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Abstract: Abnormal movement of the head and neck is a typical symptom of Cervical Dystonia (CD).
Accurate scoring on the severity scale is of great significance for treatment planning. The traditional
scoring method is to use a protractor or contact sensors to calculate the angle of the movement, but
this method is time-consuming, and it will interfere with the movement of the patient. In the recent
outbreak of the coronavirus disease, the need for remote diagnosis and treatment of CD has become
extremely urgent for clinical practice. To solve these problems, we propose a multi-view vision
based CD severity scale scoring method, which detects the keypoint positions of the patient from the
frontal and lateral images, and finally scores the severity scale by calculating head and neck motion
angles. We compared the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) subscale
scores calculated by our vision based method with the scores calculated by a neurologist trained
in dyskinesia. An analysis of the correlation coefficient was then conducted. Intra-class correlation
(ICC)(3,1) was used to measure absolute accuracy. Our multi-view vision based CD severity scale
scoring method demonstrated sufficient validity and reliability. This low-cost and contactless method
provides a new potential tool for remote diagnosis and treatment of CD.

Keywords: Azure Kinect; Cervical Dystonia; human motion analysis; human pose estimation;
remote diagnosis

1. Introduction

Dystonia was first proposed by Oppenheim [1]. In 2013, dystonia was redefined as
dyskinesia with clinical features of abnormal and repetitive movements caused by contin-
uous or intermittent muscle contraction [2]. Cervical Dystonia (CD) is the most common
focal dystonia in the clinic [3]. It is dystonia caused by clonic or tonic excessive contraction
of cervical muscles, which leads to abnormal head and neck posture and involuntary
movement. Common treatment methods include drug therapy, botulinum toxin injection
therapy, and surgical treatment. Local injection of botulinum toxin can effectively reduce
muscle contraction and pain, which is recommended as the first treatment by the American
Neurological Association and the European Union of neuroscience associations [4,5]. The
effective rate of this clinical treatment method is 58–90% [6]. The main reason for treatment
failure is the insufficient judgment of the responsible muscles [7].

In clinical practice, the target muscle of botulinum toxin therapy is usually selected by
the abnormal movement pattern of the patient. According to the clinical manifestations,
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the abnormal movement patterns of patients can be classified as torticollis (rotation in the
transverse plane), laterocollis (lateroflexion in the coronal plane), retrocollis (anteflexion
in the sagittal plane), anterocollis (retroextension in the sagittal plane), or a combination
of the above [8]. With the widespread use of botulinum toxin therapy, researchers found
that the past four abnormal movement patterns had described cervical dystonia too simply
to account for the various clinical symptoms, making it difficult to select the responsible
muscle for treatment. According to the collum-caput concept, each pattern can be divided
into two subtypes. One is abnormal movement relative to the neck from the head, and the
other is abnormal movement relative to the neck from the torso. Each abnormal movement
pattern corresponds to a part of the muscles [9–12]. As shown in Figure 1, torticollis can be
subdivided into torticollis and torticaput. Laterocollis can be subdivided into laterocollis
and laterocaput. Antecollis can be subdivided into antecollis and antecaput. Retrocollis
can be subdivided into retrocollis and retrocaput.
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1.1. Related Work

Accurate scoring of the severity scale is significant for botulinum toxin therapy. There
are three methods commonly used in the clinical scoring of the severity scale. The manual
assessment uses a head protractor [13] to assess abnormal patterns of CD. Each patient
needs to put the head and neck into the instrument in this method. The doctor uses
the protractor to manually measure the patient’s head and neck movement angle under
different states. This method is complex, time-consuming, and exhausting.

The Inertial Measurement Unit (IMU) based method uses a multi-axis sensor combina-
tion device [14] to assess abnormal patterns of CD. Doctors attach IMUs to the patient’s
neck and head to measure the motion angles. Compared with the manual assessment
method, this method is more convenient. However, physical contact will make the patient
uncomfortable. The patient needs to wear a head positioning cap [15] to ensure that the
sensors are correctly positioned, as shown in Figure 2. The head positioning cap is tightly
tied to the head, which will make the patient feel uncomfortable or even painful, especially
for obese people. The drifting problem is that the inherent imperfections and noise within
the IMU will cause errors. These errors will accumulate as angle estimates drift over time.
It will result in a difference between the estimated and actual angles, which will cause
errors in the measurement.
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X-ray assessment accurately determines the abnormal movement patterns of dystonia
by comparing the positions of different vertebral bodies and the cross-sectional area of the
corresponding muscles in the neck through multi-angle X-ray photography of the head and
spine. This method is more accurate than manual assessment and sensor assessment, but
it increases patient radiation exposure, and the operation is more complex. Conventional
Computed Tomography (CT) requires the patient to be supine, which may interfere with
the patient’s abnormal posture. Therefore, the assessment of abnormal patterns of CD
needs to be completed under the special orthostatic CT.

