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Abstract: Nowadays, there are a multitude of solutions for indoor positioning, as opposed to
standards for outdoor positioning such as GPS. Among the different existing studies on indoor
positioning, the use of Wi-Fi signals together with Machine Learning algorithms is one of the most
important, as it takes advantage of the current deployment of Wi-Fi networks and the increase in the
computing power of computers. Thanks to this, the number of articles published in recent years has
been increasing. This fact makes a review necessary in order to understand the current state of this
field and to classify different parameters that are very useful for future studies. What are the most
widely used machine learning techniques? In what situations have they been tested? How accurate
are they? Have datasets been properly used? What type of Wi-Fi signals have been used? These and
other questions are answered in this analysis, in which 119 papers are analyzed in depth following
PRISMA guidelines.
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1. Introduction

The use of outdoor positioning solutions using Global Navigation Satellite Systems
(GNSS) technology, such as GPS, GALILEO or GLONASS, is commonplace. Their success
lies in the fact that only one receiver (e.g., a cell phone) is needed to obtain the position.
However, in closed places (buildings, tunnels, etc.) all of these systems fail, and are unable
to obtain a position because the signal cannot penetrate the walls.

To obtain positioning in indoor environments, a technology different from GNSS is
needed. Nevertheless, there is not currently an equivalent universal solution. However,
in recent years, there has been important progress in many of the technologies used for
indoor positioning, including Inertial Positioning [1], Bluetooth [2], Ultrasound [3], Visible
Light [4], Wi-Fi [5], etc. These technologies can be applied either individually or together,
in what is known as sensor fusion [6,7]. In addition to these “classical” technologies for
indoor positioning, promising approximations have recently appeared, such as 5G [8]
and Wi-Fi mmWave [9]. Among these possibilities, Wi-Fi-based solutions are very popu-
lar, mainly because the infrastructure required for their deployment is already available
everywhere, and if it is not, it can be implemented easily and cheaply. For this reason,
there are a large number of items based on this technology and the number is growing all
the time. In the last few years, there has been a significant increase in the application of
machine learning models to enhance the accuracy of indoor positioning. This large volume
of works requires a compilation, ordering, and classification of the results in order to assist
researchers in selecting appropriate machine learning models for positioning purposes.
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Thus, this work has two main contributions: (1) a review of papers published between
2016 and 2021 that use machine learning for indoor positioning, reporting information
about the algorithms used, type of article (experimental/simulated), number of Access
Point (AP) used, number of radio map reference points used, results obtained, type of
signal used, and use or non-use of rooms in experiments; and (2) an analysis of how the
main dataset, UJIindoorLoc, has been used in those papers along with the main drawbacks
detected when using datasets. The selection of papers in this review was performed
following the PRISMA guidelines [10].

This article is an extension of a work presented at the 2021 International Conference
on Indoor Positioning and Indoor Navigation (IPIN 2021) [11]. Its novel contents include
the following:

• The current work extends the analyzed period to the last five years, analysing a total
of 119 published research works, 57 more than in [11];

• An analysis of solutions based on Artificial Neural Networks (ANN), Suport Vector
Machines (SVM), and Random Forest (RF) is included;

• A comprehensive analysis of the most widely used public datasets (radio maps) and
how they have been integrated in experiments performed by the research community;

• A discussion of the size of the operational areas considered in experiments performed
in the reviewed works;

• Extended context, discussion, and conclusions.

The rest of this review is organized as follows. Section 2 reviews the existing literature
related to indoor positioning. Section 3 describes the methodology used in this paper.
Section 4 presents the detailed results in the form of a table. The results of the table are
analyzed in Section 5. Finally, Section 6 provides conclusions.

2. Related Work

There are many articles based on Wi-Fi and machine learning algorithms. We found
several reviews on this issue, although they answer different questions than those addressed
in the current work. For example, [12] is a complete analysis of different indoor positioning
articles, however, it is focused on collaborative positioning methods. Collaborative tech-
nologies rely on information exchange between different users and/or devices to improve
overall performance. The main advantage of this method lies in its infrastructure, which
there is less of than in other methods, as well as its low maintenance requirements. Posi-
tioning is based on the calculation of data from various sources, such as users and devices,
and therefore the main drawback is the need for additional computational resources.

In [13], the authors analyze different articles on indoor positioning; however, they
do it at an individual level and do not show any classification or comparative table,
although it is a good compilation of articles that use radio, light, or inertial technologies for
indoor positioning.

