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Abstract: The advances in developing more accurate and fast smoke detection algorithms increase
the need for computation in smoke detection, which demands the involvement of personal computers
or workstations. Better detection results require a more complex network structure of the smoke
detection algorithms and higher hardware configuration, which disqualify them as lightweight
portable smoke detection for high detection efficiency. To solve this challenge, this paper designs a
lightweight portable remote smoke front-end perception platform based on the Raspberry Pi under
Linux operating system. The platform has four modules including a source video input module,
a target detection module, a display module, and an alarm module. The training images from the
public data sets will be used to train a cascade classifier characterized by Local Binary Pattern (LBP)
using the Adaboost algorithm in OpenCV. Then the classifier will be used to detect the smoke target
in the following video stream and the detected results will be dynamically displayed in the display
module in real-time. If smoke is detected, warning messages will be sent to users by the alarm
module in the platform for real-time monitoring and warning on the scene. Case studies showed
that the developed system platform has strong robustness under the test datasets with high detection
accuracy. As the designed platform is portable without the involvement of a personal computer
and can efficiently detect smoke in real-time, it provides a potential affordable lightweight smoke
detection option for forest fire monitoring in practice.

Keywords: smoke detection; Raspberry Pi; LBP feature type; cascade classifier

1. Introduction

Fire is one of the most common and frequent disasters, which may threaten the
safety of human lives and properties and destroy the ecological environment and natural
resources on which human survival depends [1]. For an effective fire evacuation, it is of
great importance to detect the early occurrence of a fire so that the impacted residents and
businesses can be alarmed for mitigation actions to protect them against losses of lives and
properties [2].

Fire detection methods can be divided into two categories based on the detection of
smoke or flame. In a complex environment, flames can be easily blocked in an early stage
of a fire, while smoke tends to spread faster and it is easier to be detected. Therefore, smoke
detection is an important measure to detect fire in an early stage, which plays an important
role in fire monitoring and prevention [3].

A smoke detection system is composed of an acquisition system and a perception
system. Most current acquisition systems mainly include a sensor and visual acquisi-
tion, among which there are sensors such as gas sensor [4], photoelectric sensor [5], ion
sensor, etc. [6], and visual acquisition equipment like camera equipment. Perception sys-
tems mainly include a personal computer (PC) or workstation and embedded platform [7].
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However, the traditional smoke sensors are mainly used in relatively closed scenes, and
they have relatively low stability and are easily affected by external factors such as ambient
airflow, detection distance, and thermal barrier effects [8].

With the development of machine vision technology, the vision-based detection sys-
tem has achieved considerable improvements in detection accuracy for smoke detection.
Compared with the sensor-based system, it has the advantages of a wide application range
and easy maintenance. Nevertheless, to date, such a vision-based system needs to be
connected to a PC or workstation as the perception system requires long-distance circuit
deployment which brings difficulties to the layout of the smoke monitoring system in
a complex environment. This limitation results in an insufficient coverage rate and low
utilization rate of the monitoring system, which is unable to carry out timely and accurate
monitoring and warning. Therefore, the development of a smoke detection system based
on the visual acquisition and embedded platform perception is of great significance to
improve the coverage of the video monitoring system and detection accuracy of the global
monitoring system and reduce the false alarm rate e of smoke monitoring.

For the visual perception algorithms, they can be divided into traditional methods [9]
and deep learning methods. Due to the complexity of smoke features, deep learning
methods used for smoke detection often require many parameters and use a large amount
of relevant data for training. As a result, when the embedded platform is selected as the
perception system, the storage space required by the deep learning method cannot meet
the needs of the lightweight requirements of the platform, and the lack of data sets in the
field of smoke detection brings another big challenge to the smoke detection method based
on deep learning. Therefore, the smoke detection method based on traditional manual
design features can better meet the development requirements and practical application
scenarios for smoke detection using an onside platform. However, currently, the focus of
smoke detection methods based on traditional hand-designed features lies in the feature
design and classifier selection. The accuracy and generalization ability of the method needs
to be improved by designing better feature synthesis, in addition to reducing the variation
of detection results from different classifiers.