In recent years, vision based human pose estimation (HPE) has made significant progress
and has begun to be widely used in related fields. Two-dimension (2D) HPE methods such
as Convolutional Posture Machine (CPM) [16], Hourglass [17], and High-Resolution Net
(HRNet) [18] estimate the 2D position of human body keypoints from images or videos.
Three-dimension (3D) HPE methods such as SimpleBaseline3D [19] and VideoPose3D [20]
estimate the 3D position of human body keypoints. It is possible to use computer vision
technology in medical diagnosis. Li et al. used the CPM to extract the joint motion
trajectory from the video and then calculated the relevant characteristic parameters. The
patient’s pathological motion was measured using the random forest to predict their clinical
class [21]. Guo et al. extracted keypoints from the patient’s video to assess the abnormal
level of Parkinson’s disease [22]. Viswakumar et al. proposed a cost-effective method for
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human gait analysis that uses a mobile phone camera [23]. Nakamura et al. developed a
system analyzing the three-dimensional keypoint positions obtained by Kinect v2 [24] to
measure head and neck movement angles. It can calculate the TWSTRS severity scale score
semi-automatically [25]. Their results showed a good correlation between the system and a
neurologist in torticollis and laterocollis, but poor agreement in antecollis/retrocollis. Since
pitch errors were always higher than yaw and roll errors when using monocular Kinect v2.
These cases fully demonstrate the feasibility of vision-based methods in scoring on the
severity scale.

1.2. Motivation

Above traditional methods requires experienced neurologist trained in dyskinesia and
professional medical equipment. In many areas where medical resources are scarce, it is
difficult for CD patients in these areas to obtain effective diagnoses. The recent outbreak of
Corona Virus Disease 2019 exacerbates the shortage of medical resources. Many CD patients
cannot go to the hospital for diagnosis and treatment, which delays the best opportunity
for rehabilitation. Therefore, it is urgent to study a low-cost and portable method to score
CD scales without a neurologist trained in dyskinesia and professional medical equipment
and even realize remote diagnosis at home.

1.3. Challenge

One of the challenges of vision based methods is how to accurately describe the head
and neck movement of each CD abnormal pattern using the vision based HPE, since the ab-
normal movement pattern of CD is complex and changeable. Another challenge is the deep
ambiguity in estimating 3D body keypoints from a single 2D image. Using multiple views
to estimate 3D human keypoints is a preferred solution. Another preferred solution to solve
the depth ambiguity problem is using a depth sensor. Yu et al. proposed DoubleFusion [26]
using a single depth sensor to estimate 3D human pose. Kadkhodamohammadi et al.
used RGB-D sensors to estimate 3D human pose in real operating room environments [27].
Microsoft also released the Kinect body tracking Software Development Kit (SDK) [28] for
human 3D keypoint estimation using Kinect’s RGB-D sensors.

1.4. Contribution

This study aimed to study a low-cost and portable vision based method for scoring
CD scales. The main contributions of this study can be summarized as follows:

1. We propose a multi-view vision based method for scoring the CD severity scale. It
measures head and neck movement angle by calculating the 3D keypoint positions
obtained by frontal Azure Kinect and the 2D keypoint positions obtained by the
common lateral camera.

2. We conducted a pilot study to compare the subscales of the Toronto Western Spas-
modic Torticollis Rating Scale (TWSTRS) severity scale calculated by the multi-view
vision based method with the manual method scores rated by a neurologist trained
in dyskinesia. The results show a good correlation and agreement between the two
methods. It demonstrated sufficient validity and reliability of the multi-view vision
based method.

3. We compare the subscales of the TWSTRS calculated by the multi-view vision based
method with the scores rated by the single-view method and wearable IMU based
method. The results show that our multi-view vision based method has higher accu-
racy and robustness than the single-view method and wearable IMU based method.