Channel State Information (CSI) for positioning is the focus of the paper in [14], a sur-
vey that provides many resources on CSI-based indoor localization methods and includes
state-of-the-art algorithms and systems. The authors include a comparative table with
fourteen articles using this technology, although only few parameters are analyzed.

Regarding Visible Light Communication for indoor positioning, [15] provides a brief
and useful review of ten papers that use machine learning algorithms and visible light
solutions in their experiments.

In [16], the authors provide a summary and in-depth analysis of all the wireless
technologies used in the field of indoor positioning. Thus, the authors consider works
based on the received signal (RSSI or CSI) as well as works that use data such as Time
Of Flight (ToF), Angle of Arrival (AoA) or Phase of Arrival (PoA). Their paper includes
a review of the different methods used to achieve positioning, such as fingerprinting,
multilateration, and triangulation. Finally, they classify the most widely used Machine
Learning algorithms and the methods used to filter the received signals. However, it is
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important to note that the paper is a review of the technologies used, and does not analyze
the contributions to the state-of-the-art of every paper individually.

In a paper similar to the previous one, Obeidat et al. [17] review systems not based
on radio signals. Thus, the paper reviews positioning through any type of wireless signal
as well as optical or magnetic solutions. The authors analyze the different algorithms and
techniques used to achieve positioning; however, as in the previous article, they do not sort
every paper individually.

Closer to the current review is [18] a survey centered on machine learning algorithms.
In this paper, the authors present a compilation of articles based on the application of
machine learning algorithms applied to different indoor positioning solutions and classify
them by the type of algorithm used. Finally, the authors make a comparative table in
which readers can decide which type of algorithm to choose depending on their specific
positioning needs (low computational cost, precision, etcetera).

An extensive survey of machine learning techniques for indoor localization and
navigation systems is provided in [19], including a deep analysis of all existing algorithms
used in this field. The paper is focused on both the algorithms themselves and on different
techniques to improve results while working with those algorithms (Data Preprocessing,
Interpolating Missing Data, Filtering, etc. . . ). The paper includes reviews of public datasets,
performance evaluation parameters used, and other surveys.

Finally, Alhomayani et al. [20] narrow the scope and review fingerprint solutions
jointly with deep learning algorithms. Their classification is contains a compilation of the
most widely used public Wi-Fi radio maps and a short analysis of every one. However,
as in the reviews mentioned previously, their review focuses more on the analysis of the
different elements involved in indoor positioning than on analyzing the individual items,
which is the focus of the current work.

Thus, as can be seen, many previous works have analyzed how positioning can
be achieved using Wi-Fi; nevertheless, there are no previous works, to the best of our
knowledge, that have analyzed which machine learning techniques are used, how they are
tested, and how much every technique is used. In addition, none of the previous works
have analyzed how public datasets (or radio maps) have been integrated into third party
research works.

3. Methodology

In this work, in order to analyze the use of machine learning in Wi-Fi solutions to
obtain position, the methodology that has been followed is that of a systematic review
based on the PRISMA [10] guidelines. The three main steps of this methodology are: (1) to
raise the research questions to set the objective of the review; (2) to look for the papers in
the chosen digital databases that can answer the research questions; and (3) to establish a
set of inclusion and exclusion criteria to finally keep only those papers that fit the research
objective. These three steps drive the final selection of the articles that are part of this work.

The research questions are:

RQ1. Which machine learning algorithms provide the best results in Wi-Fi-based
indoor positioning?

RQ2. What kind of Wi-Fi signal parameters provide the best results?
RQ3. What are the most commonly used metrics in indoor positioning studies?
RQ4. Are there substantial differences between simulated and experimental studies?
RQ5. Which public radio signal maps are the most commonly used in simulations?

To perform queries, the Web of Science and Scopus databases have been chosen; these
are reliable sources with sufficient content for an exhaustive review. Figures 1 and 2 show
the queries we have used to obtain the scientific papers in the two databases.

