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Abstract: The entire water cycle is contaminated with largely undetected micropollutants, thus
jeopardizing wastewater treatment. Currently, monitoring methods that are used by wastewater
treatment plants (WWTP) are not able to detect these micropollutants, causing negative effects on
aquatic ecosystems and human health. In our case study, we took collective samples around different
treatment stages (aeration tank, membrane bioreactor, ozonation) of a WWTP and analyzed them
via Deep-UV laser-induced Raman and fluorescence spectroscopy (LIRFS) in combination with a
CNN-based AI support. This process allowed us to perform the spectra recognition of selected
micropollutants and thus analyze their reliability. The results indicated that the combination of
sensitive fluorescence measurements with very specific Raman measurements, supplemented with an
artificial intelligence, lead to a high information gain for utilizing it as a monitoring purpose. Laser-
induced Raman spectroscopy reaches detections limits of alert pharmaceuticals (carbamazepine,
naproxen, tryptophan) in the range of a few µg/L; naproxen is detectable down to 1 × 10−4 mg/g.
Furthermore, the monitoring of nitrate after biological treatment using Raman measurements and
AI support showed a reliable assignment rate of over 95%. Applying the fluorescence technique
seems to be a promising method in observing DOC changes in wastewater, leading to a correlation
coefficient of R2 = 0.74 for all samples throughout the purification processes. The results also showed
the influence of different extraction points in a cleaning stage; therefore, it would not be sensible to
investigate them separately. Nevertheless, the interpretation suffers when many substances interact
with one another and influence their optical behavior. In conclusion, the results that are presented in
our paper elucidate the use of LIRFS in combination with AI support for online monitoring.

Keywords: environmental monitoring; micropollutants; data processing; real-time monitoring;
wastewater treatment plant; DUV Raman/fluorescence spectroscopy; artificial intelligence

1. Introduction

One of today’s most pressing global challenges is the availability of a sufficient amount
of drinking water of adequate quality. A major threat that is currently posed to surface and
groundwater reservoirs is their contamination by micropollutants (pharmaceuticals, pesti-
cides, industrial chemicals, consumer care products). The discharge of harmful substances
into the aquatic environment via municipal wastewater treatment plants (WWTP) and
combined sewer overflows contributes significantly to the pollution of water bodies [1,2].
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Some of these harmful substances appear in µg/L or even ng/L concentrations which
overwhelms the sensitivity of many analysis techniques. These so-called ‘emerging mi-
cropollutants’ are traces of medical products, plant protection products, biocides and other
chemicals that can have detrimental effects on the environment or human health at very
low concentrations [3,4]. In 2010, the largest ever EU-wide monitoring survey on WWTP
effluents was performed. The obtained results show the presence of 131 target organic com-
pounds in European wastewater effluents, in concentrations ranging from low nanograms
to milligrams per liter [5]. Due to the adverse effects on human and environmental health,
a legal obligation to reduce and prevent micropollutants is posed by the European Water
Framework Directive (WFD) and the environmental quality standards (EQS) for priority
substances [3,6,7]. For the substances that are defined in the daughter directive of the WFD
the gradual reduction or even cessation of discharges and emissions is to take place [8].

In consequence, specific measures must be implemented to combat water pollution
that is caused by relevant pollutants or pollutant groups as soon as environmental quality
standards (EQS) are exceeded [9]. These specific measures presuppose that the nature
and extent of micropollutants are recognized, for example, in WWTP and their relieving
surface water bodies. Unfortunately, most micropollutants are not yet included in the
routine monitoring of surface and wastewater [10]. This means that, compared to other
anthropogenic contaminants the emerging micropollutants (EMPs) have largely fallen
outside the scope of monitoring and worldwide regulations [11]. The occurrence of different
organic micropollutants, especially EMPs (even at very low concentrations from point and
nonpoint sources) in the natural environment has raised significant concerns about their
negative effect on aquatic ecosystems and human health [12–14].

Municipal wastewater treatment plants were designed to treat domestic wastewater,
not to reduce, for example, pharmaceuticals, pesticides and microplastics. Biologically,
WWTP remove protein, fat and carbohydrates, as well as the important plant nutrients
carbon, phosphorus and nitrogen from the water [15,16]. It must be considered that
today’s conventional wastewater treatment technology (mechanical and biological steps)
was designed in the 1970s [5]. This fact underlines to the problem that many substances
are not even covered by the normal sum parameter monitoring of a WWTP, thus the
chemical inventory of the wastewater is not known, meaning that it cannot be completely
purified with the available treatment stages [17]. In fact, most of the conventional WWTP
are not designed to eliminate organic compounds at low concentrations, making the
treatment processes vulnerable and triggering a dissemination of micropollutants all over
the environmental compounds (Figure 1) [18,19].
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Information on the degradation of, for example, diclofenac (analgesic) at WWPT ranges
from “no effect” to a 60% degradation rate for the different size classes and the different
stages of expansion of the WWTP [20–24]. A review paper from Luo et al., 2014, showed
that the WWTP removal efficiency for selected micropollutants in 14 countries/regions
depicted compound-specific variation in removal, ranging from 12.5 to 100%. It must be
noted that the consumption quantities of selected drugs in Germany that are the subject of
public debate exceed 1000 t per year in some cases (e.g., for ibuprofen) [9]. In consequence,
regarding pharmaceuticals, toxicological studies have shown that they might have direct
toxicity towards certain aquatic organisms [25–28]. The occurrence of micropollutants in the
aquatic environment has frequently been associated with several negative effects, including
short-term and long-term toxicity, endocrine-disrupting effects and the antibiotic resistance
of microorganisms [2,29,30]. Their constant but imperceptible effects can gradually accu-
mulate, finally leading to irreversible changes in both wildlife and human beings [31,32].
The presence of these chemicals in the environment is more concerning considering that
they do not appear individually, but as a complex mixture, which could lead to unwanted
synergistic effects. The ubiquity of a high number of potentially toxic emerging chemicals
in the environment underpins the need to better understand their occurrence, fate and
ecological impact [33]. This leads to the recurring demand for online monitoring that
follows the concentrations, retention time and chemical interactions between the relevant
substances. Therefore, high demands on sensitivity, high throughput by automation and
short analysis times are major requirements [34].

Our research tests the possibility of the real-time monitoring of micropollutants in
wastewater using laser-induced Raman & fluorescence spectroscopy (LIRFS) in combina-
tion with an artificial intelligence approach using convolutional neural networks (CNN).
Spectroscopy in general comprises a group of optical techniques that decompose radiation
according to the properties of molecules, such as wavelength or energy, producing a spec-
trum as an excitation response. Radiation in the form of electromagnetic waves maps the
specific properties of a medium between the light source and the spectrometer, producing
a specific spectrum. The spectrum contains information to confirm atomic and molecular
models, determine qualitative compositions, and ascertain the proportion of a substance in
a mixture that is based on the spectra intensity [35,36]. In our current research case, we in-
vestigate both Raman and fluorescence spectroscopy that was conducted with excitation in
the deep-UV below 250 nm on the influent and effluent wastewater of a biological treatment
stage and an ozonation stage at wastewater treatment plants. We identified the substances
that affect the purification processes in WWTP; influence the installed sum-parameter mon-
itoring (e.g., humic acids); result from purification processes (as a transformation product
like bromate); or pass the WWPT without substantial reduction (e.g., pharmaceuticals like
diclofenac, carbamazepine), and may lead finally to a degradation of the surface water
quality. Our approach aims to identify and quantify the problematic pure substances using
LIRFS in combination with a CNN classification model. On every influent and effluent
sample fluorescence and Raman measurements were performed and the reliability of the
results were statistically evaluated and trained by CNN.

2. Fundamentals
2.1. Fluorescence/Raman Spectroscopy

Fluorescence spectroscopy is a method that is based on energy absorption, where
a fluorophore molecule is excited into various excited states through the absorption of
electromagnetic radiation of a certain wavelength. The radiation is emitted following the
transition to the lowest energy state (Kasha rule) and has a longer wavelength (less energy)
than the absorbed photon. The wavelength difference between the absorption maximum
and the emission maximum is called the Stokes shift [37] (see Figure 2, left). The molecule
emits the energy in the form of fluorescent light of a certain wavelength, in order to return
from its excited state to the ground state (see Figure 2, right) [38,39].
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Figure 2. Wavelength shift due to Stokes shift, (a); Jablonski diagram, (b) (adapted with permission
from [40]. Copyright 2015, American Chemical Society).

The process of fluorescence can be described using the simplified Jablonski diagram
in Figure 2 (right). In the Jablonski diagram, the energy levels of the ground state (S0) and
various excited states (S1, S2, S3), as well as the vibrational levels are shown. A fluorophore
molecule can become excited from the ground state (S0) through the absorption of a photon
into a higher energy level (S1, S2, S3), indicated by the violet arrow. The excited electron of
a fluorophore molecule returns to the lowest vibration state of the first excited state (S1)
due to internal conversion (blue arrows). From the lowest vibration level, the electron falls
to the ground state by emitting the energy due to fluorescence (green arrow).

Another optical method is Raman spectroscopy. The Raman effect can be described
as a two-photon process. Raman scattering is observed when monochromatic light hits
a molecule and deforms or polarizes the electron shell, creating a short-lived so-called
‘virtual state’ of the electron. The energy absorption of the incident photon is called
anti-Stokes scattering, whereas the energy transfer to an emitting photon is called Stokes
scattering [41,42].

As we mentioned in our previous paper [43], deep-UV spectroscopy offers the op-
portunity to analyze Raman and fluorescence emissions separately by using a nearly
fluorescence-free wavelength range.

This was first demonstrated by Asher et al. [44]. As Liu [45] summarized, a wavelength
range was discovered in which the interfering fluorescence can be separated from the
Raman signals.