The traditional image- or video-based detection mainly characterizes the static (color,
texture, shape, etc.) and dynamic (movement direction, fixed source, smoke fluid prop-
erties, etc.) features of smoke by manual extraction [10–14]. For example, by extracting
color features in different color spaces (RGB, YCbCr, HSV) [15–18], ref. [19] compared
different color models and merged the HSV and YCrCb spaces to form the final color
model. Texture features can be extracted by wavelet decomposition, Gabor transform, and
local gradient direction histogram methods. Gao and Cheng [20] proposed the concept of
“smoke root” which is defined as a stable smoke source. The “smoke root” does not change
in respect of time, which is considered to be the biggest difference between forest fire smoke
and disturbance. Since the ViBe algorithm cannot detect long-distance light smoke, the
extraction of smoke contours is not complete. In the literature, ref. [21] combines the ViBe
algorithm and the MSER algorithm through Bayesian theory to form a better shape of the
smoke candidate region, which is used for complete and full-scale video smoke detection.
However, a single static feature is usually greatly affected by the environment, and it is
difficult to describe the overall characteristics of smoke well. To address this problem,
dynamic features from relationships between frames can be considered in combination
with static features. Lou and Cheng [22] used a multi-feature fusion method combining
dynamic and static stacking strategies to extract smoke regions from continuous video
frames and screened out candidate points with high confidence through a multi-frame
discrete confidence determination strategy. The candidate points are put into a 2D smoke
simulation engine for smoke to generate simulated smoke.

Considering the limited computing power of the embedded platform, most of the
above features are complex in design and highly computable, so they are not suitable for
the embedded platform. As local binary pattern (LBP) features are fast in computing and
can effectively express the texture features of smoke, this feature will be used in the smoke
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detection algorithm in this paper. In addition, in order to better extract features, the image
is often preprocessed before feature extraction, including image binarization, image noise
reduction, image enhancement, image geometric transformation, and image interpolation.
In this paper, image denoising based on Gaussian filter and image enhancement based on
histogram equalization are adopted.

After the smoke area feature extraction, it is necessary to identify and judge the smoke
area. At present, the more mature and widely-used classifiers include the support vector
machine (SVM), AdaBoost, k-nearest neighbor (KNN), conditional random field (CRF),
and Hidden Markov (HMM) [23–27]. Among them, the k-nearest neighbor is often used to
detect the effectiveness of features, and SVM and AdaBoost are mostly used for combining
different features to improve the final prediction or recognition accuracy due to their high
classification efficiency. In addition, the mutual combination of classifiers is also a hot
research topic. Cascade classifiers have the advantage of easy training and a lightweight
model, so this paper uses cascade classifiers to classify extracted features.

Based on the above-mentioned literature review, in this paper, an embedded smoke
front-end sensing system integrated with four modules is designed. A training set from
the public database is used to train the cascade classifier based on the LBP feature, and,
accordingly, the weight file is obtained followed by transplanting the classifier and its
weight into the image processing module. Video frames are obtained from the recorded
video and preprocessed by Gaussian filtering and histogram equalization. The smoke
is then detected by analyzing the video frames captured by the camera using a trained
cascade classifier. If detected smoke exceeds a set threshold, an alarm is issued for early
monitoring and warning of smoke. The effectiveness and accuracy of the designed smoke
detection system are verified by case studies.

The remaining paper is organized as follows. Section 2 introduces the platform design,
including the selection and configuration of the hardware, the module settings of the
software system, and the design of the smoke detection algorithm. The effectiveness of
the smoke detection algorithm is detailed in Section 3. Finally, Section 4 summarizes the
conclusions and identifies potential future work.

2. Platform Design

Figure 1 shows the overall platform design. The platform can be divided into four
basic modules, including an image input module, an image processing module, a detection
and display output module, and an alarm module. The image processing module includes
video frame preprocessing and cascade classifier detection based on LBP features, and the
output display module includes display output and remote access.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 18 
 

 

detection algorithm in this paper. In addition, in order to better extract features, the image 
is often preprocessed before feature extraction, including image binarization, image noise 
reduction, image enhancement, image geometric transformation, and image interpola-
tion. In this paper, image denoising based on Gaussian filter and image enhancement 
based on histogram equalization are adopted. 

After the smoke area feature extraction, it is necessary to identify and judge the 
smoke area. At present, the more mature and widely-used classifiers include the support 
vector machine (SVM), AdaBoost, k-nearest neighbor (KNN), conditional random field 
(CRF), and Hidden Markov (HMM) [23–27]. Among them, the k-nearest neighbor is often 
used to detect the effectiveness of features, and SVM and AdaBoost are mostly used for 
combining different features to improve the final prediction or recognition accuracy due 
to their high classification efficiency. In addition, the mutual combination of classifiers is 
also a hot research topic. Cascade classifiers have the advantage of easy training and a 
lightweight model, so this paper uses cascade classifiers to classify extracted features. 