The inclusion criteria that selected papers must satisfy are:

IC1. Written in English
IC2. Coming from a conference or journal article
IC3. Dealing with Wi-Fi-based positioning
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IC4. Positioning through Machine Learning algorithms
IC5. Published between 2016 to 2021

The exclusion criteria are:

EC1. Workshops and book chapters
EC2. Positioning that is not 100% Wi-Fi or is based on Sensor Fusion
EC3. Positioning that has part of the work outdoors
EC4. Positioning based on classic multilateration (TOA, AOA, etc.)
EC5. Positioning that uses a KNN-based algorithm or Particle Filter, as this is not consid-

ered Machine Learning

TITLE-ABS-KEY (
(Wi-Fi OR wi-fi OR wlan OR "802.11"

OR wireless ) AND indoor AND
(posi* OR loca* OR nav* OR track*) AND
(deep* OR machine* OR *nn OR svm OR svr

OR neural OR convolutional
OR "decision tree" OR "boosting"
OR "bagging" OR "particle filter"))

AND (LIMIT-TO (PUBYEAR,2021) OR LIMIT-TO (PUBYEAR,2020) OR
LIMIT-TO (PUBYEAR,2019) OR LIMIT-TO (PUBYEAR,2018)
OR LIMIT-TO (PUBYEAR,2017) OR LIMIT-TO (PUBYEAR,2016))

Figure 1. Query for Scopus.

(AB=((Wi-Fi OR wi-fi OR wlan OR 802.11 OR wireless) AND
indoor AND (posi* OR loca* OR nav* OR track*) AND
(deep* OR machine* OR knn OR k-nn OR svm OR svr

OR neural OR convolutional OR “decision tree”
OR boosting OR bagging OR “particle filter”))

OR TI=(Wi-Fi OR wi-fi OR wlan OR 802.11 OR wireless) AND
indoor AND (posi* OR loca* OR nav* OR track*) AND
(deep* OR machine* OR knn OR k-nn OR svm OR svr

OR neural OR convolutional OR “decision tree”
OR boosting OR bagging OR “particle filter”))

OR AK=((Wi-Fi OR wi-fi OR wlan OR 802.11 OR wireless) AND
indoor AND (posi* OR loca* OR nav* OR track*) AND
(deep* OR machine* OR knn OR k-nn OR svm OR svr

OR neural OR convolutional OR “decision tree”
OR boosting OR bagging OR “particle filter”)))

AND PY=(2016-2021)

Figure 2. Query for Web of Science.

After the list of the papers had been obtained, the next step was to remove duplicates
from all the results obtained from the two searches performed in Web of Science and Scopus.
With the resulting articles, a first analysis of the title and abstract of each of them was
carried out in order to rule out those which failed to meet the inclusion criteria or which
met the exclusion criteria. Finally, a full reading was made of the included articles in order
to verify whether they met the inclusion criteria. Those that were finally included were
analyzed in answering the research questions. The diagram of the different results obtained
in each step can be seen in Figure 3.

As can be seen, the original number of papers, after removing duplicates, was 2201.
After reviewing them, 119 satisfied the inclusion criteria, and thus are the papers analyzed
in the current work.
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Results of database searches

(n=3065)


 Scopus                           Web Of Science
(n=1789)                               (n=1276)

Results after removing duplicates

(n=2201)

Results after viewing:
    -Title
    -Abstract
    -Keywords

Excluded by criteria
(n=1942)

Full paper reading Excluded by criteria

(n=142)

(n=42)

(n=261)

Papers included in the review

(n=119)

(n=3065)

(n=2201)

(n=119)

Figure 3. PRISMA flow diagram.

4. Results

This section presents the results obtained after the analysis of the 119 papers included
in this review. The features analyzed regarding the research questions are summarized
in Tables A1–A4, which are included in the Appendix. It is important to note the follow-
ing items:

• Features not explained in the articles appear as N/A.
• Articles that include different experiments and/or simulations are

grouped together.
• Articles that do not display a clear metric are marked in the column oError

(Other Errors).
• Articles that are based on or use algorithms different from the main one are marked in

the column sAlg (Secondary Algorithm)

The results shown in the tables are discussed and analyzed in the following section.

5. Discussion

In this section, we analyze the results from several points of view: the algorithms
used, types of signals used, number of APs and reference points used, metrics, type of
experimentation, and most commonly used radio maps.

5.1. Methods: Algorithms and Machine Learning Models

Figure 4 shows the distribution of algorithms. From these results it can be seen that
the most commonly used algorithms are those based on ANN. Specifically, there are up to
118 works (around 69% of the total analyzed works) that use this machine learning model or
any of its variants (Deep reinforcement learning (DRL), Extreme learning machine (ELM),
Convolutional Neural Networks (CNN), Deep Neural Networks (DNN), Back-Propagation
Neural Network (BPNN), Capsule Neural Network (CapsNet), Stacked Denoising Au-
toencoders (SDA), Variational Autoencoder (VAE), Deep Belief Network (DBN), Recurrent
Neural Networks (RNN), Multilayer Perceptron (MLP), Neural Network (NN), Single
Multiplicative Neuron (SMN), and Deep Q-Networks (DQN)). Neuronal network-based
algorithms are specially appropriate for nonlinear functions, and the fluctuating signal
type of Wi-Fi fits perfectly into them.