Photon Systems Inc. [46] showed a spectral bandwidth over 3000 1/cm in which no
interference from fluorescence was observed by DUV-Raman excitation at a wavelength
that was below λ = 250 nm. This effect is well shown by Photon Systems on the Raman and
fluorescence spectra of crude oil that is excited by different wavelengths [47,48].

The fluorescence behavior and intensity can be significantly influenced by different
chemical and physical factors, called quenching. Quenching in general refers to all processes
that decrease the fluorescence intensity, such as reactions in the excited state, the transfer
of energy, molecular collisions and complexation reactions. The term collision quenching
refers to intermolecular interactions, e.g., in the form of shocks, by which the excited
fluorophore returns to ground state after colliding with a quencher [39]. The mechanism of
fluorescence quenching depends on the colliding molecule pair, especially on the substances
which act as quenchers (in particular, oxygen, halogens, amines and molecules with electron
deficiency). In addition to quenching, the internal filter effect and metal ions in the water
influence the fluorescence behavior.

The fluorescence intensity is furthermore greatly influenced by temperature, whereby
the correlation between these factors is anti-proportional. In the event of a temperature rise,
the probability that an excited electron is caused by radiation-free decay increases. How
great the effect on the fluorescence intensity is depends on the composition and size of the
fluorophore [49].
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The complexity of the largely unexplored behavior between the individual relation-
ships and thus their influence on fluorescence is the subject of numerous works in the
literature [50–52].

2.2. Wastewater Treatment and Monitoring

Wastewater treatment developed rapidly in the last decades due to ongoing challenges
in wastewater composition. All the purification processes are undergoing a process of
optimization, so this brief overview emphasizes a bundle of applied process combinations
but cannot guarantee completeness.

The aim of the first treatment stage is to remove the undissolved components from the
wastewater. In this process, coarse materials are retained by screens, sediments are forced to
sediment by lowering the flow velocity, and floating light materials are removed by skimmer
devices. A further, detailed explanation is given in [53–55]. In Gupta et al., 2012 [56], a good
illustration of primary, secondary and tertiary treatments and water recycling technologies
is shown.

Secondary water treatment includes biological routes for the removal of soluble and
insoluble pollutants by microbes [57]. The microbes, usually bacterial and fungal strains,
convert the organic matter in an aerobe process (nitrification) and later in an anaerobe
process (denitrification) into methane and inorganic substances, such as carbon dioxide and
ammonium [58]. Many microorganisms form colonies which become visible as sludge flocs.
These sludge flocs settle at the bottom of the subsequent secondary settling pond or clarifier
and are either returned to the activated sludge process or pumped into the primary settling
pond for sludge disposal (see Figure 3). The biological treatment includes the aerobic and
anaerobic digestion of wastewater. The aerobic process is effective for the removal of bio-
logical oxygen demand (BOD), chemical oxygen demand (COD), dissolved and suspended
organics, volatile organics, organically bound nitrogen and ammonia, phosphates etc. The
concentration of biodegradable organics can be reduced by up to 90% [56]. If free-dissolved
oxygen is not available in the wastewater, anaerobic decomposition occurs. Anaerobic and
facultative bacteria convert the complex organic matter into simpler organic compounds
that are based on nitrogen, carbon and sulphur [58]. The important gases that are involved
in this process are nitrogen, ammonia, hydrogen sulphide and methane. In our case study,
the influent and effluent of a membrane bioreactors (MBR) were examined, which belongs
to the biological treatment stage. MBR is a membrane-filtration system that can be inte-
grated directly into the aeration tank (Figure 3). Micro- and ultrafiltration membranes are
used for this purpose [59] which separate the activated sludge, thus eliminating the need
for the secondary clarifier.

The third purification stage is important to reduce different nutrients, such as phos-
phate and nitrogen, but especially for disinfection purposes. WWTP design often varies due
to different boundary conditions, so that the elimination of phosphate in some WWTP be-
longs to the biological purification stage [60]. Various possibilities of third water treatment
processes provide a final stage to meet specific requirements around the safe discharge of
water. In our case, ozone was used as an oxidant. Although ozonation has proven to be an
effective means of eliminating trace contaminants, undesired transformation products (TPs)
are also formed in this process [28]. In this context, the formation of bromate is by far the
most critical problem. The studied ozonation stage is controlled in a minimum operation
with a volume proportional dosing of 2.0 mg O3/L. For the evaluation, samples collected
before and after ozonation were compared over a period of two weeks.
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(9) sand filter. (EF) effluent into surface water [61] (adapted with permission from [61]. Copyright
2022, Elsevier).

As described above, the most important removal pathways of organic compounds
during wastewater treatment are biotransformation/biodegradation, abiotic removal by
adsorption onto the sludge and stripping by aeration (volatilization) [62]. To track and
review these interacting processes, sum parameter monitoring is utilized. Sum parameter
bundling represents a summarized description of certain effects and substance parameters.
Due to the large number of organic compounds in (waste)water, the substances are often
not considered as individual substances but are grouped together according to their similar
properties or effects [63]. This offers the advantages of easy, standardized and affordable
measurements. Consequently, they belong to the most frequently measured parameters [27].
However, they do not provide any detailed information on the presence of toxic or emerging
contaminants.

The BOD (biological or biochemical oxygen demand) indicates the amount of oxygen
that is consumed by microorganisms for the biological, aerobic degradation of dissolved
organic compounds in wastewater within a certain time. It is usually given in mg O2/L for
a period of 5 days (BOD5) [64]. The source of BOD is readily degradable organic carbon
and ammonia (NH3). These are common constituents or metabolic byproducts of plants
and animal wastes and human activities [65]. The standard method for COD estimation
is the so-called ‘Dichromate’ method [66,67] which is characterized by the acidification of
the sample with sulphuric acid and the addition of silver sulphate. Due to the application
of hazardous chemicals and an analysis time of 2 h, the method is not suitable for online
use [68].

As a result of the implementation of the EU Industrial Emission Directive (IED), the
total organic carbon (TOC) parameter is being introduced broadly into the monitoring of
wastewater in various industries that reflects the organic load in a sample and is divided
into dissolved organic carbon (DOC), undissolved organic carbon POC (particulate organic
carbon), and volatile organic carbon (VOC) [69]. There is a slight preference of TOC,
compared to the determination of COD, because TOC is subject to uniform regulation
across Europe by the [70] standard, it is not hazardous, and it includes only organic
carbon compounds. Generally, the determination of TOC is achieved by thermal or wet
chemical oxidation so that CO2 is formed, which is subsequently measured by an NDIR
(non-dispersive infrared) detector. The distinction between DOC and POC lies at a particle
diameter of 0.45 µm [71]. On average, DOC represents 87% of TOC [72]. The DOC in
wastewater is mainly composed of easily degradable substances, such as carbohydrates,
proteins, fats and amino acids, as well as compounds that are difficult to degrade, such
as cellulose and humic substances. Hence, particles which contain organic carbon should
be considered during the measurement [70]. DOC content is reduced by up to 90% in
WWTP plants. In Germany, however, there is no limit value for DOC in drinking water or
wastewater, while Swiss drinking water may contain a maximum of 2 mg DOC/L [64].

Process analyzers, such as gas chromatographs with simple detectors [73–75], TOC-
analyzers, spectroscopic probes and many others are very common in the process envi-
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ronment and have already been implemented successfully in (petro-)chemical plants or
wastewater treatment plants for many years [76]. These techniques (e.g., GC, HPLC and IC
systems) mainly use mass spectrometric detection which does not allow truly continuous
monitoring. The spectral absorption coefficient (SAC254) provides information on the load
of dissolved organic matter in the water. The coefficient is determined using a spectropho-
tometer at a wavelength of 254 nm and gives the absorption of the dissolved substances in
the sample [77]. Modern optical sensors measure the turbidity according to EPA 180.1 [78]
and ISO 7027 [79]. Other measuring probes apply UV-vis spectroscopy over the entire ab-
sorption spectrum from 190 to 750 nm. These sensors enable in-situ measurements during
operation and real-time adjustments of the treatment process. However, the detection limit
in waters with a complex composition and the difficulty of detecting the UV-Vis spectra
of some pollutants in the water, such as suspended solids, dissolved inorganic substances
and pathogenic microorganisms remain challenging [80]. Monitoring tools that interact
continuously and automatically are not yet established. As [81] summarized: “Analytics
4.0 was proclaimed before it became a reality, and at least for the traditional analytical
laboratory describes a vision rather than the actual status. Standardized protocols and
commercial, unified solutions are required”.

Raman- and fluorescence laser spectrometry offers the potential to replace or supple-
ment these methods and to establish faster and more efficient real-time monitoring as a
new standard. This could act as an early warning system to detect targeted substances and
allow rapid intervention.

3. Equipment
3.1. Raman/Fluorescence Detection System

For this study, we utilize a commercially available Photon Systems PL200 DUV spec-
trometer [47]. The system uses the benefits of deep-UV spectroscopy by using a NeCu
transverse excited hollow-cathode gas laser, which leads to an interference-free spectral
range without fluorescence and the auto-luminescence obscuration of Raman signals, and
vice versa [45,47,48]. Most of the common devices that are used in spectroscopy are rel-
atively large, heavy, and require significant cooling power. The PL 200 mitigates these
limitations by utilizing a compact, low power, air-cooled hollow-cathode laser. The system
is discussed in more detail in [43] and only the main components will be summarized. The
laser emits light with a wavelength λ = 248.6 nm in 40 µs pulses with an average energy of
3.5 µJ. The device is designed to carry out fluorescence and Raman measurements which is
enabled by the low wavelength, allowing a clear separation of the Raman shift signals and
the autofluorescence of many natural materials.