Based on the above-mentioned literature review, in this paper, an embedded smoke 
front-end sensing system integrated with four modules is designed. A training set from 
the public database is used to train the cascade classifier based on the LBP feature, and, 
accordingly, the weight file is obtained followed by transplanting the classifier and its 
weight into the image processing module. Video frames are obtained from the recorded 
video and preprocessed by Gaussian filtering and histogram equalization. The smoke is 
then detected by analyzing the video frames captured by the camera using a trained cas-
cade classifier. If detected smoke exceeds a set threshold, an alarm is issued for early mon-
itoring and warning of smoke. The effectiveness and accuracy of the designed smoke de-
tection system are verified by case studies. 

The remaining paper is organized as follows. Section 2 introduces the platform de-
sign, including the selection and configuration of the hardware, the module settings of the 
software system, and the design of the smoke detection algorithm. The effectiveness of 
the smoke detection algorithm is detailed in Section 3. Finally, Section 4 summarizes the 
conclusions and identifies potential future work. 

2. Platform Design 
Figure 1 shows the overall platform design. The platform can be divided into four 

basic modules, including an image input module, an image processing module, a detec-
tion and display output module, and an alarm module. The image processing module 
includes video frame preprocessing and cascade classifier detection based on LBP fea-
tures, and the output display module includes display output and remote access. 

 
Figure 1. System overall design block diagram. 

  

Figure 1. System overall design block diagram.

2.1. Development Board Platform Selection

This paper compares three popular development board versions: Arduino [28–30],
BeagleBone Black [31,32], and Raspberry Pi [33–35], and the comparison information is
shown in Table 1.
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Table 1. Development board parameters comparison.

Development Board Arduino Uno Raspberry Pi BeagleBone Black

Version R3 4B Rev C

Price $20 $150 $100

Size 53 × 68 58 × 88 53 × 86

Processor ATmega328P ARMcortex-A72 AM335x

Clock frequency 16 MHz 1.4 GHz 1 GHz

RAM 2 KB 1/2/4 GB 512 MB

Storage memory 32 KB (SD Card) 4 GB (microSD)

Input voltage 7–12 V 5 V 5 V

Minimum power 20 mA (0.14 W) 3 A (15 W) 350 mA (1.75 W)

GPIO 14 40 88

Analog input 6–10 bit N/A 7–12 bit

UART 1 1 5

Dev IDE Arduino Tool Python /Scratch/Squeak/Linux Python/Scratch/Squeak/Linux/Cloud9

USB Master N/A 2 USB2.0, 2 USB3.0 2 USB2.0

video output N/A HDMI, Composite N/A

Audio output N/A HDMI, Analog Analog

On the subject of the development environment, Arduino is simple in design and
is developed based on a single-chip microcomputer. It can only run one program at a
time, and only supports low-level C++ language, which has obvious limitations. On the
other hand, both Raspberry and Beaglebone are based on Linux systems, which can run
multiple programs at the same time, support multi-threaded operations, are compatible
with multiple programming languages, and have rich development modules. In addition,
they can run on the Flash card, and continue to develop new projects by switching to
a different or larger memory card, which is convenient for the development of various
environments or software.

In terms of operating speed, Arduino’s turnover rate is about 40 times slower than the
other two, and the RAM is 1/128,000 of the other two. The Raspberry Pi 4B is equipped
with a quad-core processor, large memory space, and the fastest running speed, which is
ideal for processing-oriented devices such as camera image processing, video processing, or
building an IoT switch that needs to process large amounts of data and send it to the cloud
and run artificial intelligence algorithms that require relatively high computing power.

What is particularly outstanding is that the OpenCV module is integrated into the
Raspberry Pi, which is convenient for image processing operations, and greatly reduces
the difficulty of programming and the complexity of the program. On the other hand, the
Raspberry Pi is very friendly to the Python algorithm. The Raspberry Pi comes with the
relevant operating environment and compiler, and multiple modules support the operation
of Python. With the continuous iterative upgrade of this version, its running speed is
getting faster and faster, which provides the basis for real-time smoke detection. In the
design of this paper, the running speed, developability, and compatibility with Python of
the development board are the important criteria.