Compared with the traditional scoring methods, our vision-based method uses the
patient’s image to assess the abnormal movement pattern. This method only uses the cam-
era device to collect image data without direct contact with the patient. While maintaining
the accuracy of the assessment, it is convenient, quick and easy to be applied in remote
diagnosis and treatment. Compared with the single view methods, our multi-view method
has significantly improved accuracy at the cost of adding a lateral camera.
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The work is structured as follows: In Section 2, we describe the subjects, proposed
methods, and devices in detail. In Section 3, we show the superiority of our method. The
discussion is presented in Section 4. Section 5 summarizes the article.

2. Methods
2.1. Subject

The Institutional Review Board of Tongji Hospital, Tongji University School of Medicine
approved this pilot study. This study was conducted based on the clinical videos from the
Neurology Department of Tongji Hospital. There are now 31 patients participating in our pi-
lot study. Of these, 8 participants have completed data collection and 23 others are waiting
for data collection. The data contains 24 frontal videos, 24 lateral videos and 24 IMU data
of 8 CD patients. The movement disorder-trained neurologist collected detailed participant
information and scored the TWSTRS severity scale. Frontal videos were captured using
an Azure Kinect [28] at 30 frames per second at a resolution of 1920 × 1080. Lateral videos
were captured using the HP 320 FHD Webcam [29] at 30 frames per second at a resolution
of 1920 × 1080. IMU data was synchronously captured using three Alubi LPMS-B2 [30]
inertial measurement units at 400 Hz. The participants were seated or standing and facing
the Azure Kinect in all videos.

2.2. Multi-View Vision Based Method

The multi-view vision based scoring method uses the Azure Kinect to capture the
frontal color and Infrared Radiation (IR) images and the HP 320 FHD Webcam to get the
lateral color image, as shown in Figure 3. The Azure Kinect is a new RGB-D sensor released
by Microsoft. It consists of an RGB camera and an IR camera. The resolution of the color
camera is 1920 × 1080 px at 30 fps. The resolution of the IR camera is 512 × 512 px at 30 fps.
Its weight is 440 g, and its size is 103 mm × 39 mm × 126 mm [28]. The HP 320 FHD
Webcam is a USB camera released by Hewlett-Packard. It has a resolution of 1980 × 1080 px
at 30 fps. Its weight is 130 g, and its size is 72 mm × 54 mm × 23 mm [29]. The frontal
Azure Kinect was placed at a distance of around 2.0 m in front of the subject, while the
HP 320 FHD Webcam was placed at a distance of about 2.0 m on the side of the subject.
The Azure Kinect Body tracking SDK captures the 3D keypoint positions of the subject,
and the later 2D keypoint positions of the subject are captured by the You Only Look Once
(YOLO) model [31,32] and HRNet [18] model. The frontal 3D keypoint positions are used
to automatically calculate the yaw axis angles (rotation) and roll axis angles (lateral tilting).
The 2D lateral position is used to automatically calculate the pitch axis angles (sagittal
flexion and extension).
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The flow chart of our method is shown in Figure 4. The Azure Kinect Body tracking
SDK consists of 2D pose estimation and 3D model fitting. In the 2D pose estimation
module, the convolutional neural network is used to extract features from the RGB image
of the color camera and obtain the linked 2D keypoints. The 3D model fitting module
uses depth images from the IR camera and linked keypoints from the 2D pose estimation
module as input. Energy data terms (include 2D keypoint reprojection and 3D surface
depth displacement) and energy regularization terms (include anatomical joint limits, pose
prior regularization, scale prior regularization, and temporal coherency) are used to fit and
optimize the kinematic pose of the subject. Each body pose comprises 32 joints (head, neck,
nose, etc.), each characterized by a 2D keypoint position.
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The keypoints of the subject used in our method are shown in Figure 5. And the
scheme of head and neck movement angle calculation is shown in Figure 6. With the frontal
3D keypoint positions of the subject, the torticaput/torticollis and latercaput/laterocollis
subscales of the TWSTRS severity scale can be scored. For torticaput, the angle between
the vector passing through both ears and the horizontal vector in the transverse plane
is calculated. For torticollis, the angle between the neck-head vector and the horizontal
vector in the transverse plane is calculated. For latercaput, the angle between the vector
passing through both eyes and the horizontal vector in the coronal plane is calculated. For
laterocollis, the angle between the neck-head vector and the vertical vector in the coronal
plane is calculated.
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The YOLOv3 model, which performs well in the subject detection task, is used to
obtain subject bounding boxes in the lateral image. The YOLOv3 model is a single-stage
object detection model, which can maintain high detection accuracy while having a high
detection speed, and occupies fewer computing resources. It is suitable for real-time
medical diagnosis. To improve the accuracy of the YOLOv3 model for subject detection, we
pre-trained the YOLOv3 model with the Common Objects in Context (COCO) [33] dataset.
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The HRNet model is used to estimate the subject’s 2D keypoint positions. The back-
bone network of HRNet has maintained high resolution rather than recovery from the
low-resolution features. Through up-sampling and down-sampling with mutual connec-
tion, the parallel network realizes the multi-scale feature extraction and fusion. It solved the
need for a reliable high-resolution feature map in the task of human keypoint estimation.