Figure 4 shows a detailed illustration of the measurement setup. The incident laser
light is focused by an array of mirrors where the aperture and light intensity are controlled
by two iris diaphragms. An interference filter ensures a monochromatic light. Only one
wavelength of 248.6 nm is transmitted through an additional built-in interference filter. The
light that is reflected back from the sample reaches the laser-blocking lens via an achromatic
objective. This lens almost reflects the Rayleigh radiation that is emitted by the sample and
is transparent to the incoming Raman radiation. The sample is measured inside a quartz
glass cuvette, a movable flow cell or placed onto a rotary table. The emitted fluorescence
signal is then edge-filtered and spectrally separated by a monochromator. The light enters
the monochromator through an entrance slit, the size of which can be adjusted. A larger slit
decreases the spectral resolution. At the same time, enlarging the slit leads to an improved
limit of detection (LOD). Since these two properties are linked ant proportionally, a trade-off
exists between the resolution and LOD. We choose a relatively large slit size of 150 µm,
in order to achieve better detection limits, since the LOD is much more important when
trace amounts of substances need to be identified. After passing through the entrance
slit, a 200 mm focal length Czerny–Turner spectrograph splits the light into the individual
wavelengths. The fluorescence signal is acquired by selecting a 300 ln/mm grating, which
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yields a resolution of 1.2 nm. The 3600 ln/mm grating can be chosen, in order to investigate
the sample’s Raman shift, which is investigated in a previous publication [43].
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Figure 4. Optical setup of the Deep-UV Raman and Photoluminescence 200 Spectrometer visualized
with Wondershare EdrawMax Copyright © 2022 Edrawsoft.

The resulting light spectrum is detected by a three-stage thermo-electrically cooled,
back-thinned, back-illuminated CCD array with a resolution of 2048 × 128 pixels. The
intensities are recorded with 16-Bit resolution, which means a maximum intensity of
65,000 counts can be recorded.

The emission is based on a back-scattering configuration (180◦ degree) when using
the cuvette from Hellma® or Starna CellTM. For the detection of solid samples, such as
microplastics or powders, a rotary table can be used, resulting in a 180s degree scattering
configuration.

The spectrometer can be calibrated quickly and easily via software (Figure 5, left).
The Raman grating (3600 ln/mm) uses Acetonitrile, a NIST-Standard (National Institute of
Standards and Technology) for calibration. The calibration is based on two known peaks at
2250/3940 1/cm (compare Figure 5a) and can be verified with pure water (Photon Systems
Inc. 2020). The fluorescence calibration is achieved by using a GaN-sample (gallium-
nitride), showing one specific peak at 363 nm (Figure 5b). The calibration can be verified by
measuring the amount of PHE (Phenylalanine) [82].
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4. Data Processing
4.1. Data Preparation

All the data were processed and analyzed using the Spectrum Analyzer© software.
The software is also used to control and calibrate the two holographic gratings. In addition,
the software supports the use of CNN classifiers, which we trained using our measured
spectra.

For the software optimization, each measurement is repeated 10 times, in order to
improve the signal-to-noise ratio. The recorded spectra are processed to enable better
comparability and to optimize the quality of the spectra. The fluorescence and Raman
spectra are handled with the same mathematical algorithms. All spectra are smoothed
using a Whittaker–Henderson algorithm. Additionally, sharp and intensive peaks, which
can be caused by cosmic rays are removed (despiked). The intensities are then normalized
regarding the pulse number and laser energy due to variations in the laser energy.

For the statistical analysis, each Raman or fluorescence measurement series, consisting
of 10 individual measurements to evaluate the precision (and photodegradation or photo-
bleaching) is preceded by a calibration process, as described before in Section 3.1. Dilution
series with decreasing substance concentrations in the solution focus on the accuracy of
the results in terms of trueness, and lead to the estimation of the limit of detection for each
substance. Depending on the fluorescent properties, some of the substances are stronger
diluted, meaning that they show more steps regarding their dilution (e.g., naproxen or
tryptophan). The standard deviation (σ) and coefficient of variation (CV) describe the
characteristics of the single spectrum and result in a correlation curve, if the results so
indicate.

σ =

√
(∑ x− x′)2

n
(1)

CV =

√
(∑ x−x’)2

n

x’ (2)

with x = intensity of signal, x′ = averaged intensity of signal, n = number of values.
The further processing refers to the fluorescence measurements, whereas Raman data

processing was described in detail in a previous paper [43]. The averaged fluorescence
spectrum of the individual concentration is used, from which the spectrum of the solvent
has already been subtracted if the substance spectrum has a higher signal intensity than
the solvent. In the other case, to prevent negative values for the resulting spectrum,
we normalize the solvent spectrum to its initial, sharp peak (Figure 6). This procedure
artificially increases the substance signal, in order to reduce masking by the solvent. If this
procedure is necessary, a quantitative view on the date is no longer possible, regarding the
limits of detection or the evaluation of concentrations.

In the further course, the maximum signal intensity of the different concentrated solu-
tions is determined. The corresponding intensities are plotted against the concentration and
a calibration curve is generated. From this, the mathematical detection limit of fluorescence
spectroscopy for the respective substance can be determined graphically, as well as the
accuracy of the measurements. For this purpose, the values of the calibration curve are
used as reference values and the relative deviations of the measured spectra to this curve
are calculated. If a linear regression results, the coefficient of determination (R2) can be
used to estimate the accuracy. If the calibration curve does not yield a linear regression, the
relative deviation is determined with Equation (3) [83].

rel. σ =
measured value− true value

true value
(3)

For the identification of the measured substance, the spectrum of the pure substance as
a solid, gas or liquid is measured and stored by the database. References for Raman spectra
can also be found in the literature or in open-source software [84]. A simple example for the
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fluorescence spectra of a dilution series of four concentrations of carbamazepine, diluted in
ethanol, and measured in a quartz cuvette is shown in Figure 6.
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Figure 6. Fluorescence spectra of four carbamazepine concentrations, measured in a quartz cuvette
and diluted in ethanol. The spectrum of the solvent ethanol (dotted line black), measured in a quartz
cuvette and the empty cuvette itself (dotted line grey) are shown but not yet subtracted. Settings:
pulse number 50; pulse frequency 40; slit size 150 µm; grating 300 ln/mm; focal length 20 mm (raw
data from [85]).

Figure 6 shows the dominance of the solvent ethanol and its influence on the carba-
mazepine signals. The highly concentrated 10 mg/g carbamazepine signal (purple line) is
most attenuated by the solvent and the other substance spectra become increasingly similar
to the ethanol spectrum as their concentration decreases (with the exception of 0.01 mg/g,
green line). On the other hand, the signal of the quartz cuvette (dotted line grey) offers a
very low intensity so that it can be neglected for further fluorescence measurements. The
before-described procedure to reduce the influence of the solvent shows Figure 7, where
the ethanol spectrum was subtracted and the averaged carbamazepine spectra were scaled
and therefore artificially strengthened. As a result, the highly concentrated solution shows
the highest intensity of more than 60,000 AU.

4.2. Substance Classification

In order to use the gathered spectra for monitoring purposes, the recorded substances
must be identified. Various techniques for spectrum classification have been developed
in the past few years. However, there is no wholly developed study applying these
techniques to assist wastewater treatment operation [86]. The complex, nonlinear nature
of spectroscopic data makes their analysis and classification challenging. A wide range
of strategies for the analysis of spectral data exist, ranging from visual inspection by
an expert through database matching, up to sophisticated machine learning models. In
the analysis of complex mixtures, especially, the visual identification or correlational
database-matching of spectra are often not applicable, since a superposition of all individual
molecules’ fluorescence signal is recorded. Furthermore, manual classification is not a
suitable workflow for the automated identification of substances. To reduce subjectivity
and enable automated workflows we utilize a convolutional neural network (CNN) to
classify the spectra. CNNs have proven to be suitable for the classification of spectral data
and they need little data pre-processing, such as a baseline removal.

The architecture of our classifier is the same as the Raman spectra classifier that is
introduced by [87] and which is also employed in our previous publication on Raman
spectroscopy [43]. The only change in the network architecture is the number of output
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classes. Our investigations focused on a selection of 23 critical substances. The data pre-
processing consists of resampling of the wavelengths to values ranging from 0 to 4000
and normalization of each individual spectrum’s intensities to a range between 0 and 1. A
signal-to-noise ratio threshold of 3 was also implemented to avoid fitting the model to very
noisy spectra. A total of 1700 spectra were used for training; 566 spectra were used as a test
dataset. Convergence was achieved after 50 epochs of training using the Adam optimizer
and categorical cross-entropy as the objective.
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Figure 7. Fluorescence spectra of four carbamazepine concentrations, averaged from 10 repeated
measurements. The spectra were scaled and the ethanol spectrum was subtracted. The spectrum of
the solvent ethanol (dotted line black), measured in a quartz cuvette and the empty cuvette itself
(dotted line grey) are shown. Settings: pulse number 50; pulse frequency 40; slit size 150 µm; grating
300 ln/mm; focal length 20 mm (raw data from [85]).

The resulting classifier has an accuracy of over 95% across all substances on unseen
spectra. Performance across all classes was close to a 100% true positive rate, except for
NaOH (sodium hydroxide) which is consistently misclassified, as well as tryptophan. Fur-
thermore, the spectra of polymer suspensions can be subject to misclassification. This
section may be divided by subheadings and it should provide a concise and precise de-
scription of the experimental results, their interpretation, and the experimental conclusions
that can be drawn.

5. Methodology and Targets

The article at hand offers a methodical case study about a laser-induced Raman
and fluorescence spectrometer (LIRFS) that is used in a wastewater treatment plant for
monitoring purposes. The application in such a heterogenic and challenging environment
is critical for an analytical device that needs enough sensitivity for detections limits down
to a few µg/L, but also a robustness, so that the results are not affected by the presence of a
variety of other chemicals and substances. The first step to test the suitability of the LIRF
spectroscope was the Raman and fluorescence measurement of all the pure substances (as
a powder or solid) and the substances in a solution varying in concentration, in order to
evaluate reliable identification down to a concentration level, where a lower rate than 3/1
between signal and noise was observed. This was tested on different kinds of problematic
micropollutants, such as pharmaceuticals, listed in the (Table 1) below, on two-amino acid
tryptophan and tyrosine and on byproducts of the wastewater cleaning process (nitrate,
nitrite, bromate, bromide).
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Table 1. Measured substances with manufacturer information, concentrations of the dilution series and given limits.