After the comparison, the 4B version of the Raspberry Pi is selected in this paper, as
shown in Figure 2. It is equipped with a 64-bit quad-core ARMcortex-A72 processor, a
Micro SD card as the memory drive, four USB ports, and a Gigabit Ethernet port around
the card’s motherboard for peripheral connections. It also has onboard Wi-Fi and Bluetooth
modules, a 1.4 GHz main frequency, and 4 GB of running memory for fast computing
power to meet the efficiency of data transmission and real-time image processing [36,37].
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2.2. Hardware Design for Video Input Module

Figure 3 shows the hardware design block diagram. The recorded videos as video
sources will be input to the hardware which is mainly composed of the Raspberry Pi
microprocessor and the peripherals (display) of the microprocessor. The hardware system
is based on the Linux environment. The environment required for OpenCV is configured on
the Raspberry Pi and the smoke target detection is completed through the image processing
module, and then the remote connection software is performed, with video access or direct
output display on the monitor.
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2.3. Software Design for Image Processing Module

Considering the diversity of images, the infrared images have low contrast, blurred
visual effects, and the resolution is not as high as that of traditional visible-light cameras.
Due to the influences of imaging conditions, spectral imagery can be coarse and contain
a large number of mixed pixels. Although there are some methods that can solve these
problems partially, for example, ref. [38] proposes an SRM algorithm based on space-
spectral correlation, which uses spectral images to directly extract the utilized spectral
characteristics, avoiding spectral unmixing errors, and obtains better mapping results than
existing methods. However, the real-time performance of smoke detection will be reduced
accordingly. While RGB color space is the most basic, most commonly used, hardware-
oriented color space in image processing, and it is easy to obtain and carry out subsequent
processing, this paper selects RGB image as the research object.

2.3.1. Denoising Process

Video images usually contain varying degrees of noise, which can be caused by a
variety of factors, including recording equipment, the external environment, and data
transmission. On the one hand, the presence of noise makes the information of the image
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more redundant and the data more computationally intensive, and, on the other hand,
it can reduce the detection accuracy of the learning model, such as an increase in false
alarm rate. Therefore, the image needs to be denoised before input detection, and the
noise reduction methods commonly used in the field of target detection are mean filtering,
median filtering, and Gaussian filtering. Using the above filtering methods, the results are
shown in Figure 4.
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Figure 4. Example of filtering effect: (a,b): original image; (c,d): mean filtering; (e,f): median filtering;
(g,h): Gaussian filtering.

In terms of parameter settings for filtering, both the mean and median filters were processed
using a 5 × 5 sub-region, and for consistency, the Gaussian filter used a 5 × 5 convolution
kernel. From the above test samples, it shows a loss of the sharpness of images caused
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by the mean filter and median filter while the Gaussian filter reduces in turn. Moreover,
the first two have a stronger sense of smearing on the screen, which may mistakenly
confuse the light-colored area in the background with the lighter concentration of smoke
in the foreground during detection, resulting in false detection or missed detection. In
summary, this paper selects a Gaussian filter with a convolution kernel of 5 × 5 for the
image denoising process.

2.3.2. Histogram Equalization

In this paper, the texture feature of smoke is also used as a smoke identifier. The
Local Binary Pattern (LBP) operator using histogram equalization is applied to extract the
smoke features, which are processed based on the pixels of the region. The histogram
equalization can evenly map the gray level of the original image to the entire gray level
range to obtain an image with uniform gray level distribution, thereby enhancing the
overall contrast effect of the image and making the details of the picture clearer. In this
way, smoke areas and non-smoke areas can be effectively distinguished when calculating
features. The greater the difference between the feature values of smoke and other regions
during feature extraction, the more beneficial the histogram equalization is to improve
the accuracy of detection. Figure 5 shows the pixel changes before and after histogram
equalization and the process of applying the histogram equalization. Figure 6a,b compare
the images before and after the histogram equalization. It is clearly indicated in Figure 6a,b
that the distinction between pixels is significantly enhanced and the smoke in the image is
much clear after the histogram equalization.
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2.3.3. Cascading Classifier Based on LBP Features

(1) LBP features

In smoke detection, texture features are often used as a feasible method to characterize
smoke. As an effective texture description operator, the LBP operator has remarkable
characteristics such as rotation invariance and grayscale invariance, and, at the same time,
eliminates the problem of illumination changes to a certain extent. As shown in Figure 7, for
the original LBP operator, in a 3 × 3 window, the pixel value of the center point in the area
is the threshold value, and the gray value of the adjacent eight-pixel points is compared
one by one. If the surrounding points are smaller than the center point, it becomes 0,
otherwise 1. The LBP operator then arranges the 0 and 1 values obtained by each pixel
point in a certain order and converts them into the corresponding decimal number, that is,
the pixel value of the current center point. Specifically, the basic LBP operator is defined as:

LBP(P, R) = ∑P−1
Q=0 S

(
gq − gc

)
·2p (1)