Sensors 2022, 22, 4622 6 of 25

The number of solutions based on ANN has been growing in recent years. In fact,
by the year 2021, 20 out of 24 articles used ANN. In addition, the best result in the analyzed
papers (mean error of 0.11 m) were obtained using a Deep Neural Network to process data
from Wi-Fi mmWave signals [9]. However, as we will see later, these results alone do not
indicate anything, as factors such as the size of the test area, number of APs, etc. affect
these results.

Several papers focus on combining different algorithms in order to choose the one
that provides the best results in a particular case [21–23], while other papers focus on
processing data collected from APs [24–27]; finally, we found two papers [28,29] that relied
on applying a double algorithm, one to approximate the location and another to detail it
more precisely from the first approximation.

ML Algorithms

ANN SVM RF LSTM Bayesian MLR QKMMCC-BG Seq2seq

ANN SVM RF LSTM Bayesian MLR QKMMCC-BG Seq2seq

118 24 13 9 3 1 1 1

Figure 4. Most widely used algorithms and Machine Learning models.

In the following subsections, we look more deeply into the specifications of NN, SVM,
and RF.

5.1.1. Neural Networks

Neural networks are made up of layers of interconnected nodes. Their scheme essen-
tially consists of an input layer, one or more hidden layers, and an output layer. During the
training phase, the output is compared with the predicted result and the obtained error
is calculated. This error is then propagated through the hidden layers and the weights
of the nodes are modified in order to obtain better results. This process is repeated to
improve accuracy.

In the articles we analyzed, there is no standard optimum configuration. Researchers
perform different tests until they obtain a result that satisfies the two desired properties of
accuracy and computation time. In [30], the authors use six layers with 512 nodes in every
layer to achieve an accuracy of 2.4 m. However, the authors of [31] instead use only four
layers, without specifying the number of nodes, while in [32] only two layers of 50 nodes
each are used.

Thus, there is no a standard configuration. Nevertheless, it is important to take into
account the difficulty of finding an optimal configuration, as it is influenced by different
variables, such as the type of scenario where the experiments are performed, its shape,
whether or not there are obstacles, the number of APs used, etc.
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5.1.2. Support Vector Machines

The class of algorithms called Suport Vector Machines (SVM) is based on projecting the
results on a plane divided into two parts and grouping the results in one of the two parts.
Thus, we are talking about a classifier algorithm. In the papers we analysed, we found
several different versions of the SVM algorithm. Ref. [33] shows an M-LS-SVM algorithm,
which is characterized by the use of linear functions instead of the quadratic functions of
the original SVM; the authors obtained an accuracy of 2.7 m. However, [34] used the SVM
algorithm directly, obtaining an accuracy of 0.7 m in a similar scenario, and [35] used a
SVM algorithm with CSI instead of Received Signal Strength Indicator (RSSI) and obtained
an accuracy of 1.909 m in a simpler scenario with no rooms or obstacles.

5.1.3. Random Forest

Random Forest (RF) algorithms are based on the construction of a large number of
decision trees to create a learning model. Each decision tree decides a class and the most
common class ends up being the final prediction of the model. Its use in indoor positioning
has been decreasing, and in the year 2021 no articles were detected that used it. In 2020,
there were only three articles that used it, and none of these used scenarios with obstacles
to perform the experiments.

The best accuracy found with RF is 1.68, from Maung et al. [36] in 2020, in a space of
112 m2. However, in 2018 the authors of [37] claimed an accuracy of 1.20 m in a space 75 m2,
and the authors of [38] obtained an accuracy of 0.4033 m in a space of 80 m2. From these
results it seems that RF is an algorithm suitable for small spaces.

5.1.4. Comparison of Models

The use of one algorithm or another is determined by different factors, such as com-
putational resources, the amount of data to process, and the type of infrastructure (rooms,
tables, walls. . . ) where a fingerprinting-based system is to be implemented.

If we focus on computational resources, RF requires fewer resources than SVM algo-
rithms. In fact, SVM-based algorithms tend to be almost unusable on large datasets because
the training complexity of SVM is highly dependent on the size of dataset used.

At the level of infrastructure complexity, the situation is similar. SVM algorithms work
very well for mitigating the NLOS of signals; therefore, they are ideal in small and complex
sites. On the other hand, NNs are more configurable, and their usage can be adjusted for
better performance based on lower precision. If not much precision is needed and speed is
preferable, the number of nodes and neurons involved in the network can be adjusted [39].

