous activity.
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Figure 2. Commercial device adopted for the ATM CHMI2 research.

The measurements from the commercial device are compared with the data from
a medical-grade and clinically-validated ECG equipment. Both sensors are used simul-
taneously under rest condition to determine baseline measurements and higher MWL
conditions, allowing direct one-to-one comparison. An algorithmic synchronization is
implemented in the data logging routine for both sensors to ensure optimal consistency
between the BR rates of both instruments. The clinical ECG equipment used in our study
is the ADInstrument PowerLab 8/30 with Dual BioAmp DB066 unit (Figure 3), which is
widely used in medical research applications [41]. As the performance of this device is well
verified, data from this sensor can be used as the reference datum for the verification of the
commercial device. The sampling rate for each ADI ECG signal channel is 1000 Hz and the
individual ECG channels are recorded and stored using the LabChart software.
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with permission).

The electrodes of the clinical ECG are placed according to standard 5-lead configu-
ration, for which the first electrode is placed on the right side of the shoulder, the other
electrode is on the left side of the shoulder, the third electrode is on the lower left side. The
fourth electrode is on the lower right abdominal area and the earth electrode is on the right
side of the sternum bottom, as illustrated in Figure 4.
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To characterise the BR, a medical-grade and clinically validated device for respiratory
sensing (ADInstrument spirometer) was used. The spirometer is a transducer of differential
pressure to measure respiration flow rate, the volume and flow of inhaled and exhaled air.
The sampling frequency for the breathing waveform is 100 Hz.

2.1. Performance Characterisation of Cardiorespiratory Measurements

The fundamental metrics adopted for benchmarking the performance of the com-
mercial device are Root Mean Square Error (RMSE), standard deviation (σ), Correlation
Coefficient (CC), and Mean Bias (MB) across the whole dataset. These metrics were selected
as the most indicative of measurement validity and are defined as:

RMSE =

√
∑n

i=1(sti − soi)
2

n
(1)

σ =

√
∑n

i=1(di − µd)
2

n
(2)

CC =
cov(st, so)

σstσso
(3)

MB =
∑n

i di

n
(4)

where n is the number of data points; st is the data measured from commercial device in
(1/min); so is the data measured from clinical device in (1/min); d is the difference between
st and so in (1/min); µd is the average difference between st and so in (1/min).

Figure 5 illustrates the high-level methodology adopted throughout this performance
characterisation of the commercial and clinical devices directly connected to a Personal
Computer (PC). As illustrated, three different stages of the cardiorespiratory data process-
ing are evaluated: accuracy and precision of offline-logged measurements, of real-time
streamed data, and of cognitive estimates from the neuro-fuzzy inference system, since
the cardiorespiratory data is used in determining the operator’s cognitive states in the
estimation module. The HR is directly derived from the pulse-to-pulse (RtoR) interval,
whereas the BR is derived from the raw breathing amplitude. Consequently, σHR and
σBR in the figure are the uncertainties in logged commercial device data as compared
to the clinical device (results provided in Section 3), whereas σRT is the standard devi-
ation calculated comparing real-time data to post-processing data (discussion provided
in Section 2.2). Lastly, the uncertainty in estimated workload (σWL) is calculated since,
as already mentioned, the purpose of real-time HR and BR measurements is to estimate
mental workload and other cognitive states by means of a neuro-fuzzy inference system
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(results provided in Section 3.1). This part is vital since the inferred workload of the human
operator is exploited in CHMI2. Hence, the measurement uncertainties of HR and BR affect
the reliability of the workload.
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2.2. Real Time Data Streaming and Processing Protocols

The integration of cardiorespiratory sensing as part of an adaptive system such as
the CHMI2 requires real-time streaming and processing of the measurement data. To
comply with this fundamental requirement, the performance of the commercial sensor
in real-time measurement data communication were also assessed. For this functionality,
the sensor allows real time data exchange via Bluetooth to any computing device also
equipped with Bluetooth which can run a suitable setup and data processing software,
with signal carrier frequency of 2.4–2.835 GHz [42]. Bluetooth is a well-established wireless
communication technology utilising ultra-high frequency radio waves to exchange data
between mobile devices, computers, and components over short distances. Bluetooth was
standardised by IEEE 802.15.1 [43]. Bluetooth Special Interest Group (SIG), the international
standards organisation for Bluetooth technology, regulates on hardware specifications and
standardises devices sold in the market to ensure the devices meet the standard, so they
can be shipped with attached licenses.