With the lateral 2D keypoint positions of the subject, the antecaput/retrocaput and
antecollis/retrocollis subscale of the TWSTRS severity scale can be scored. For anteca-
put/retrocaput, the angle between the vector passing ear-nose and the horizontal vector
in the sagittal plane is calculated. For antecollis/retrocollis, the angle between the vector
passing neck-ear and the vertical vector in the sagittal plane is calculated.

2.3. Single-View Vision Based Method

Both multi-view and single-view methods use the same human keypoints to calculate
the motion angle. So the scheme of using human keypoints to calculate the head and
neck motion angle is the same, as shown in Figure 6. The difference between multi-view
and single-view methods is that the 2D lateral human keypoints are obtained differently.
The single-view method without the lateral camera firstly estimates 3D human keypoints
using the Azure Kinect. It then projects the 3D keypoints to the sagittal plane to get 2D
lateral keypoints. The multi-view method directly estimates 2D lateral keypoints from the
lateral camera.

2.4. Manual Measurement

Manual measurement is the method used by the neurologist trained in dyskinesia to
score CD scales. This method uses the protractor to measure the neck and head motion
angle. For antecaput/retrocaput, the angle between the vector from the external auditory
foramen to CZ (the top of the head) and the vertical vector in the sagittal plane is calculated.
For antecollis/retrocollis, the angle between the vector passing through the midpoint of
the neck and parallel to the neck contour and the vertical vector in the sagittal plane is
calculated. For latercaput, the angle between the vector from the nose to the glabellum and
the vertical vector in the coronal plane is calculated. For laterocollis, the angle between
the vector from the midpoint of the thyroid cartilage to the suprasternal notch and the
vertical vector in the coronal plane is calculated. For torticaput, the angle between the
vector from nose to external occipital protuberance and the horizontal vector in the sagittal
plane is calculated. For torticollis, the angle between the vector from the midpoint of the
thyroid cartilage to the C4 spinous process and the horizontal vector in the transverse plane
is calculated.

2.5. IMU Based Method

The IMU based method captures the neck and head motion angle from 3 LPMS-B2
attached to the subject body. The LPMS-B2 is a wearable inertial sensor released by Alubi.
It can capture 6 degrees of freedom data from a triaxial accelerometer and a gyroscope
at 400 Hz. Its weight is 12 g, and its size is 39 mm × 39 mm × 8 mm [30]. As shown
in Figure 7, the S1 sensor is attached to the top of the head, the S2 sensor is attached to the
C3-C4 of the cervical spine, and the S3 sensor is attached to the C7 of the cervical spine.
These sensors can measure the angle of pitch, roll, and yaw using three rate gyros. For
torticaput, the angle of yaw between S1 and S2 is calculated. For torticollis, the angle of
yaw between S2 and S3 is calculated. For latercaput, the angle of roll between S1 and S2 is
calculated. For laterocollis, the angle of roll between S2 and S3 is calculated. For anteca-
put/retrocaput, the angle of pitch between S1 and S2 is calculated. For antecollis/retrocollis,
the angle of pitch between S2 and S3 is calculated.
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2.6. Study Protocol

In this study, three methods were used to score the rotation (torticaput/torticollis),
laterocollis (latercaput), and antecollis/retrocollis (antecaput/retrocaput) subscales of the
TWSTRS severity scale, which are the multi-view vision based method, neurologist trained
in movement disorders and the wearable IMU based method. The antecollis/retrocollis
subscale was also scored by the single-view vision-based method, which calculated angles
only using the frontal keypoint positions captured by the frontal Azure Kinect.