S(x) =
{

1 x ≥ 0
0 x < 0

(2)

in which P is the number of sampling points, R is the sampling radius, gc is the gray value
of the central pixel in the local area, and gq is the gray value of the qth sampling point in
the neighborhood of the central pixel.
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An LBP operator can generate a coding mode of a combination of 0 and 1. With the
continuous increase of sampling points, the calculation amount will continue to increase,
and at the same time, it will bring redundant information. To solve such a problem and
improve the efficiency of the operator, Ojala proposed to use an equivalent model to reduce
the dimension of the model types of the LBP operator, and the number of models was
reduced from the original 2p to p (p − 1) + 3 [39]. The LBP mode value of the equivalent
mode can be defined as follows:

LBPP,R =

{
∑P−1

Q=0 S
(

gq − gc
)
·2p U(LBPP,R) ≤ 2

P + 1 otherwise
(3)

where U(LBPP,R) indicates the number of transitions between 0 and 1 in the basic LBP
mode. To convert LBP features into usable information, it is necessary to divide the LBP
feature image into m local blocks, extract the histogram of each local block, and then
connect these histograms in turn to form the statistical histogram of LBP features, that is,
LBPH, and finally use the machine learning method to train the LBP feature vector for
image detection.

In the process of target detection, it is difficult for a single classifier to achieve a high
detection accuracy. Therefore, this paper selects multiple strong classifiers trained by the
Adaboost algorithm to form a cascade classifier with higher detection efficiency to better
achieve smoke detection. The initial weak classifier adopts a small number of feature
dimensions, and the judgment result has great randomness, so it is necessary to train the
optimal weak classifier before forming a strong classifier in parallel. For each feature,
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the weak classifier determines the best threshold classification function, the mathematical
structure is as follows:

h(x, f , p, θ) =

{
1 p f (x) < pθ
0 otherwise

(4)

where x is the size of the sub-window, f represents the feature, θ is the threshold, and p
represents the polarity to indicate the direction of the inequality.

(2) Adaboost strong classifier training

As shown in Figure 8, the strong classifier is composed of multiple weak classifiers in
parallel and is generated after T rounds of iteration. Finally, multiple strong classifiers are
cascaded from simple to complex, and the accuracy rate is improved through continuous
training. Each strong classifier has better performance in the cascade classifier chain. The
detailed training process of the cascade classifier is listed in Algorithm 1.

Algorithm 1 The Detailed Cascade Classifier Training Steps

(1.) Set the minimum detection accuracy which is required to be achieved for each layer dmin,
maximum false positive rate fmax, and the false recognition rate of the final cascaded
classifier Ft;

(2.) Obtain the sample set required for training, and perform preprocessing such as
normalization, noise reduction, etc.

(3.) Initialization: F0 = 1, D0 = 1
(4.) i = 0;

for : Fi > Ft
+ + i;
ni = 0;
Fi = Fi−1;

for : Fi > f × Fi−1
++ ni;
Using AdaBoost to train a strong classifier with ni weak classifiers on the
training set;

Measure the detection rate Di and false recognition rate of the current
cascade classifier Fi, satisfy Fi ≤ fmax, Di ≥ dmin;
for : di > d× Di−1

·Lower the strong classifier threshold for layer i;
·Measure the detection accuracy Di and false recognition rate of

the current cascade classifier Fi;
·The number of negative samples N remains the same in the update;
· Use the current cascade classifier to detect non-face images, and put the

misidentified images into N;

(5.) Save the training results.
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The resolution of the samples during cascade classifier training is usually smaller than
that of the detection samples, thus, multi-scale detection is required during the smoke
detection. There are two general mechanisms for multi-scale detection. The first one is to
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continuously scale the image without changing the size of the search window. This method
requires the operation of regional feature values for each scaled image, which is inefficient.
The other method is to continuously initialize the search window size to the image size
during training and continuously expand the search window to search, which addresses
the shortcomings of the first method. The cascade classifier used in this paper adopts the
second strategy by (1) searching, detecting, and calling the detected multi-scale function in
OpenCV, (2) traversing the image through the initial window size of 35 × 35, (3) calculating
the characteristics of the object and comparing them, and (4) gradually enlarging the length
and width of the detection window according to a certain proportion. By repeating the
above operation, the detection target position and frame selection are determined.