The same test process from Section 2.1 is also applied in this case, but this time
comparing the real-time data with post-processing (offline) data. This test demonstrated
that the two data samples are exactly consistent with 1 CC, zero RMS error, mean bias and
σ. Hence, σRT for both HR and BR is zero. However, we shall note that the Bluetooth signal
is affected by packet losses and connection drops, particularly in presence of significant
Electro-Magnetic Interference (EMI), when significant solid obstructions lie in the line-of-
sight path between the sensor and the computing unit, or when the distance of the sensor
from the computing unit is excessive, resulting in highly attenuated signals. These issues are
commonly investigated by telecommunication specialists and several studies are available
in the related literature. A specific characterisation of the Bluetooth link between the BH
and the computing unit would not yield significantly different results as compared to the
literature, with a possible exception in the case of a well-designed connection “watchdog”
functionality having been implemented, leading to more consistent and timely restoration of
dropped connections. The implementation of a suitable connection management interface
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such as LabStreamingLayer can allow to mitigate the effect of temporary connection drops
without interrupting the data stream [44].

2.3. Propagation of Uncertainty across a Neuro-Fuzzy Inference Process

The uncertainty in the operator’s WL is estimated from cardiorespiratory and other
physiological data by means of a neuro-fuzzy inference system, which is implemented as
part of the CHMI2 to process the real-time cardiorespiratory measurements. Fuzzy systems
provide some flexibility in adapting the system parameters to individual users so that the
correlations exploited by the CHMI2 are unique to different individuals and their daily
neurophysiological/mental state.

The methodology to derive the uncertainty in the classified cognitive state as a function
of the neurophysiological inputs builds upon the initial studies we carried out in [14].
However, compared to that initial study, in this section we focus on the pre-clustering
and training results based on experimental datasets and their effect on the uncertainty. In
this study, HR and BR are the assumed inputs to the neuro-fuzzy inference system, and
the output is estimated as WL. The fuzzy set is characterised by a set of fuzzy rules and
membership functions. Fuzzy membership functions can assume various forms, which
yield different advantages and disadvantages. Fundamental types include triangular,
trapezoidal, gaussian, bell, and sigmoidal functions, which are described below. The
gaussian membership function, used in our implementation, is defined by parameters
(µ, σ) as:

δ(x) = exp

[
− (x− µ)2

2σ2

]
(5)

where δ is the degree of membership, µ is the centre of the membership function, and σ is
the standard deviation of the cluster, which is correlated to the width of the membership
function. The pre-clustering process is the first step of the neuro-fuzzy system calibration.
The chosen initial clustering algorithm is Fuzzy C-Means (FCM) due to its consistent
accuracy. The number of clusters are required to specify upfront. A membership matrix U
is generated, which specifies whether data point xi belongs to group j. The sum of each
data point’s membership must be unified across all groups [45]:

c

∑
j=1

uij = 1, ∀j = 1, . . . , n (6)

Thereafter, a cost function is provided by

J(U, c1, . . . , cc) =
c

∑
j=1

n

∑
i

uij
m·dij

2 (7)

where cj is the centre of cluster group j, uij is the degree of membership of data point i in
group j, m is the weighting exponent which is a parameter that significantly effects the
performance of the FCM, and dij is defined by ‖xi − cj‖ which is the Euclidean distance
between the i-th data point and j-th cluster centre. The degree of fuzzy overlap is increased
by increasing the value of m. The necessary conditions for minimising are given by:

J(U, c1, . . . cc, λ1, . . . λn) = J(U, c1, . . . , cc) +
n
∑
i

λi·
(

c
∑

j=1
uij − 1

)

=
c
∑

j=1

n
∑
i

uij
m·dij

2 +
n
∑
i

λi·
(

c
∑

j=1
uij − 1

) (8)