Substance; CAS no. Manufacturer Measurement Concentration Legal Limits

Metformin hydrochloride;
1115-70-4; purity > 99% BioTrend, Cologne, Germany

Pure powder
in solution with cuvette from

Starna Cells®

Atascadero, CA, USA

Pure substance and 10; 1; 0.1; 0.01
g/L in solution with Millipore®,

Merck KGaA
Darmstadt, Germany

Preventive value 0.1 µg/L ◦

Carbamazepine; 297-46-4;
purity > 98% BioTrend, Cologne, Germany

Pure powder
in solution with cuvette from

Starna Cells®

Atascadero, CA, USA

Pure substance and 10; 1; 0.1; 0.01
mg/g in solution with ethanol Preventive value 0.1 µg/L ◦

Hydrochlorothiazide; 58-93-5;
purity > 99% BioTrend, Cologne, Germany

Pure powder in solution with
cuvette from Starna Cells®

Atascadero, CA, USA

Pure substance and 10; 1; 0.1; 0.01
mg/g in solution with ethanol Preventive value 0.1 µg/L ◦

Acetaminophen; 103-90-2;
purity > 99% BioTrend, Cologne, Germany

Pure powder
in solution with cuvette from

Starna Cells®

Atascadero, CA, USA

Pure substance and 10; 1; 0.1; 0.01
mg/g in solution with ethanol Preventive value 0.1 µg/L ◦

Naproxen; 22204-53-1;
purity > 98%

BioTrend,
Cologne,
Germany

Pure powder
in solution with cuvette from

Starna Cells®

Atascadero, CA, USA

Pure substance and 0.005; 0.001;
0.0005; 0.00001 down to 1 × 10−5

mg/g in solution with ethanol
Preventive value 0.1 µg/L ◦

Diclofenac; 15307-93-4;
purity > 98%

BioTrend,
Cologne,
Germany

Pure powder
in solution with cuvette from

Starna Cells®

Atascadero, CA, USA

Pure substance and 10; 5; 1; 0.5; 0.1;
0.05; 0.01 g/L in solution with

Millipore®, Merck KGaA,
Darmstadt, Germany

Water hazard class 3 + acc. to WDF
watch list X

Bromate; 7789-38-0 VWR Chemicals In solution with solvent water, in
flow cell

50; 25; 10; 5; 1; 0.1; 0.01 mg/L in
solution with Millipore®, Merck

KGaA, Darmstadt, Germany

10 µg/L, according to
Directive EU #

Bromide; 7647-15-6 Supelco®,
Merck KGaA, Darmstadt, Germany

In solution with solvent water, in
flow cell

50; 25; 10; 5; 1; 0.1; 0.01 mg/L in
solution with Millipore®

Merck KGaA, Darmstadt, Germany
-
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Table 1. Cont.

Substance; CAS no. Manufacturer Measurement Concentration Legal Limits

Nitrate; 7631-99-4
ROTI®Star

Carl Roth GmbH + Co. KG,
Karlsruhe, Germany

In solution with solvent water, in
flow cell

50; 25; 10; 5; 1 mg/L in solution with
Millipore®,

Merck KGaA, Darmstadt, Germany

50 mg/L, according to WFD X and
Directive EU #

Nitrite; 7632-00-0
Certipur®

Merck KGaA,
Darmstadt, Germany

In solution with solvent water, in
flow cell

50; 25; 10; 5; 1 mg/L in solution with
Millipore®,

Merck KGaA, Darmstadt, Germany

0.5 mg/L, according to
Directive EU #

Tryptophan; 73-22-3 Merck KGaA,
Darmstadt, Germany

In solution and as a solid, cuvette
from Starna Cells®

Pure substance and 10; 5; 1; 0.5; 0.1;
0.05 0.01; 0.005; 0.001 mg/L in

solution with Millipore®,
Merck KGaA, Darmstadt, Germany

-

Tyrosine; 60-18-4
Carl Roth®

Carl Roth GmbH + Co. KG,
Karlsruhe, Germany

In solution and as a solid, cuvette
from Starna Cells®

Pure substance and 10; 5; 1; 0.5; 0.1;
0.05 0.01; 0.005; 0.001 mg/L in

solution with Millipore®,
Merck KGaA, Darmstadt, Germany

-

◦ Preventive value, according to LANUV 2015 and https://www.flussgebiete.nrw.de/monitoringleitfaden-oberflaechengewaesser-anhang-d4-7724 (accessed on 7 February 2022);
+ Water Resources Act and https://echa.europa.eu/documents/10162/13641/rest_microplastics_axvreport_annex_en.pdf/01741d07-f06b-bf32-8d6f-d6a8de54c4d0 (accessed on
7 February 2022). Administrative regulation on substances hazardous to water; https://echa.europa.eu/documents/10162/13641/rest_microplastics_axvreport_annex_en.pdf/
01741d07-f06b-bf32-8d6f-d6a8de54c4d0 (accessed on 7 February 2022). # Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the
quality of water intended for human consumption, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020L2184&from=ES (accessed on 22 April 2022) [88];
X WFD Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy,
https://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF (accessed on 22 April 2022).

https://www.flussgebiete.nrw.de/monitoringleitfaden-oberflaechengewaesser-anhang-d4-7724
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In order to avoid the well-known problem of overlapping of the Raman spectrum by
the generally more intense fluorescence spectrum, an excitation wavelength in the deep
ultraviolet radiation range was selected. Fluorescence spectra that always emit at the same
wavelength regardless of the excitation wavelength appear predominantly in wavelength
ranges that are above 270 nm. In contrast, the Raman spectra show a dependence of the
excitation wavenumber that is used. If the substrate is irradiated with deep ultraviolet light,
the Raman spectra result in a fluorescence-free wavelength range that is below 270 nm [89].
Due to this fact, we could measure the Raman spectrum and the fluorescence spectrum of
every substance in short succession only by changing the diffraction grating of the device,
which takes a few seconds.

As mentioned before, we first measured the pure solids, e.g., powder, to obtain the
typical substance spectrum for recognition in the database, and then set up a dilution
series to evaluate the sensitivity of the spectrometer. Depending on the substance and its
solubility, the solutions are produced with deionized pure water (Millipore®, purity ≥ 99%,
Merck KGaA, Darmstadt, Germany), ethanol (C2H6O; purity ≥ 96%, Carl Roth GmbH
& Co. KG, Karlsruhe, Germany) or as standardized solutions for ion chromatography.
Therefore, the optical properties of the solvent and the used cuvette (quartz glass) must
be considered, or their signal must be subtracted from the resulting spectrum. Pre-tests
showed a light optical effect of the quartz cuvette for the fluorescence measurements
(maximal 600 AU), whereas there is one regarding the Raman measurements (Figure 8). In
order to bypass this obstacle, the heterogeneous WWTP samples regarding the byproducts
were measured in a flow cell that was constructed with sapphire glass, which had no effect
on either fluorescence or Raman scattering.
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Figure 8. Influence of the measurement set-up on the signal: Raman spectrum of two nitrate solutions
with 50 mg/L (a) and 1 mg/L NO3

− (b) in a cuvette (red line) and in a flow cell (black line). Critical
interpretation arises at the nitrate reference peak at around 1050 1/cm because cuvette and nitrate
signal appear at the same wavenumber, indicating the presence of higher nitrate concentrations.
Settings: pulse number 500; pulse frequency 40/s; slit size 150 µm; grating 3600 ln/mm; focal length
20 mm (only cuvette) (raw data from [90]).

Regarding WWTP sampling and sample preparation, all the wastewater samples were
collected over a maximum of 24 h and mixed without any other treatment but keeping
them cool and dark in the refrigerator. Figure 9 shows the extraction points for the different
targets coming from two different WWTP.
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treatment plants and their targets around the biological treatment (aeration tank and membrane
bioreactor) and the ozonation.

Regarding online wastewater monitoring, another issue is the evaluation of the as-
sumed correlation between the sum parameter DOC and the fluorescence intensity in
the biological treatment stage [91–93]. The evaluation of these in a literature-published
hypothesis revealed a correlation between the tryptophan-like peak and DOC, which was
another focus of the current investigation. According to [94], tryptophan is especially
useful as a reporter for conformation changes in proteins, since several protein changes
can result in predictable changes in tryptophan fluorescence in a sample [94]. On the
other hand, [95] found strong correlations between tryptophan and the colony counts of a
variety of indicator species, including E. coli. bacteria, which are extremely important for
wastewater disinfection, especially since online monitoring is not yet state of the art.

6. Results

The results of this study originate from different field and laboratory campaigns. All
the samplings and experiments were performed under standardized conditions so that
comparability could be assumed. Deviating framework conditions are explicitly mentioned
and are justified in the respective objective of the experiment. The selected results underline
the possibility to apply the evaluated spectrometer for online monitoring purposes, but
they also emphasis difficulties and obstacles in operation.

We first examined the capability of fluorescence intensity measurements to correlate
with organic carbon concentrations. According to [93], fluorescence peaks C in water
can be used to estimate DOC, where peak C correlates with the content of dissolved
organic carbon in the water. Our results could confirm these observations and transfer
them to treated wastewater (Figure 10). The fluorescence analysis of wastewater samples
from two different WWTPs after passage through the membrane bioreactor are shown in
Figure 9 [96]. The marked spectra correspond to the DOC concentrations that are estimated
in the collaborating laboratory via thermal oxidation and NIR detection DIN EN 1484.
There is a clear tendency that the higher the DOC concentration, the higher the peak
intensity (except for sample 163). The coefficient of variation from these seven samples
ranges from 0.5 to 4.7.