2.7. Data Analysis

Data were analyzed to ascertain the coefficient of correlation between the subscales of
the TWSTRS calculated by the multi-view vision based method and the scores obtained
by a movement disorder-trained neurologist. The coefficient of correlation between the
subscales of the TWSTRS was calculated by the sensor based method, and the scores
obtained by a movement disorder-trained neurologist were also ascertained. Spearman’s
correlation was used to evaluate the relative agreement between these methods. Intra-class
correlation (ICC) and 95% limits of agreement were used to measure absolute accuracy.
The SciPy library v1.7.3 was used to calculate Spearman’s correlation, and the Pingouin
library v0.5.1 was used to calculate ICC.

3. Results

Table 1 shows the characteristics of the subjects. Eight participants had completed
data collection in this study. The male to female ratio is 3:5, and the average age was
41.3 years. These patients were diagnosed and treated in the Neurological Department of
Tongji Hospital.

Table 1. Characteristics of subjects.

Subject Age (Years) Sex
TWSTRS Subscales

Rotation Laterocollis Antecollis/Retrocollis

1 26 Female Mild Moderate Moderate
2 48 Female Severe None None
3 45 Female Mild Mild None
4 34 Female Slight Moderate None
5 52 Female Slight Moderate Mild
6 37 male Slight Moderate Mild
7 46 male Slight Mild Severe
8 42 male Mild Moderate Moderate
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Table 2 shows the angles and the subscales of the TWSTRS severity scale calculated
by the multi-view vision based method, as well as those calculated by a neurologist
trained in movement disorders and the wearable inertial sensors based method. For
the antecollis/retrocollis subscale, Table 2 also shows the severity score calculated by
the single-view vision base method, which only uses the frontal image from the frontal
Azure Kinect.

Table 2. Score of the subscales of the TWSTRS severity scale calculated by the multi-view vision
based method, a neurologist trained in movement disorders, and the wearable inertial sensors
based method.

Patient
Rotation * Laterocollis * Antecollis/Retrocollis **

RA N M W RA N M W RA N M W F

1 31.67 2 2 2 −34.44 2 2 3 23.20 2 2 1 1
2 48.10 4 3 2 2.30 0 0 1 26.57 0 2 1 0
3 −23.09 2 2 2 −8.16 1 1 1 18.43 0 1 1 1
4 17.85 1 1 1 −11.37 2 1 0 3.94 0 0 0 1
5 6.57 1 1 1 −13.86 2 1 1 20.56 1 1 0 0
6 9.76 1 1 2 −13.20 2 1 2 8.13 1 1 0 1
7 −17.04 1 1 0 −7.85 1 1 1 −90.00 3 3 2 2
8 15.56 2 1 1 −28.87 2 2 1 −45.00 2 2 1 1

RA: raw angle by the multi-view vision based method, N: movement disorder-trained neurologist, M: multi-view
vision based method, W: wearable IMU based method, F: single-view based method only using the frontal image.
* Negative value represent right. ** Negative value represent posterior.

As shown in Table 3, the scores calculated by our method were significantly correlated
with those measured by the neurologist (r = 0.843 for rotation, r = 0.667 for laterocollis,
and r = 0.701 for antecollis/retrocollis). Adequate ICC(3,1) of 0.870(p < 0.05) was obtained
in rotation, 0.727(p < 0.05) was obtained in laterocollis, and 0.739(p < 0.05) was obtained
in antecollis/retrocollis. We compared our method’s validity and accuracy with those of
Nakamura’s method [25], which uses a single Kinect v2 to capture the three-dimensional
position of the subject. As we can see, our method has a significant improvement in validity
and accuracy in laterocollis (r = 0.369, icc = 0.330 by Nakamura) and antecollis/retrocollis
(r = 0.181, icc = 0.281 by Nakamura).

Table 3. Validity and accuracy of our method and the previous work.

Items Correlation ICC(3,1)

Rotation
Nakamura’s 0.902 * 0.793 *
Ours 0.843 * 0.870 *

Laterocollis
Nakamura’s 0.369 * 0.330 *
Ours 0.667 0.727 *

Antecollis/retrocollis
Nakamura’s 0.181 0.281
Ours 0.701 0.739 *

* p < 0.05.

In this study, we also compared the validity and accuracy of the multi-view vision
based method with the wearable IMU based method. Spearman’s correlation coefficient
and ICC(3,1) between the scores was calculated by the wearable IMU based method and
neurologist are shown in Table 4. It is shown that both the validity and accuracy of the
vision based method are higher than the IMU based method in all subscales.