The minimum of J(U, c1, . . . cc, λ1, . . . λn) can be determined by differentiating it with
respect to all input arguments. The necessary conditions are given by:
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ci =
∑n

i uij
m·xi

∑n
i uij

m (9)

uij =
1

∑c
n=1

( dij
dkj

)2/(m−1)
(10)

The c cluster centres and m membership degrees are initialised arbitrarily and are
subsequently updated using Equations (7) and (8) respectively, followed by computing an
updated J from Equation (6). The iteration of the degree of membership and cluster centres
calculation is advanced until J satisfies a given threshold or until ‖U(k+1) −U(k)‖ satisfies
a termination criterion. Subsequently, the second phase involves the process of calibrating
the generated fuzzy cluster parameters, thus tuning them to maximise the correlations
between inputs and output(s). We note that the Adaptive Neuro-Fuzzy Inference System
(ANFIS) framework available as a MATLAB library and adopted for the majority of the
work presented in this article only allows one individual output to be included. Hybrid
training method is selected to adjust the input membership function (cluster) parameters
due to superior performance, while the function parameters of the output membership are
used in the training phase. The type of chosen ANFIS [46] is K Takagi-Sugeno, with rules
mapping input to output formulated as

Rule k: If x1 is A1n and x2 is A2n and ... and xi is Ain then

fj = pk0 + pk1 x1 + pk2 x2 + . . . + pki xi

where Ain is the nth input xi membership function, f j is the node output function of output
j, and pkj denotes the coefficients for rule k and input i of this node function.

The WL is assumed to be linearly correlated to level of difficulty. Low HR and BR
represent low workload, while high HR and BR represent high workload [47,48]. Therefore,
the rule-base consists of two fuzzy rules:

If HR is low and BR is low, then WL = 0.098 + 0.1167x1 − 9.8x2;

If HR is high and BR is high, then WL = 0.123 − 0.016x1 − 9.8 x2.

WL is normalised value from zero to one; low is 0.3 and high is 0.7, because this
LOD of the math exercise does not require 100% of their cognitive capability based on the
subjective rating. The methodology proposed and evaluated in [14] considered the shape
and distribution of the membership functions as determined by the training process. It
did not introduce any assumption regarding the order or shape of the psychophysiological
response curve. Because of this, intervals in the physiological input data for which no
training data was available (hence not covered by any membership function) led to very
significant penalties (i.e., higher uncertainty). However, it was excessively penalising in
terms of uncertainty when considering that the human psychophysiological response from
the reference are known to be very smooth and low-ordered [34] so that it can be assumed
that no peak or trough occurs in the interval for which no input training data is provided.
We therefore propose here a new approach that is based on the assumption of a smooth
low-order psychophysiological response curve. Although training input data was not
available for all intervals, based on the literature we can safely assume this smooth surface
without a large jump to be reasonably close to the real human response [49]. With this
assumption, we can directly use the propagation of uncertainty methodology to estimate
the uncertainty in WL. For any nonlinear differentiable function f , the generic formulation
of the uncertainty propagation is derived from the following multivariate expansion:

σ2
f = ∑

i=1,n

[(
∂ f
∂xi

σxi

)2
+ ∑

j=1,n; i 6=j

(
2

∂ f
∂xi

∂ f
∂xj

σxixj

)]
(11)
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where xi are the independent variables. Hence, the uncertainty propagation of the WL
estimates as a function of the uncertainty in the physiological input uncertainties takes the
following form:

σ2
WL =

(
∂WL
∂HR

)2
σ2

HR +

(
∂WL
∂BR

)2
σ2

BR + 2
∂WL
∂HR

∂WL
∂BR

σHRBR (12)

where σ2
WL is the variance in the workload estimate, σHR is the variance in HR, σBR is the

variance in BR, σHRBR is the covariance term of HR and BR (determined based on the
measurement population).

The process to derive a polynomial surface from a FIS was mathematically discussed
in [46,50,51] and is implemented as part of the MATLABs command «gensurf».