In our measurements, the coefficient of determination R2 is 0.85 (Figure 11), referring
to seven effluent samples of two different WWTPs that are equipped with a membrane
bioreactor. This corresponds to the results from the literature, e.g., from [97] of R2 = 0.8 and
0.81 from [98]. The correlation between the fluorescence intensity in all our measurements
and the DOC concentration determined in the laboratory showed that a differentiated con-
sideration of the extraction point was useful. The correlation coefficient of all the samples
throughout the purification processes was 0.74 [96]. Variations show up more clearly in
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lower concentration ranges than in higher ones, but the results suggest that the correlations
allow a rough estimation of the concentrations of DOC, and every determination of DOC
in the lab could be reproduced by the spectrometer. In particular, anomalies—such as a
sudden increase in DOC—can be confidentially detected that allow early warning and a
rapid response, for example, the application of ozone.
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Figure 10. Averaged and scaled fluorescence analysis of 7 wastewater samples after the treatment in
a membrane bioreactor [96] and as reference, DOC concentrations of the same samples in [mg/L]
analyzed by a collaborating laboratory. Settings: pulse number 20; pulse frequency 40/s; slit size
150 µm; grating 300 ln/mm; focal length 20 mm, measured in a quartz glass cuvette (raw data
from [96]).
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Figure 11. Correlation curve, functional equation, and coefficient of determination between DOC
and fluorescence peak intensity from 7 effluent samples exiting the membranes bioreactor from two
different WWTPs (raw data from [96]).

With the aid of the dilution series, the detection limit for the amino acids tyrosine and
tryptophan could be determined. Tyrosine proves to be detectable up to 0.05 mg/L, but
for tryptophan the spectrometer shows a much greater sensitivity down to 0.001 mg/L
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(Figure 12b). At lower concentrations, the intensities continue to decrease, and the peaks
are strongly affected by solvent and background noise.
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Figure 13. Dilution series from averaged and scaled tyrosine spectra (a) after subtraction of solvent
spectrum. Enlargement of the Y-axis emphasizes the detection limit of the substance (b). Settings:
pulse number 10, pulse frequency 40/s, focal length 20 mm, measured in a quartz glass cuvette (raw
data from [63]).

No correlation was found between the tyrosine-like peak and DOC in wastewater,
which is probably because tyrosine fluoresces at an excitation wavelength that is lower
than 248.6 nm and the presence of quenchers in the wastewater reduces the fluorescence
properties of tyrosine. Regarding the correlation between the tryptophan-like peak in the
fluorescence measurements and DOC, ref. [99] showed a high correlation between the
(tryptophan-like) peak and DOC concentration (R2 > 0.85) and concluded that this peak
can be used for monitoring DOC in untreated and treated water. Our results relativize this
observation, depending on our excitation wavelength, and suggest a more differentiated
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approach regarding treated wastewater. Overall, a medium correlation can be demonstrated
between the DOC concentration and the peak intensities of T2 (Figure 14).
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Figure 14. Correlation curve, functional equation, and coefficient of determination between DOC
and the intensities of fluorescence spectra of peak T2 of all influent and effluent samples around the
aeration tank (raw data from [63]).

Considering all samples, the coefficient of determination is R2 = 0.75. This result is
largely in line with the literature values [94,95]. Differentiating the extraction points shows
that the correlation is significantly higher for the effluent samples (R2 = 0.95) than for the
influent samples (R2 = 0.19). This leads to the conclusion that the correlation is higher for
water with a low DOC concentration (≤8.3 mg/L in our samples) than for samples with a
higher DOC content (≥37 mg/L in our samples). This may also be related to the presence
of other interfering substances in the water which are removed in the aeration tank, but
strengthens the previous results of the membrane bioreactor.

Analyzing the spectra of heterogeneous WWTP samples is extremely challenging due
to effects that are caused by coexisting substances and their interactions. Correlations do
not appear to be consistently linear, and the spectra interact with substances that remain
in the treated wastewater. Figure 15 shows six influent and six effluent samples from
the biological treatment stage. Samples with a similar color were taken on the same day
(influent samples have a solid line; effluent samples’ lines are dotted) at the entry and at
the output of the aeration tank.

The reduction rates of tryptophan peak T2 through purification vary for the sample
pairs from a maximum of 80.0% (sample number 634 and 635) to a minimum of 32.2% (sam-
ple number 706 and 707) (Figure 15). Effluent samples number 703 and 707 are characterized
by a low purification efficiency and lead to high contents of higher-ring hydrocarbons in
the wavelength of DOC with an emitting wavelength of around 440 nm. The corresponding
reduction in the DOC rates shows a similar trend, but the amounts are not transferable. The
DOC reduction in sample pair number 634 and 635 amounts to 90.6%, and for sample num-
ber 706 and 707 the DOC content was reduced by 79.3%, which differs from the decrease in
tryptophan content in the same sample pair. The variation coefficient for the calculated
DOC concentrations referring to the correlation curve in Figure 14 leads to values of more
than 200% in some cases.
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Regarding the pharmaceutical micropollutants, we demonstrate relevant results 
showing the ability of the spectrometer to detect specific substances, and its suitability for 
monitoring purposes. The spectra of metformin hydrochloride as a solid shows the trend 
of photodegradation after 10 measurements (Figure 16). 

Figure 15. Comparison between the fluorescence spectra of WWTP influent (inf.) (solid lines) and
effluent (eff.) (dotted lines) samples of the same sampling day; measurement results after complete
processing including subtract spectrum. The reddish background marks the characteristic tyrosine
and tryptophan peak areas; the grey background represents the characteristic peaks of DOC and
BOD. Influent and effluent samples with sample number and content of DOC (in square brackets),
determined in a collaborating laboratory. Settings: pulse number 10; slit size 150 µm; grating 300
ln/mm; focal length 20 mm; pulse frequency 40/s (raw data from [63]).

Regarding the pharmaceutical micropollutants, we demonstrate relevant results show-
ing the ability of the spectrometer to detect specific substances, and its suitability for
monitoring purposes. The spectra of metformin hydrochloride as a solid shows the trend
of photodegradation after 10 measurements (Figure 16).
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Figure 16. A total of 10 repeated measurements of fluorescence of metformin hydrochloride as
a powder, showing slight photodegradation phenomenon. Settings: pulses number 200, grating
300 ln/mm, slit seize 150 µm, pulse frequency 40/s, measured on a turning table (raw data from [85]).

The metformin hydrochloride dilution series do not show very meaningful results in
the fluorescence and Raman measurements, but low signals down to 0.01 g/L are detectable.
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The metformin hydrochloride signals are strongly affected by the water emissions, but for
the Raman measurements a clear peak at 940 1/cm was recognized that was not super-
imposed by the Millipore® spectrum. Carbamazepine by far shows stronger fluorescence
properties. Upon measuring the solid powder, the CCD detector is completely oversatu-
rated so that the full spectrum is not visible. Dilution was carried out with 96% ethanol.
Figure 17 shows the fluorescence and Raman spectra of the diluted carbamazepine.
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entiation between the concentration steps and were detectable down to 0.1 mg/g. 

Hydrochlorothiazide powder is specifically recognizable by its fluorescence signal 
with a strong peak at 373 nm (measured with five pulses) with an intensity of more than 
45,000 AU and a good precision that is represented by a variation coefficient of 1.9%. How-
ever, the dilution series revealed no correlation between the concentration and signal in-
tensity, so that the construction of the calibration curve was not useful. 

On the contrary, naproxen is detectable in solution with ethanol in the fluorescence 
spectrum down to 1 × 10−4 mg/g (Figure 18). Theoretically, this enables its application in 
the WWTP monitoring. Even the Raman measurements show that two characteristic 
peaks at 1373 1/cm and 1616 1/cm recognize naproxen specifically. 

Figure 17. Averaged Raman (a) and fluorescence (b) spectra of carbamazepine before subtracting
ethanol spectrum and scaling, including the specific spectrum of the empty cuvette and the solvent
ethanol in the same cuvette. Settings above: pulse number 500, slit seize 150 µm, grating 3600 ln/mm,
focal length 20 mm (in cuvette); settings bottom: pulse number 50, slit seize 150 µm, grating 300, focal
length 20 mm (in cuvette) (raw data from [85]).

Remarkable in both measurements is the influence of ethanol on the carbamazepine
spectra in such a way that the peaks of ethanol drag along the spectra of carbamazepine,
especially in the low concentrations. Acetaminophen shows an intensive Raman peak
at 1607 1/cm, measured with 2000 pulses. After the correction of the rolling baseline,
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the variation coefficient remains relatively high (12.8%) due to slight photodegradation
effects during 10 repetitions. The fluorescence measurements with 100 pulses could confirm
high variations but without a clear trend. The fluorescence dilution series showed good
differentiation between the concentration steps and were detectable down to 0.1 mg/g.

Hydrochlorothiazide powder is specifically recognizable by its fluorescence signal
with a strong peak at 373 nm (measured with five pulses) with an intensity of more than
45,000 AU and a good precision that is represented by a variation coefficient of 1.9%.
However, the dilution series revealed no correlation between the concentration and signal
intensity, so that the construction of the calibration curve was not useful.

On the contrary, naproxen is detectable in solution with ethanol in the fluorescence
spectrum down to 1 × 10−4 mg/g (Figure 18). Theoretically, this enables its application in
the WWTP monitoring. Even the Raman measurements show that two characteristic peaks
at 1373 1/cm and 1616 1/cm recognize naproxen specifically.
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Figure 18. Averaged, scaled fluorescence spectra of naproxen after subtraction of ethanol. The
measurements also emphasize the influence of the number of pulses for cuvette and ethanol. Settings:
pulse number 1/10, slit seize 15 µm, grating 300, focal length 20 mm (raw data from [85]).