As the ablation experiment, Spearman’s correlation coefficient and ICC(3,1) between
the score of antecollis/retrocollis subscale measured by the single-view vision based method
that only uses frontal image and neurologist were ascertained to study the necessity of
adding the lateral image of the subject. As shown in Table 5, with the method of adding the
lateral image of the subject, there was a significant improvement in validity and accuracy
compared to the method that only uses the frontal image.
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Table 4. Validity and accuracy of the multi-view based method and the wearable IMU based method.

Items Correlation ICC(3,1)

Rotation
M 0.843 * 0.870 *
W 0.564 0.484

Laterocollis
M 0.667 0.727 *
W 0.189 0.211

Antecollis/retrocollis
M 0.701 0.739 *
W 0.474 0.525

M: multi-view vision based method, W: wearable IMU based method. * p < 0.05.

Table 5. Validity and accuracy of the multi-view vision based method and the single-view vision
based method.

Items Correlation ICC(3,1)

Antecollis/retrocollis
M 0.701 0.739 *
F 0.550 0.532

M: multi-view vision based method, F: single-view vision based method only using the frontal image. * p < 0.05.

In addition, we counted the actual costs of implementation and maintenance of the
above methods, as shown in Table 6. The total cost of devices used in our multi-view vision
based method is 1518 USD, while the manual measurement method is 100 USD and the
IMU based method is 1589 USD.

Table 6. The costs of implementation and maintenance of the methods.

Method Device Price (USD) Total Price (USD)

Vision based method

Azure Kinect 399

1518
HP 320 FHD Webcam 29

Computer
(include graphic processor) 1090

Manual Measurement Professional protractor 100 100

IMU based method
LPMS-B2 180 × 3

1589Computer 990
Head position cap 59

4. Discussion

Our results are comparable with a previous study that used a single Kinect v2 to
capture the 3D keypoint positions of the subject [25]. As shown in Table 2, our multi-view
vision based method has a significant improvement compared with the previous work. The
validity and accuracy of the vision based method strongly depends on the precision and
accuracy of the skeleton tracking (human keypoint estimation). There are previous studies
that evaluated the Azure Kinect and its discontinued predecessors, which found that the
Azure Kinect surpasses the Kinect v2 both in precision and accuracy [34,35].

The Azure Kinect includes a higher resolution depth sensor and deep learning-based
body tracking algorithms; a convolutional neural network model might provide more
accurate kinematic measurements than Kinect v2, which uses the random forest model [36].
The Body Tracking SDK of the Azure Kinect is able to track 32 joints for each subject, while
that of the Kinect v2 only can track 25 joints. In contrast to the skeleton definition of the
Kinect v2, the Azure Kinect’s skeleton definition includes more joints in the head, such as
ears and eyes. It can help calculate the head movement angle more precisely.

The previous study showed poor agreement in antecollis/retrocollis, since pitch errors
are always higher than yaw and roll errors when using Kinect v2 [25]. Clark et al. also
found that it would be more prone to measurement errors when tracking the body from
the frontal view, as it relies solely on the depth measurement in the Z-axis [37]. The Azure
Kinect also has the same problem as the Kinect v2. Our results showed mediocre agreement
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in antecollis/retrocollis when using the single frontal Azure Kinect. It has proved the
necessity of adding the lateral view in the vision base method. More precise human
keypoint positions in the pitch axis can be captured by deep learning based pose estimation
algorithms such as HRNet using the lateral view image.

Compared with the vision based method, the wearable IMU based method has
mediocre validity and accuracy. The physical contact between the sensor and the pa-
tient’s body will inevitably interfere with the patient’s movement, and the patient will feel
uncomfortable. The wearable inertial sensors are attached to the subject’s skin, but the
position of the sensor will deviate each time, and the muscle movement state and the skin
movement state will be inconsistent. The drifting problem of the IMU also might cause
errors. All these factors will cause errors in the measurement.

The device cost of vision based method is higher than manual measurement. But
the medical resources cost of vision based method is significantly lower than manual
measurement. Our vision based method can automatically assess abnormal movement
patterns without a neurologist trained in dyskinesia. Compared with a sensor based
method, the device cost for the vision based method is slightly lower. Moreover, the sensor
based method also requires a doctor to attach the sensors to the correct position on the
patient’s body.