2.4. Experiment Design and Raw Measurement Data Processing

All the adopted research methods and data collection protocols were approved by RMIT’s
University College Human Ethics Advisory Network (CHEAN) (ref: ASEHAPP 72-16) and
all participants provided written consent. The experiment involves ten participants (eight
males, two females, age: 28 ± 4.8 years). The experiments were held in the late morning
for all participants. The tasks required each participant to complete basic math calculations
that varied in three Levels of Difficulty (LOD) for three minutes at each level: easy, medium,
and high. At each level, every question included addition, subtraction, multiplication, and
division. The difficulty increased by adding more digits in medium and high level. In
addition, the time limit for each question also varies among each level: 60 s for easy, 40 s for
medium, and 30 s for hard. The one-minute rest state was measured before and after the test,
as illustrated in Figure 6. Mathematical calculations were chosen over more realistic ATM
exercises as they have been shown to stimulate demanding levels of mental workload [52]
while having the flexibility of not requiring prior ATM experience from participants.
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Figure 6. Experimental protocol of the mental workload exercise.

Upon completion of the above-mentioned testing protocols, raw ECG signals were
extracted from both commercial and clinical devices. Then, the R peaks of the signal
were identified to calculate instantaneous HR. After identification of each peak, the R to
R interval (RtoR) can be calculated by the taking the time difference between consecutive
peaks, which is used to calculate HR, as:

HR [bpm] =
60

RtoR [s]
(13)

To compare the HR signal, the clock and sampling rate of the two sensors were collected
and processed separately, as they can differ. The time was scaled to ensure the starting
and finishing time of two datasets are synchronised, and the ECG signal obtained from the
clinical device was down-sampled from 1000 Hz to 250 Hz. Moreover, the datasets have
been resampled to make sure that the data from both sensors are synchronised. Although
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there are various sources of electromagnetic noise in the targeted application environment,
the experiments we conducted were carried out in a very representative setting and no
significant electromagnetic interference was detected. However, there is still considerable
noise in the data (i.e., movement artefacts), which can affect the validity of the system.
Hence, before going through system performance analysis, the HR signal was filtered, as
in most practical cardiorespiratory monitoring applications. The chosen process is low-
pass filtering of 2nd order Butterworth type, which is arguably the most consistent and
repeatable raw signal processing technique for removing high frequency noise. This filter
lets through signals lower than a selected cut-off frequency and lessens signals higher than
the cut-off frequency. Such low-pass filtering smooths the data and is specifically tuned
to increase the accuracy of the measurement considering the physics and physiological
specificities of the monitored bio-signal. For instance, HRV is an important feature in the
CHMI2 framework [13] and can be divided in two distinct bands: Low-Frequency (LF
HRV), which spans between 0 Hz and 0.15 Hz, and High-Frequency (HF HRV) which
spans between 0.15 Hz and 0.4 or 0.45 Hz [53]. As both physical and mental WL are
mainly correlated with LF HRV, for our particular application the cut-off frequency could
have been set as low as 0.15 Hz, however such strict filtering would have unnecessarily
restricted the sensor characterisation to LF HR/HRV monitoring. Therefore, to support a
conservative characterisation of the sensor for all HRV components and to limit the amount
of filtered data, the cut-off frequency was set to 1 Hz with steepness of 0.85, which is more
than twice the maximum physiological HF HRV component. Since HRV is directly derived
from the same RtoR as HR, a single performance characterisation is presented which is
applicable to both cardiac signals. Finally, a data rejection policy was also adopted such
that HR values lower than 50 bpm and higher than 180 bpm, and BR values lower than
5 bpm and higher than 30 bpm, were discarded.

The breathing waveforms from the commercial and clinical devices were extracted
and the associated BR was calculated. In particular, the waveform was differentiated in
time and the positive and negative peaks in the BR derivative were identified to indicate
inhaling and exhaling, respectively. The BR was subsequently calculated for both datum
and measured breathing in the same manner as Equation (1), with the exception that the
RtoR is replaced by the time difference between onsets of inhaling events (peaks in the first
derivative of the chest expansion magnitude signal). The results were up-sampled to a
common time reference and subsequently a low-pass filtering was introduced with cut-off
frequency of 1 Hz with a steepness of 0.95. This filtering is at least as equally conservative
as the HRV one discussed above, as the human breathing has a lower frequency than the
heartbeat signal.