2.4. Email Alarm Module

As shown in Figure 9, when the system detects the presence of smoke, the imwrite
function of OpenCV is used to automatically save five frames of pictures when it is deter-
mined that smoke is detected and generate a file attachment. It uses the socket to establish
a link with the server and sends the SMTP commands. The system transmits the content of
the mail and the SMTP commands between the remote end and the server in the form of
text streams and attachments to achieve mailbox alarms.
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2.5. Display Output Module

As shown in Figure 10, the detected smoke information can be obtained and displayed
using either direct or remote access. For direct access, the external display is directly
connected to the Raspberry Pi motherboard with an HDMI cable, using a mobile power
supply through the USB Type-c power port to the Raspberry Pi motherboard for a power
supply to achieve the real-time output of detection. For the remote access, the remote PC
can be connected to the Raspberry Pi using a VNC service by obtaining the IP address of
the Raspberry Pi and logging into the platform remotely to achieve a remote signal and
data transmission.
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3. Case Studies and Discussion

The datasets used in the training process of the platform in this study are obtained
from three open-source smoke sample sets, including smoke videos and pictures from:

(1) Laboratory of Bilkent University, Turkey [40]
(2) Yuan Feiniu Laboratory, Jiangxi University of Finance and Economics [41]
(3) CVPR Laboratory of Keimyung University, Korea [42]

The training sample set includes 2800 positive samples and 4000 negative samples. As
shown in Figures 11 and 12, the grayscale images of some positive and negative training
samples are selected, respectively. The resolution of positive samples is 35 × 35, and for
the negative samples it is 48 × 48.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 10. Remote connection interface. 

3. Case Studies and Discussion 
The datasets used in the training process of the platform in this study are obtained 

from three open-source smoke sample sets, including smoke videos and pictures from: 
(1) Laboratory of Bilkent University, Turkey [40] 
(2) Yuan Feiniu Laboratory, Jiangxi University of Finance and Economics [41] 
(3) CVPR Laboratory of Keimyung University, Korea [42] 

The training sample set includes 2800 positive samples and 4000 negative samples. 
As shown in Figures 11 and 12, the grayscale images of some positive and negative train-
ing samples are selected, respectively. The resolution of positive samples is 35 × 35, and 
for the negative samples it is 48 × 48. 

 
Figure 11. Positive sample examples. 

 
Figure 12. Negative sample examples. 

After the cascade training, to validate the developed platform, eight test videos are 
selected to test the trained cascade classifier, respectively. To verify the robustness and 
effectiveness of the algorithms, the selection of the eight groups of videos takes into ac-
count the diversity of the background, the intensity of the light, and the distance. Table 2 
lists the descriptions of the eight groups of test videos. 

  

Figure 11. Positive sample examples.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 10. Remote connection interface. 

3. Case Studies and Discussion 
The datasets used in the training process of the platform in this study are obtained 

from three open-source smoke sample sets, including smoke videos and pictures from: 
(1) Laboratory of Bilkent University, Turkey [40] 
(2) Yuan Feiniu Laboratory, Jiangxi University of Finance and Economics [41] 
(3) CVPR Laboratory of Keimyung University, Korea [42] 

The training sample set includes 2800 positive samples and 4000 negative samples. 
As shown in Figures 11 and 12, the grayscale images of some positive and negative train-
ing samples are selected, respectively. The resolution of positive samples is 35 × 35, and 
for the negative samples it is 48 × 48. 

 
Figure 11. Positive sample examples. 

 
Figure 12. Negative sample examples. 

After the cascade training, to validate the developed platform, eight test videos are 
selected to test the trained cascade classifier, respectively. To verify the robustness and 
effectiveness of the algorithms, the selection of the eight groups of videos takes into ac-
count the diversity of the background, the intensity of the light, and the distance. Table 2 
lists the descriptions of the eight groups of test videos. 

  

Figure 12. Negative sample examples.

After the cascade training, to validate the developed platform, eight test videos are
selected to test the trained cascade classifier, respectively. To verify the robustness and
effectiveness of the algorithms, the selection of the eight groups of videos takes into account
the diversity of the background, the intensity of the light, and the distance. Table 2 lists the
descriptions of the eight groups of test videos.
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Table 2. Test video description.

Test Video Resolution Total Frames Smoke
Frames Illustration

video test1 320 × 240 900 835

A smoking device is thrown to
the ground and releases white

smoke, smoke movement is
chaotic, and there are

distractors such as spilled
water in the middle.

video test2 320 × 240 1200 1050

Simulate forest fire smoke, and
create smoke among leaves.

Smoke moves roughly up and
to the right, and the
background leaves
frequently shake.

video test3 320 × 240 2326 2326

In mountainous areas, the
direction of smoke movement
is to the upper right and the

distance is relatively short. The
picture is dark.

video test4 320 × 240 4536 0 Pedestrians in the background,
no smoke

video test5 320 × 240 1000 0 Cars on the road, no smoke

video test6 320 × 240 894 0 Large areas of continuously
shaking leaves

video test7 320 × 240 606 606
Mountainous areas, smoke is

far away and the brightness of
the picture is high.

video test8 320 × 240 2886 2886

Mountainous area, the direction
of smoke movement is more

confusing, and the picture has
moving objects such as

firefighting fliers, far away.