The Azure Kinect has a similar performance to the Vicon Motion System, another body
tracking system in real-life scenarios [36]. Compared with the Vicon Motion System, the
Azure Kinect does not require the time-consuming placement of markers, and it is portable
and cost-effective. The method using the Kinect could easily reach more patients. It is also
easy to be applied in remote diagnosis and treatment for patients living in remote areas
who do not have access to medical services.

4.1. Limitations

This study has some limitations that are important to be aware of. Firstly, the abnormal
pattern of CD is complex and diverse, which can be combined by different base abnormal
patterns. For example, some patients might have symptoms of both antecollis and latero-
collis. However, there were only 8 participants enrolled in this study, which is not sufficient
to cover the whole breadth of abnormal patterns. It might limit the universality of these
results to the majority of patients. Furthermore, our current method calculates the motion
angle separately for each abnormal pattern and then scores the scale without considering
the correlation between each abnormal pattern. In fact, for most of the obtained patient’s
diagnosis reports, there is a certain correlation between abnormal patterns. For example,
laterocollis is often accompanied by latercaput, and antecollis is often accompanied by
antecaput. The symptoms of one abnormal pattern might affect the angle calculation of
another abnormal pattern, which might cause errors.

Different from Parkinson’s disease, abnormal level assessment and gait analysis, which
just use the human skeleton for analysis, the scoring of the CD severity scale required
detailed position information of the human head and neck. However, the existing keypoints
of human datasets such as COCO and Human3.6 M [38] are used for human action recog-
nition, behavior analysis, human-computer interaction, and other tasks. These datasets
focus on the human body parts, while the description of the head and neck is too simple to
assess the abnormal patterns of CD. For example, there is no keypoint about the neck in the
COCO dataset. It leads to the conclusion that the movement of the head and neck cannot
be precisely depicted by such keypoints of the patient. The 3D human keypoint dataset
Human3.6 M only has one keypoint describing the entire human head. It also cannot
accurately describe the movement detail between the head and neck, which might lead
to a low accuracy rate in the assessment of abnormal patterns about the neck. Although
Azure Kinect SDK can track more keypoints about the human head, such as the eyes and
ears, it is not sufficient to precisely describe the abnormal movement of CD. For example, a
neurologist trained in dyskinesia usually uses special human parts such as the C4 spinous
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process, thyroid cartilage and suprasternal notch to measure the neck and head motion
angle. However, there are no datasets that contain these special human keypoints.

There is another limitation that must be mentioned. Although the vision based method
using Azure Kinect is lower cost and more efficient than the traditional method, the Azure
Kinect Body tracking SDK has stringent computer host hardware requirements. The
recommended minimum Azure Kinect Body Tracking SDK configuration includes Intel
Core i5 Processor and NVIDIA GEFORCE GTX 1050 or equivalent. As shown in Table 6,
the cost of these hardware devices is not cheap for some people. It is an extra burden for
CD patients with remote diagnosis and treatment at home.

4.2. Future Work

In future work, more and more CD patients will gradually participate in this study.
With continuous patient data collection, when data reaches a large number, the machine
learning methods, which need a lot of patient data to train the model, can be considered to
study the correlation between base abnormal patterns.

Artificial intelligence technology such as deep learning has been widely applied in
intelligent medicine. To further promote the development of automatic diagnosis and
telemedicine based on computer vision, future work could start with building a dataset
suitable for use in medicine. The dataset can describe more special keypoints of humans.
In this case of the scoring scale of CD, the dataset for neck and head motion analysis
containing special human keypoints, such as spinous processes, should be built.

In order to make intelligent diagnoses benefit more patients, future work also could
focus on studying how to reduce the computational complexity and memory consumption
of the current method. That will be a lightweight deep learning vision based method that
can run on common smartphones.

5. Summary

This study proposes a multi-view vision based CD severity scale scoring method. This
method uses the Azure Kinect to capture the 3D keypoint positions and a common camera
to capture the lateral 2D keypoint positions. Finally, it calculates the head and neck motion
angles to score the TWSTRS severity scale. The experiments showed a good correlation
between our method and the movement disorder-trained neurologist. It demonstrates the
validity and accuracy of our method. Compared with the traditional scoring method, our
multi-view vision based method is contactless, portable and cost-effective. It provides a
new potential tool for clinical diagnosis.
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