3. Sensor Characterisation Results

Table 1 presents the aggregated validity results of the commercial device compared
to the baseline clinical sensor measurements, after the application of data rejection criteria
described in Section 2.4. For HR, the average RMSE across all participants is 4.852 bpm
and the average CC is 0.663. Looking only at aggregated correlations between two datasets
has some limitations: the discrepancy indication is not given, and the agreement is not
fully assessed. Therefore, the Bland–Altman plot is also adopted to further analyse the
characterisation results. Such a plot shows the values scatter, values ranges, the systematic
difference level, random errors, a relation between two protocols, and importantly the result
variations [54]. Figure 7 presents the Bland–Altman plots for the entire dataset, separately in
terms of HR (left) and BR (right). Each blue dot represents the average measurement error
(difference between the commercial and clinical sensors) while the black lines represent 95%
confidence interval or limits of agreement. The range of values can be easily visualised,
whether they are small or large, from these limits of agreement lines.
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Table 1. HR and BR validity results for the commercial device.

RMSE
[1/min]

σ
[1/min] CC Mean Bias

[1/min]

HR 4.852 4.109 0.663 1.901
HR min error 0.728 0.720 0.990 −1.511
HR max error 14.86 10.55 0.319 10.48

BR −9.729 7.394 0.087 −6.003
BR min error −7.958 6.534 0.188 −2.771
BR max error −12.94 8.024 0.029 −15.80

Figure 7. Bland–Altman plots of HR (left) and BR (right) for the entire population. The mean
differences (red line) and the 95% confidence intervals (black lines) are also shown.

The final step of the sensor characterisation involved looking at the statistical distri-
butions of measurement errors. The HR and BR measurement error distributions for all
participants are presented as histograms in Figure 8. The figure also represents the normal
distribution (Gaussian) fits. In the BR case, compared to HR, there is a higher mean bias (µ)
and σ, which makes BR a right-skewed distribution.
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3.1. Uncertainty in the Inference System

Using the polynomial coefficients from the psychophysiological response surface
(illustrated in Figure 9 left below), the uncertainty in WL estimates can be determined for
any value of HR and BR. The results for a particular participant, given sensor uncertainties
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calculated from the previous section of σHR = 0.720, σBR = 6.534 and σHRBR = −0.560, are
depicted in Figure 9 (right).
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Table 2 depicts the results from all participants, and the sensor uncertainties are
applied to each dataset.

Table 2. σHR, σBR, σHRBR, and σWL from the neuro-fuzzy inference system.

σHR σBR σHRBR σWL

Best 0.720 6.534 −0.560 0.376

Worst 2.491 7.433 17.49 2.220

Average 4.109 7.394 0.850 1.329

4. Discussion of Results

From the characterisation of raw cardiorespiratory measurements (Table 1), the CC in HR
was above 0.50 for the vast majority of cases, which indicates a moderate (or better) correlation.
The minimum mean bias in HR is 1.511 bpm, which is very low, while the maximum is
10.48 bpm. The maximum errors for HR are all from one participant that appeared to wear
the loosened strap. In particular, it was observed that the HR data from one participant and
BR data from the same and another participant were not correctly detected by the commercial
monitor, most likely because of the incorrectly tightened strap. As this is an acknowledged
limitation of the sensor, documented in the manual, the data from these particular participants
should have been rejected, but it was nevertheless included in the results for completeness. The
BR performance was consistently worse compared to HR. In particular, the correlation between
BR signals was poor overall, as indicated by the CC. Moreover, the BR results also showed
large RMSE, σ and mean bias with a value of −9.729, 7.394, and −6.003 bpm, respectively.
From the Bland–Altman plots (Figure 7), rather large variations of HR and BR are visible.
In particular, Figure 7 (left) highlighted that the mean difference increased in both positive
and negative directions at higher values of HR. The mean differences across participants was
3.021 bpm. The maximum differences between the commercial and clinical devices was ±25
which is consistent with [17]. Figure 7 (right) also showed a trend of increasing negative
difference at higher BR values. Finally, the Bland–Altman plots highlighted that there were no
significant differences across participants, confirming the correctness of low CC results for BR.
The mean BR difference among participants is −5.466 bpm, which is higher than the value
quoted in the technical specifications. Further analysis of these poor results required us to
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inspect the raw BR time series (Figure 10 below) and the respiratory magnitude plots for all
participants. From these further investigations, we could conclude that the commercial device
systematically missed breaths of smaller amplitude and more frequent occurrence.
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Looking at the uncertainty in the estimated cognitive workload (Section 3.1), the
assumed acceptable range of σWL was ±45%. Although apparently high, this level is
reasonable considering that the cardiorespiratory response is much slow than the cognitive
processes that we are estimating [55], and also because the activities that we administered
to the participants were likely lower than the maximum cognitive load that they could
withstand. Attempting to test the whole cognitive range would have required an adaptive
exercise, which will be considered for future research. From Figure 9 (right), it is evident
that for a wide range of HR and BR inputs, the uncertainty is relatively low (below 25%),
however it increases notably in a small region of high HR and low BR. The best uncertainty
in inferred workload σWL is 37.64% (Table 2). The worst case of maximum uncertainty in
inferred workload is 222%, clearly due to a very high uncertainty from BR. When such
large uncertainties are determined, the calibration process of the cardiorespiratory device
should be re-conducted until the acceptable error is achieved before starting real-time
measurement. Table 3 presents the uncertainty in inferred workload using only HR as
input variable, as we clearly identified that the high uncertainty in BR causes significant
errors in the estimation process as well. The average σWL decreases by 38.96% from 1.329 to
0.811. The worst case shows improved performance but is still unusable. The average σWL
without the worst case is decreased to 0.356 from 0.811, which falls within the acceptable
range less than 0.45.