Regarding the Raman measurements (Figure 19) for the nitrate dilution series, a pulse
number of 500 was used for the solutions containing 50 mg/L, 25 mg/L, 10 mg/L and
5 mg/L NO3

−. On the other hand, for the solution with 1 mg of NO3/L, a pulse number of
1000 was used. The corresponding spectrum was then scaled by a factor of 0.5 to establish
comparability with the other spectra in the dilution series. This procedure is generally
acceptable because there is a linear relationship between the applied pulse number and the
measured intensity. However, problems can occur in the range of high concentrations due
to nonlinear behavior in the form of strong absorption and reemitting.

The applied function of the calibration curve (Figure 20) is concave, shows a very
good correlation with the measured values with a coefficient of determination of 0.99 and
can predict the measured peak intensities accordingly well. The relative deviation of the
data around the arithmetic mean ranges from 2.31% to 3.97% with an average variation
coefficient of 3.03%, indicating a high level of precision.
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Figure 20. Correlation curve, functional equation and coefficient of determination between nitrate
concentrations and Raman peak intensities referring to the dilution series of nitrate (raw data
from [90]).

Nitrate is not detectable in the fluorescence measurements but is clearly and specifi-
cally detectable down to 10 mg/L of concentration (Figure 19b, green line) in the Raman
measurements. This is not convincing for the WWTP application for the effluent water,
even though values of this concentration sometimes exist. Further, of course, an anomaly
warning in case of unexpected loads entering the wastewater treatment plant is possible as
pre-studies from the food industry have indicated. The same behavior of nitrate is found
for nitrite showing a lacking fluorescence emission; even the Raman intensities are little
lower than for the nitrate spectra (Figure 21).
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Figure 21. Raman measurements of dilutions series of averaged nitrite spectra, measured in a
flow cell to avoid cuvette disturbance (a) and a detailed enlargement of the nitrite reference peak
at 1325 1/cm (b); settings: pulse number 500/1000, slit seize 150 µm, grating 3600 ln/mm, pulse
frequency 40/s (raw data from [90]).

Regarding the Raman dilution series of nitrite, a reduction in the peak intensity is
shown with each dilution step, without exception. Up to a nitrite concentration of 10 mg/L
a clear peak is formed in the spectra. At a nitrite concentration of 5 mg/L only a broadened
base of higher intensity can be seen. The applied function of the calibration curve is convex,
shows a very good correlation with the measured values with a coefficient of determination
of 0.98 and can predict the measured peak intensities accordingly well with an average
variation coefficient from 2.27.

A more problematic substance to detect is bromide, which was also measured in the
flow cell. Since the measured spectra of the dilution series do not show any peak that could
originate from the bromide. Furthermore, the measured spectra differ only marginally
from each other, despite strongly different bromide concentrations. The expected Raman
wavenumber range of the bromide anion agrees with the statement of [100] that most
anions of inorganic salts have peaks in the wavenumber range of 500–1100 1/cm. Since
these peaks occur in the region of the enveloping curve of the water, there is a possibility
that the bromide peak is superimposed by the intense signal of the water. Another possible
explanation is provided by the basic operation of Raman spectroscopy, since the Raman
signals measured are primarily due to vibrations of the electron bonds between two atoms
of a molecule. However, in the bromide standard that was used, the potassium bromide
(KBr) was dissolved in water and therefore exists in its dissociated form as Br- anions and
K+ cations. Consequently, no electron bond exists between the bromide and another atom
that could be excited to vibrate.

The bromate dilution series was carried out analogously (Figure 22) to the bromide
dilution series. Here, too, a total of six solutions with different concentrations were prepared
and sampled as standard with a pulse number of 500. The two solutions with the lowest
concentrations were analyzed with a pulse number of 1000 for visibility reasons.

The spectra of the bromate dilution series show similarity to the bromide series in
that there are no specific peaks in the spectrum that cannot be found in the spectrum
of the solely Millipore® water. Figure 23 shows the reference spectrum of solid potas-
sium bromate (KBrO3). The spectrum shows that no Raman-active signals exist above a
wavenumber of 900 1/cm. The peak with the highest intensity occurs at a wave number of
approx. 800 1/cm.
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low effect of different bromate concentrations (b). Settings: pulse number 500/1000, slit seize 150 µm,
grating 3600, pulse frequency 40/s (raw data from [90]).
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Figure 23. Raman reference spectrum of solid potassium bromate (KBrO3) from the spectrabase.com
database and table with Raman active signals of solid bromate compounds and dissolved bromate
anions, according to [101]. (Adapted with permission from [101]. Copyright 1973, Journal of the
Physical Society of Japan (JPSJ)).

The Raman signals occurring in the wavenumber range between 150 1/cm and
200 1/cm are attributed by [101] to the vibration of the crystal lattice of the solids and
therefore do not occur when the bromate is presented in its dissociated form. The two most
intense Raman peaks of the bromate anion represent the ν1 and ν4 vibrations, which occur
at wavenumbers of about 800 1/cm and 420 1/cm, respectively. Thus, it can be stated that
the bromate anion, in contrast to the bromide anion has Raman-active vibrations and can
in principle be detected with the applied technique, but the peaks of the vibrations are
not visible in the measured spectra. The most likely explanation is that the peaks of the
bromate anion are superimposed by the enveloping curve of the water.

Summarizing the results of all measurements, Table 2 gives an overview of the per-
formed analyses and the ability of the spectrometer that was used to detect the different
substances.
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Table 2. Spectral analysis of the diluted substances and their detection rate (* low; ** medium; ***
high; - undetectable), measured by the spectrometer used.

Substance; CAS no. Spectral Analysis Detection

Raman Fluorescence Raman Fluorescence

Metformin hydrochloride; 1115-70-4; purity > 99% X X - -
Carbamazepine; 297-46-4; purity > 98% X X ** *
Hydrochlorothiazide; 58-93-5; purity > 99% X X * **
Acetaminophen; 103-90-2; purity > 99% X X ** *
Naproxen; 22204-53-1; purity > 98% X X *** **
Diclofenac; 15307-93-4; purity > 98% X X - -
Bromate; 7789-38-0 X X - **
Bromide; 7647-15-6 X X - **
Nitrate; 7631-99-4 X X * -
Nitrite; 7632-00-0 X X * -
Tryptophan; 73-22-3 X X *** ***
Tyrosine; 60-18-4 X X *** **
DOC 8 X - **

High detection rate down to 0.001 mg/L; medium detection rate down to 0.01 mg/L; low detection rate down to
0.1 mg/L. (X) measured; (8) not measured.

7. Discussion and Conclusions

The presented results are manifold. It should be noted that both measuring techniques
that are included in one device have specific strengths and weaknesses. The fluorescence
technique is very suitable for observing DOC changes in wastewater. This technique can
provide a good service to wastewater treatment plants by offering online monitoring that
checks the proper operation of the purification process and sending a warning when it is
threatened by sudden heavy pollutant loads. This could be proven by the investigation
results in the aeration tank, the membrane bioreactor and at the ozonation. The results prove
that changes in concentration ranges of a few mg/L DOC could be observed, and these
correspond to the results of the cooperating laboratory. Generally, it could be confirmed
that high concentrations of various co-existing substances, as in wastewater, lead to the
underestimation of substance quantities (by fluorescence), probably due to the inner filter-
effect and quenching. Another weak point becomes apparent in the identification of
individual substances. For example, fluorescence can detect changes very sensitively, and
it can indicate which substance transformations have taken place, but this does not lead to
the proper identification of substances. Here, only the observation of substance groups can
be used to determine these substances based on their typical wavelengths.

The Raman measurements impressively demonstrated that selected pharmaceutical
substances (carbamazepine, naproxen, tryptophan) could be detected down to a few µg/L
range—this is a concentration range that is within the range of real application in a sewage
treatment plant. However, some of these micropollutants indicated that due to their low
Raman activity, or even superposition by the water/solvent signal, the detection limits
were possible only up to the mg/L range or even the g/L (metformin hydrochloride) range,
making it impossible for use in wastewater monitoring. Furthermore, the monoatomic
anions (e.g., bromide) of dissolved salts are a problem in Raman spectroscopy since they
do not provide a direct Raman signal. Thus, it must be concluded that the monitoring
of these substances using Raman spectroscopy is not practical. In the instance of nitrate,
the detection limit seemed somewhat weak (roundabout 10 mg/L); however, the Raman
detection of nitrate after biological purification in a wastewater sample was successful,
as [43] shown. This exact identification is possible due to the AI support which could reach
a successful assignment rate of over 95%. Once a substance is trained by the CNN and
stored in the database, its identification becomes much easier and more reasonable. For
this reason, LIRF spectroscopy seems to be a promising tool for online monitoring, and
even device-specific adjustments like the variation of the excitation wavelength could be
particularly helpful for the application case of a wastewater treatment plant.



Sensors 2022, 22, 4668 26 of 30

Author Contributions: Conceptualization, F.A., C.P., N.H. and V.L.; methodology, S.B., N.H., A.F.
and C.P.; software, S.B. and N.H.; validation, C.P., N.H. and A.R.; formal analysis, S.B., N.H. and
A.R.; investigation, N.H., A.R., A.F. and V.L.; resources, F.A.,V.L. and W.H.; data curation, A.F., N.H.
and A.R.; writing—original draft preparation, C.P., A.R. and N.H.; writing—review and editing, F.A.,
W.H. and V.L.; visualization, N.H. and A.R.; supervision, F.A., C.P. and V.L.; project administration,
C.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Thanks to Jens Fischer for the DOC, TOC and pharmaceutical measurements
and Reiner Gschwendtner for anions detection in the environmental samples.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sacher, F.; Kümmel VThoma, A.; Fuchs, S.; Kaiser, M.; Lambert, B.; Ullrich, A. Analytik von prioritären Stoffen in

Abwasserproben—Eine wichtige Voraussetzung für eine Bestandsaufnahme in deutschen Kläranlagen. Mitt. Umweltchem.
Ökotoxikol. 2018, 3, 56–58.

2. Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Ibney Hai, F.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of
micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014,
473–474, 619–641. [CrossRef] [PubMed]

3. Umweltbundesamt. Recommendations for reducing micropollutants in waters. In German Environment Agency Section II;
2.1 General Aspects of Water and Soil; Umweltbundesamt: Dessau, Germany, 2018.

4. Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M. Environmentally-related contaminants of high concern: Potential sources
and analytical modalities for detection, quantification, and treatment. Environ. Int. 2019, 122, 52–66. [CrossRef] [PubMed]

5. Loos, R.; Negrão De Carvalho, R.; Comero, S.; Conduto, A.D.; Lettieri, G.M.T.; Locoro, G.; Paracchini, B.; Tavazzi, S.; Gawlik, B.;
Blaha, L.; et al. EU Wide Monitoring Survey on Waste Water Treatment Plant Effluents; EUR 25563 EN, JRC76400; Publications Office
of the European Union: Luxembourg, 2012; ISBN 978-92-79-26784-0.

6. WFD Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework
for Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:
5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF (accessed on 22 April 2022).

7. Directive 2008/105/EC Environmental Quality Standards (EQS) Applicable to Surface Water. Available online: https://www.
legislation.gov.uk/eudr/2008/105/contents (accessed on 22 April 2022).

8. LANUV NRW Untersuchungen zum Eintrag und zur Elimination Gefährlicher Stoffe in Kläranlagen. 2006, Teil 2. Avail-
able online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LANUV+NRW+Investigations+on+the+input+and+
elimination+of+hazardous+substances+in+sewage+treatment+plants&btnG= (accessed on 14 June 2022).

9. Umweltbundesamt. Maßnahmen zur Verminderung des Eintrages von Mikroschadstoffen in die Gewässer—Phase 2. Texte 60.
Available online: https://www.umweltbundesamt.de/sites/default/files/medien/377/publikationen/mikroschadstoffen_in_
die_gewasser-phase_2.pdf2016 (accessed on 14 June 2022).

10. Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; Van Der Ploeg, M.; van de Zee, S.E.A.T.M.; Ritsema, C.J. Emerging
pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [CrossRef]

11. Wanda, E.; Nyoni, H.; Mamba, B.; Msagati, T. Occurrence of emerging micropollutants in water systems in Gauteng, Mpumalanga,
and North West Provinces, South Africa. Int. J. Environ. Res. Public. Health 2017, 14, 79. [CrossRef] [PubMed]

12. Ahmed, M.B.; Johir, M.A.H.; Ngo, H.H.; Guo, W.; Zhou, J.L.; Belhaj, D.; Moni, M.A. Chapter 4—Methods for the analysis of
micro-pollutants. In Current Developments in Biotechnology and Bioengineering; Varjani, S., Pandey, A., Tyagi, R.D., Ngo, H.H.,
Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128195949. [CrossRef]

13. Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Gunten, U.; Wehrli, B. The challenge of
micropollutants in aquatic systems. Science 2006, 313, 1072–1077. [CrossRef] [PubMed]

14. Kumar, N.M.; Sudha, M.C.; Damodharam, T.; Varjani, S. Micro-pollutants in surface water: Impacts on the aquatic environment
and treatment technologies. In Current Developments in Biotechnology and Bioengineering; Emerging Organic Micro-pollutants;
Elsevier: Amsterdam, The Netherlands, 2020; Chapter 3; pp. 41–62. [CrossRef]

15. Wichern, M.; Heinz, E. Abwassertechnisches Laborpraktikum “Forschungspraktikum Siedlungswasserwirtschaft”. Lehrstuhl
für Siedlungswasserwirtschaft und Umwelttechnik, Ruhr Universität Bochum. Abwassertechnisches Laborpraktikum
Forschungspraktikum Siedlungswasserwirtschaft—PDF Free Download. 2017. Available online: docplayer.org (accessed on
14 June 2022).

http://doi.org/10.1016/j.scitotenv.2013.12.065
http://www.ncbi.nlm.nih.gov/pubmed/24394371
http://doi.org/10.1016/j.envint.2018.11.038
http://www.ncbi.nlm.nih.gov/pubmed/30503315
https://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF
https://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF
https://www.legislation.gov.uk/eudr/2008/105/contents
https://www.legislation.gov.uk/eudr/2008/105/contents
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LANUV+NRW+Investigations+on+the+input+and+elimination+of+hazardous+substances+in+sewage+treatment+plants&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LANUV+NRW+Investigations+on+the+input+and+elimination+of+hazardous+substances+in+sewage+treatment+plants&btnG=
https://www.umweltbundesamt.de/sites/default/files/medien/377/publikationen/mikroschadstoffen_in_die_gewasser-phase_2.pdf2016
https://www.umweltbundesamt.de/sites/default/files/medien/377/publikationen/mikroschadstoffen_in_die_gewasser-phase_2.pdf2016
http://doi.org/10.1016/j.iswcr.2015.03.002
http://doi.org/10.3390/ijerph14010079
http://www.ncbi.nlm.nih.gov/pubmed/28098799
http://doi.org/10.1016/B978-0-12-819594-9.00004-8
http://doi.org/10.1126/science.1127291
http://www.ncbi.nlm.nih.gov/pubmed/16931750
http://doi.org/10.1016/B978-0-12-819594-9.00003-6
docplayer.org


Sensors 2022, 22, 4668 27 of 30

16. Alvarino, T.; Suarez, S.; Lema, J.; Omil, F. Understanding the sorption and biotransformation of organic micropollutants in
innovative biological wastewater treatment technologies. Sci. Total Environ. 2017, 615, 297–306. [CrossRef]

17. Chavoshani, A.; Hashemi, A.; Amin, M.M.; Ameta, S.C. Micropollutants and Challenges: Emerging in the Aquatic Environments and
Treatment Processes; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 1; ISBN 978-0-12-818612-1. [CrossRef]

18. Tijani, J.; Fatoba, O.; Petrik, L.F. A Review of pharmaceuticals and endocrine-disrupting compounds: Sources, effects, removal,
and detections. Water Air Soil Pollut. 2013, 224, 1170. [CrossRef]

19. IKSR. Auswertungsbericht Biozide und Korrosionsschutzmittel. Nr. 183; Internationale Kommission zum Schutze des Rheins: Koblenz,
Germany, 2010; ISBN 3-941994-15-8.

20. Abegglen, C.; Escher, B.; Hollender, J.; Koepke, S.; Ort, C.; Peter, A.; Siegrist, H.; von Gunten, U.; Zimmermann, S.G.; Koch, M.;
et al. Ozonung von Gereinigtem Abwasser. Schlussbericht Pilotversuch Regensdorf. Studie der Eawag im Auftrag des BAFU
und des AWEL. Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz. Zürich. 2009. Available
online: http://spurenstoffelimination.de/files/Ozonung_Abwasser_Schlussbericht_Regensdorf.pdf (accessed on 4 April 2022).

21. Miehe, U. Wirksamkeit technischer Barrieren zur Entfernung von anthropogenen Spurenstoffen—Kläranlagen und Raumfilt.
Ph.D. Dissertation, Technischen Universität Berlin, Berlin, Germany, 2016.

22. Böhler, M.; Siegrist, H. Aktivkohledosierung in den Zulauf zur Flockungs-Sandfiltration Kläranlage Kloten/Opfikon—
Grosstechnische Umsetzung im Rahmen ergänzender Untersuchungen zum MicroPoll-Projekt. DWA-Seminar Weitergehende
Abwasserreinigung. Bonn, 18.01.2011. In Maßnahmen zur Verminderung des Eintrages von Mikroschadstoffen in die Gewässer—Phase 2;
Texte 60/2016; UBA: Dessau-Roßlau, Germany, 2016.

23. Grünebaum, T. Elimination von Arzneimittelrückständen in kommunalen Kläranlagen. Elimination von Arzneimitteln und
organischen Spurenstoffen: Entwicklung von Konzeptionen und innovativen, kostengünstigen Reinigungsverfahren. Schluss-
bericht Phase 1. Düsseldorf: Ministerium für Klimaschutz, Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes
Nordrhein-Westfalen. In Maßnahmen zur Verminderung des Eintrages von Mikroschadstoffen in die Gewässer—Phase 2; Texte 60/2016;
UBA: Dessau-Roßlau, Germany, 2016.

24. Bornemann, C.; Erbe, V.; Hachenberg, M.; Kolisch, G.; Osthoff, T.; Taudien, Y. Einsatz von Pulveraktivkohle in vorhandene
Flockungsfiltrationsanlagen am Beispiel der Kläranlage Buchenhofen. Tagungsband, Gesellschaft zur Förderung der Sied-
lungswasserwirtschaft an der RWTH Aachen (45. Essener Tagung für Wasser- und Abfallwirtschaft). In Maßnahmen zur
Verminderung des Eintrages von Mikroschadstoffen in die Gewässer—Phase 2; Texte 60/2016; UBA: Dessau-Roßlau, Germany, 2016.