3.1. Experimental Indicators

To evaluate the developed platform based on the experimental results from the case
studies, the confusion matrix is used to count the actual smoke in the three cases as a
reference as shown in Table 3. In Table 3, TP represents the true smoke, when the number
of frames where the smoke frame in the test video is identified as the smoke frame, FP is
the false positive, when the number of frames where the smoke frames in the test video are
identified as non-smoke frames, TN is the true negative, when the number of frames in
the test video where non-smoke frames are identified as non-smoke frames, and FN is the
false negative, the number of video frames where non-smoke frames in the test video are
identified as smoke frames.

Table 3. Confusion matrix.

Smoke Classification
Actual Situation

Smoke Non-Smoke

Predicted results
Smoke TP FP

Non-Smoke FN TN

After filling out the statistical counting form based on the testing data of the case
studies, it can be used to calculate the corresponding experimental indicators. In this paper,
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the accuracy, detection rate, false alarm rate, and missed detection rate are selected as the
main experimental indicators as they are commonly used in the field of smoke detection.
The calculation of these indicators is further explained as follows:

Accuracy (ACC): The ratio of the number of frames in the test video for which all
predictions are correct (smoke frames are predicted as smoke frames, non-smoke frames
are predicted as non-smoke frames) in the total number of video frames, which can be
represented as:

ACC =
TP + TN

TP + FN + FP + TN
(5)

True positive rate (TPR): The proportion of the smoke frames in the test video that are
correctly detected as smoke frames in all smoke frames can be represented as:

TPR =
TP

TP + FN
(6)

False-positive rate (FPR): The ratio of the number of non-smoke frames in the test video
that are falsely detected as smoke frames in all non-smoke frames can be represented as:

FPR =
FP

FP + TN
. (7)

False-negative rate (FNR): The ratio of the number of smoke frames that are not
detected in the test video to all smoke frames can be represented as:

FNR =
FN

TP + FN
. (8)

In some test videos, smoke will be included in the whole process. At this time, since TN
and FP do not exist, ACC = TPR, and there is no FPR. In addition, the speed or consumed
time is also investigated using the measurement speed in frames per second (FPS) to
investigate the efficiency of the developed platform.

3.2. Test Result Discussion

The used training computer has a configuration of Intel-i7 processor, NVIDIA GTX1080
GPU, and 16G memory. Tables 4–6 show the specific training parameter settings used in
the case studies.

Table 4. General parameter settings.

Number of
Positive
Samples

Number of
Negative
Samples

Number of
Stages PrecalcValBufSize PrecalcIdxBufSize

2800 4000 20 1024 MB 1024 MB

Table 5. Gradient parameter settings.

Stage_Type Feature_Type Width Height

BOOST LBP 35 35

Table 6. Enhanced classifier parameter settings.

Boosted Type Min_Hit_Rate Max_False_Alarm_Rate Weight_Trim_Rate Max_Depth Max_Weak_Count

GAB/DAB 0.999 0.5 0.95 1 100

Discrete AdaBoost (DAB) and Gentle AdaBoost (GAB) are currently the most com-
monly used AdaBoost algorithms. Among them, the GAB has evolved based on DAB. To
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explore the feasibility and effectiveness of the Adaboost algorithm, by setting the classifica-
tion of the enhanced classifier, the training time can be compared between the DAB, which
is the traditional classifier, and the GAB cascade classifier used in the developed platform
in this paper under the same conditions, and the detection indicators of the three sets of
test videos can be identified and compared. The time used for the DAB cascade classifier is
64 min 38 s, and the time used by the GAB cascade classifier is 45 min 50 s. Table 6 shows
the results from the validation tests of the three case studies.

To improve the real-time detection of video, the resolution of video frames can be re-
duced by down sampling. However, due to the slow change of foreground and background
between consecutive frames, the detection can be performed by inter-frame extraction. The
former will lose the accuracy of the image when processing and may affect the accuracy
of detection, so this paper takes the latter approach for video testing. Table 7 shows the
results from the validation tests of the eight case studies.

Table 7. Based on test videos test results.