Table 3. σHR and σWL from the neuro-fuzzy inference system.

σWL % Decrease

Best 0.125 33.39

Worst 1.211 45.45

Average 0.811 38.96

The overall conclusion of the verification is that the measurement validity of BR is
inadequate for mental activity monitoring, where smaller and more frequent breaths are
not uncommon. It shall nonetheless be reiterated that the BH was specifically designed
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for sport and sport medicine applications, so these findings are not in contrast with the
expectations. Based on the results of this characterisation, alternative respiratory sensors
need to be considered for the CHMI2 implementation. Hemodynamic sensors, which sense
variables associated with the blood flow, hold particular promise, as some of these are less
intrusive and potentially more accurate in mental activity monitoring. Their measurement
validity will be analysed as part of future research.

5. Conclusions

This article addressed the experimental characterisation of a commercial cardiorespi-
ratory sensor for emerging Air Traffic Management (ATM) and avionics Human–Machine
Systems (HMS) applications. Cognitively complex tasks of this type are associated with
high mental workload (WL), however no previous research addressed the verification and
performance analysis of commercial sensors which are commonly used in these mental
workload studies. The commercial sensor subject to this study is a commonly used wear-
able consumer-grade device for sport and sport medicine applications, capable of both
offline logging and real-time data streaming of raw and processed cardiorespiratory data.
The measurement validity and accuracy of both Heart Rate (HR) and Breathing Rate (BR)
measurements from the wearable commercial device were assessed by direct comparison
with a clinically validated device during representative mental workload exercises.

The article also presented and applied a novel methodology to quantify the uncertainty
in the cognitive state estimates based on the uncertainty in input physiological data, ex-
panding the traditional propagation of uncertainty theory. In particular, the uncertainty
in WL and other cognitive states estimates was quantified from the cardiorespiratory mea-
surements, propagating these through the psychophysiological response surface which was
determined by the neuro-fuzzy inference system. The analysis showed that the commercial
device achieved good accuracy in cardiac (HR) measurements but performed poorly in terms
of BR measurement during mental workload exercises. Consequently, the uncertainty in the
cognitive state estimates was acceptable only if limited to the cardiac measurements. Based on
this verification activity, the selected device is adequate for cardiac monitoring as part of the
targeted aerospace HMS application, but alternative devices will have to be considered for res-
piratory monitoring. The main candidates are hemodynamic sensors, which are typically less
intrusive and potentially more accurate in mental activity monitoring. This work contributes
to the broader research on Cognitive Human-Machine Interfaces and Interactions (CHMI2) for
ATM and avionics applications, which is one of the key areas of aerospace systems innovation.
Further research will look at the integration and optimal fusion of various neurophysiological
sensors to accurately monitor the cognitive states in complex tasks.
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