25. Crane, M.; Watts, C.; Boucard, T. Chronic aquatic environmental risks from exposure to human pharmaceuticals. Sci. Total Environ.
2006, 367, 23–41. [CrossRef]

26. Malaj, E.; von der Ohe, P.C.; Grote, M.; Kühne, R.; Mondy, C.P.; Usseglio-Polatera, P.; Brack, W.; Schäfer, R.B. Organic chemicals
jeopardize the health of freshwater ecosystems on the continental scale. Proc. Natl. Acad. Sci. USA 2014, 111, 9549–9554. [CrossRef]

27. Prasse, C.; Stalter, D.; Schulte-Oehlmann, U.; Oehlmann, J.; Ternes, T.A. Spoilt for choice: A critical review on the chemical and
biological assessment of current wastewater treatment technologies. Water Res. 2015, 87, 237–270. [CrossRef] [PubMed]

28. Diehle, M.; Gebhardt, W.; Pinnekamp, J.; Schäffer, A.; Linnemann, V. Ozonation of valsartan: Structural elucidation and
environmental properties of transformation products. Chemosphere 2019, 216, 437–448. [CrossRef] [PubMed]

29. Jiang, J.; Zhou, Z.; Sharma, V.K. Occurrence, transportation, monitoring and treatment of emerging micro-pollutants in waste
water — A review from global views. Microchem. J. 2013, 110, 292–300. [CrossRef]

30. O’Flynn, D.; Lawler, J.; Yusuf, A.; Parle-McDermott, A.; Harold, D.; Mc Cloughlin, T.; Holland, L.; Regan, F.; White, B. A review of
pharmaceutical occurrence and pathways in the aquatic environment in the context of a changing climate and the COVID-19
pandemic. Anal. Methods 2021, 13, 575. [CrossRef]

31. Daughton, C.G.; Ternes, T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ.
Health Perspect. 1999, 107 (Suppl. S6), 907–938. [CrossRef] [PubMed]

32. Jjemba, P.K. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicol. Environ. Saf.
2006, 63, 113–130. [CrossRef]

33. Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current
knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–25. [CrossRef]

34. Schmidt, T.C. Recent trends in water analysis triggering future monitoring of organic micropollutants. Anal. Bioanal. Chem. 2018,
410, 3933–3941. [CrossRef]

35. Helmenstine, A.-M. Spectroscopy Introduction. Thought Co. 26 August 2020. Available online: https://www.thoughtco.com/
introduction-to-spectroscopy-603741 (accessed on 22 April 2022).

36. Sapkota, Anupama. 22 Types of Spectroscopy with Definition, Principle, Steps, Uses. 12 January 2022. Available online:
https://microbenotes.com/types-of-spectroscopy/ (accessed on 23 April 2022).

37. Kierat, R.M. Synthese, Modifikation und Biologische Anwendung Fluoreszierender Xanthenfarbstoffe. Inaugural Dissertation,
Ruprechts-Karls-Universität Heidelberg, Heidelberg, Germany, 2008. Available online: http://www.ub.uni-heidelberg.de/
archiv/8301 (accessed on 28 January 2022).

38. Sauer, M.; Hofkens, J.; Enderlein, J. Handbook of Fluorescence Spectroscopy and Imaging: From Single Molecules to Ensembles; Wiley:
Hoboken, NJ, USA, 2011. [CrossRef]

39. Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: London, UK, 2010. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2017.09.278
http://doi.org/10.1016/B978-0-12-818612-1.00007-6
http://doi.org/10.1007/s11270-013-1770-3
http://spurenstoffelimination.de/files/Ozonung_Abwasser_Schlussbericht_Regensdorf.pdf
http://doi.org/10.1016/j.scitotenv.2006.04.010
http://doi.org/10.1073/pnas.1321082111
http://doi.org/10.1016/j.watres.2015.09.023
http://www.ncbi.nlm.nih.gov/pubmed/26431616
http://doi.org/10.1016/j.chemosphere.2018.10.123
http://www.ncbi.nlm.nih.gov/pubmed/30384314
http://doi.org/10.1016/j.microc.2013.04.014
http://doi.org/10.1039/D0AY02098B
http://doi.org/10.1289/ehp.99107s6907
http://www.ncbi.nlm.nih.gov/pubmed/10592150
http://doi.org/10.1016/j.ecoenv.2004.11.011
http://doi.org/10.1016/j.watres.2014.08.053
http://doi.org/10.1007/s00216-018-1015-9
https://www.thoughtco.com/introduction-to-spectroscopy-603741
https://www.thoughtco.com/introduction-to-spectroscopy-603741
https://microbenotes.com/types-of-spectroscopy/
http://www.ub.uni-heidelberg.de/archiv/8301
http://www.ub.uni-heidelberg.de/archiv/8301
http://doi.org/10.1002/9783527633500
http://doi.org/10.1007/978-0-387-46312-4


Sensors 2022, 22, 4668 28 of 30

40. Chinen, A.; Guan, C.; Ferrer, J.; Barnaby, S.; Merkel, T.; Mirkin, C. Nanoparticle Probes for the Detection of Cancer Biomarkers,
Cells, and Tissues by Fluorescence. Chem. Rev. 2015, 115, 10530–10574. [CrossRef]

41. Schrader, B. Chemische Anwendungen der Raman-Spektroskopie. Angew. Chem. 1973, 85, 925–950. [CrossRef]
42. Vandenabeele, P. Practical Raman spectroscopy: An introduction. In The Atrium Southern Gate Chichester West Sussex United

Kingdom; Wiley: Hoboken, NJ, USA, 2013.
43. Post, C.; Brülisauer, S.; Waldschläger, K.; Hug, W.; Grüneis, L.; Heyden, N.; Schmor, S.; Förderer, A.; Reid, R.; Reid, M.;

et al. Application of Laser-Induced, Deep UV Raman Spectroscopy and Artificial Intelligence in Real-Time Environmental
Monitoring—Solutions and First Results. Sensors 2021, 21, 3911. [CrossRef] [PubMed]

44. Asher, S.A.; Johnson, C.R. A new selective technique for characterization of polycyclic aromatic hydrocarbons in complex samples:
UV resonance Raman spectroscopy of coal liquids. Anal. Chem. 1984, 56, 2258–2261.

45. Liu, C. Implementation of Deep Ultraviolet Raman Spectroscopy. Ph.D. Thesis, Technical University of Denmark, Kongens
Lyngby, Denmark, 2011.

46. Photon Systems Inc. (Ed.) DUV Raman PL200. Fully Integrated, Lab Model Deep UV Resonance Raman & Photoluminescence
Spectrometer, with Microscopic Imaging. 2017. Available online: https://photonsystems.com/wp-content/uploads/2019/02/
DUV-RamanPL200-Data-Sheet-V12-Web.pdf (accessed on 10 February 2022).

47. Photon Systems Inc. (Ed.) New Deep UV Raman & Photoluminescence Spectrometer System: The DUV Raman/PL 200. In
Proceedings of the SPIE DCS 2018, Orlando, FL, USA, 17–19 April 2018.

48. Photon Systems Inc. (Ed.) Fused Fluorescence and Raman—Photon Systems, 9.3.2020. 2017. Available online: https://
photonsystems.com/fused-fluorescence-and-Raman/ (accessed on 10 February 2022).

49. Henderson, R.K.; Baker, A.; Murphy, K.R.; Hambly, A.; Stuetz, R.M.; Khan, S.J. Fluorescence as a potential monitoring tool for
recycled water systems: A review. Water Res. 2009, 43, 863–881. [CrossRef]

50. Spencer, R.G.M.; Bolton, L.; Baker, A. Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and
absorbance properties from a number of UK locations. Water Res. 2007, 42, 2941–2950. [CrossRef] [PubMed]

51. Baker, A.; Cumberland, S.A.; Bradley, C.; Buckley, C.; Bridgeman, J. To what extent can portable fluorescence spectroscopy be
used in the real-time assessment of microbial water quality? Sci. Total Environ. 2015, 532, 14–19. [CrossRef] [PubMed]

52. Reynolds, D.M.; Ahmad, S.R. The effect of metal ions on the fluorescence of sewage wastewater. Water Res. 1995, 29, 2214–2216.
[CrossRef]

53. BMUV Kurzinfo Abwasser—Kläranlage. Available online: https://www.bmuv.de/en/topics/water-resources-waste/water-
management/wastewater/sewage-treatment-plant (accessed on 4 April 2022).

54. Sonnenburg, A.; Mosbach, J.; Grimmel, O.; Urban, W. Leistungssteigerung von Sandfängen. Wien. Mitt. 2020, 252, 91–112.
Available online: https://repositum.tuwien.at/bitstream/20.500.12708/15607/1/sonnenburg_leistungssteigerung%20von%20
sandf%c3%a4ngen.pdf (accessed on 3 February 2022).

55. Engelhardt, M.; Wagner, M.; Behnisch, J.; Blach, T.; Schwarz, M. Abwassertechnik. In Handbuch für Bauingenieure; Zilch, K.,
Diederichs, C.J., Beckmann, K.J., Gertz, C., Malkwitz, A., Moormann, C., Eds.; Springer Fachmedien: Wiesbaden, Germany, 2020.

56. Gupta, V.K.; Ali, I.; Saleh, T.A.; Nayaka, A.; Agarwal, S. Chemical treatment technologies for waste-water recycling—An overview.
RSC Adv. 2012, 2, 6380–6388. [CrossRef]

57. Franklin, L.B. Wastewater Engineering: Treatment. Disposal and Reuse; McGraw Hill, Inc.: New York, NY, USA, 1991.
58. Rosenwinkel, K.; Kroiss, H.; Dichtl, N.; Seyfried, C.; Weiland, P. Anaerobtechnik; Springer: Berlin/Heidelberg, Germany, 2015.
59. Melin, T.; Jefferson, B.; Bixio, D.; Thoeye, C.; De Wilde, W.; De Koning, J.; van der Graaf, J.; Wintgens, T. Membrane bioreactor

technology for wastewater treatment and reuse. Desalination 2006, 187, 271–282. [CrossRef]
60. Förstner, U.; Köster, S. (Eds.) Umweltschutztechnik; Springer: Berlin/Heidelberg, Germany, 2018.
61. Wolf, Y.; Oster, S.; Shuliakevich, A.; Brückner, I.; Dolny, R.; Linnemann, V.; Pinnekamp, J.; Hollert, H.; Schiwy, S. Improvement

of wastewater and water quality via a full-scale ozonation plant?—A comprehensive analysis of the endocrine potential using
effect-based methods. Sci. Total Environ. 2022, 803, 149756. [CrossRef]
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