Test Video
Adaboost

Type FPS
Test Results

TP TN FN FP ACC (%) TPR (%) FPR (%) FNR (%)

video_test1
LBP + GAB 28.52 410 33 6 1 98.44 98.56 2.94 1.44

LBP + DAB 17.81 279 31 137 3 68.89 67.07 8.82 32.93

video_test2
LBP + GAB 25.80 365 84 150 1 74.83 70.87 1.18 29.13

LBP + DAB 12.65 486 67 29 18 92.17 94.37 21.18 5.63

video_test3
LBP + GAB 23.30 1150 \ 13 \ 98.88 98.88 \ 1.12

LBP + DAB 12.00 1163 \ 0 \ 100 100 \ 0

video_test4
LBP + GAB 29.68 \ 2244 \ 24 98.94 \ 1.06 \
LBP + DAB 14.96 \ 1831 \ 437 80.73 \ 19.27 \

video_test5
LBP + GAB 28.34 \ 438 \ 62 87.60 \ 12.40 \
LBP + DAB 13.42 \ 300 \ 200 60.00 \ 40.00 \

video_test6
LBP + GAB 26.72 \ 398 \ 49 89.04 \ 10.96 \
LBP + DAB 20.70 \ 337 \ 110 75.39 \ 24.61 \

video_test7
LBP + GAB 22.34 300 \ 3 \ 99.01 99.01 \ 0.99

LBP + DAB 11.50 303 \ 0 \ 100 100 \ 0

video_test8
LBP + GAB 27.24 1438 \ 5 \ 99.65 99.65 \ 0.35

LBP + DAB 15.79 1337 \ 106 \ 92.65 92.65 \ 7.35

It can be found from Table 7 that after the test of the eight groups of videos, the average
detection speed (FPS in Table 7) of the enhanced classifier based on the GAB algorithm is
about 11 frames faster than that of the enhanced classifier based on the DAB algorithm. So
the detection speed of the former is significantly higher than that of the latter. The distance
of smoke in the frame differs in videos 3 and 8, and video 7 has a higher frame brightness.
The test results show that the classifier based on the GAB algorithm is less affected by the
distance, and the brightness of the frame has not been greatly affected for both classifiers.
On all non-smoke frames, the former has a better detection effect. However, in test video 2,
the GAB has a high false alarm rate, resulting in a low accuracy rate. The possible reason is
that the smoke concentration in the early test video 2 is low and the distribution area is
small because the DAB requires weak classification. The output of the detector is binary,
and the GAB will relax the requirements to real values. When performing multi-scale
sliding window detection on these test frames, the former will output positive samples
as long as smoke is detected, while the latter needs to output close to negative samples.
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The label value of the sample is more likely to be determined as a negative sample by the
classifier threshold, resulting in a higher false-positive rate.

From Table 7, it also can be seen that compared to the traditional DAB, the GAB cascade
classifier not only has a shorter training time under the same training conditions but also
has a faster calculation speed, which can meet the lightweight needs of the algorithm and
has a better average performance on the different test sets. The video frames with large
differences in the shape distribution of smoke in the three test samples are intercepted, and
the detection result of the GAB-based cascade classifier is shown in Figure 13.
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4. Conclusions and Future Work

This paper develops a lightweight portable real-time smoke front-end sensing de-
vice based on Raspberry Pi, which can effectively reduce the cost of smoke detection
and miniaturize the smoke detection device. Specifically, the following conclusions can
be drawn:

(1) The Adaboost cascade classifier based on LBP features is applied in the developed
platform to ensure the detection accuracy and real-time performance of the method.

(2) With the iterative upgrade of the Raspberry Pi version, the configuration of hardware
and software has been greatly improved to meet the needs of processing a large
number of low-level image features extracted by the lightweight learning model.

(3) The characteristics of Raspberry Pi, such as the small size, strong computing power,
and abundant peripherals, provide a good platform for hardware development of
smoke detection, which can be applied to more complex and changeable environ-
ments.

(4) The GAB-based cascade classifier has better performance in training and testing,
including shorter training time, high detection efficiency, and low missed detection
rate, but the detection effect when the smoke concentration is low and the shape
distribution is discrete could be improved.

Due to the use of the embedded platform, the developed platform in this paper has the
advantages of simple operation and flexible expansion, which can meet the diversification of
needs in many field applications which requires portable and lightweight smoke detection
devices. Limited to the memory and computing power of the Raspberry Pi, the embedded
learning model and the features extracted by the network need to be lightweight and
simplified. Although the cascade classifier used in this paper can match the configuration
of the Raspberry Pi, the false alarm rate is still relatively high, and there is a certain deviation
in the positioning of the smoke area. Therefore, the effectiveness, diversity, and lightweight
of the algorithm to extract smoke features are the key problems to be solved by the future
development platform.
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