In the case of large spaces, RFs have an advantage over SVMs, because these algorithms
are appropriate on models that have been clustered, which is helpful in large scenarios.
It is important to note that RFs are Decision Trees optimized to work with large amounts
of data. ANNs are particularly suitable in situations where there is noise and multipath
propagation, as well as where there are a large number of APs [18].

In summary, in small spaces and with little computational capacity SVM is the best
option, while in complex situations and with large datasets, RF and NN are more complex
to implement; however, they are more adaptable due to their great configuration capacity.

5.2. Types of Wi-Fi Signal Parameters Used

The most commonly used indoor positioning parameter is based on the RSSI; 114 of
the reviewed works used RSSI. The second most used Wi-Fi signal is CSI, which was used
by 15 papers.

Wi-Fi is available in many indoor spaces nowadays and is an easily accessible pa-
rameter from any device, including mobile and wearable devices. In general, the results
obtained with RSSI have an accuracy between 1 and 8 m.

Nevertheless, these apparent good results can be due to the design of the experiments;
therefore, these accuracies cannot be generalized or expected in different environments.
The elements that drive to these accuracies can be, among others: (1) experiments with
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small spaces without obstacles and with many reference points, thus avoiding the effect of
signal loss when passing through walls and the multipath effect (as explained in [40]); or
(2) experiments that use training and validation data with little difference in terms of time
and space, or using the data used for training for validation, as in [41].

On the other hand, there are 15 studies that use CSI [32,35,42–53] from a Wi-Fi signal,
generally with better results in terms of accuracy than those obtained with RSSI. CSI is
not widely used because the channel state information is not easy to obtain and requires
specific network cards and modifications to the original firmware [52] (i.e., it cannot be used
in smartphones). Despite this, we observed a large increase in the use of this parameter.
Before the year 2020, only four papers used this parameter. However, in the last two years
up to ten papers have used it, as can be seen in Figure 5. One reason for this may be that
the RSSI parameter is reaching its limits, and new mechanisms are being explored as they
are becoming more present in common everyday devices.

Finally, the Signal-to-Noise Ratio (SNR) parameter is beginning to be used, specifically
in two papers [9,54], and in particular in combination with Wi-Fi networks that use mmWave
instead of the classical networks that broadcast on traditional frequency channels, i.e.,
2.4 GHz and 5 GHz. SNR technologies show better positioning accuracy, and led to the best
and the third-best results we found in this review.

0
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28

35

42

2016 2017 2018 2019 2020 2021

Nu
m
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r 
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cle

s

Year of publication

Evolution Type of Signal

CSI RSSI SNR

Year CSI RSSI SNR

2021 6 17 0

2020 4 20 2

2019 3 34 0

2018 1 16 0

2017 0 10 0

2016 0 7 0

Figure 5. Evolution of the types of signal used.

5.3. Evaluation Metrics

In order to compare works among themselves, a common evaluation metric is needed.
Most works report their results in terms of the average positioning error in different
evaluation points, which is the positioning error defined as the Euclidean distance between
the actual and estimated positions (Mean Error on the table). Among these, most report
the Root Mean Squared Error (RMSE) as well. Other metrics used are the Mean Squared
Error (MSE) and the Median Error. Another important metric is the percentage, which is
used in one way or another in 36 papers [22,24,25,55–65]. Unfortunately, two articles do
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not show their results clearly; papers [66,67] only show a graph, however, it is difficult to
determine the obtained results from the image.

In analyzing those papers that use metrics recommended by ISO/IEC 18305 [68] (the
standard methodology to evaluate indoor localization systems), it can be seen that all of
the articles (except those that do not show results) comply with this standard, specifically,
mean error, accuracy in one zone or floor, root mean square error, and standard deviation.
Figure 6 shows how many papers used each metric.
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Figure 6. Metrics used.

5.4. Experimental and Full Simulated Results

Regarding whether results were obtained experimentally or via simulation, we found
seven papers that presented results from full simulations (with artificially generated data),
40 using public datasets, and 114 that presented empirical results (note that there were
articles that perform several experiments and/or simulations).

Four of the papers reporting results based on simulations performed real-world
experiments as well [29,45,69,70]. While the authors in [69,70] implemented a simple Log-
Distance Path Loss (LDPL) model to generate the RSSI values, Ezzati Khatab et al. [45]
included a wall attenuation factor to better model the radio propagation with the LDPL
model under Non-Line-of-Sight (NLOS) conditions. In contrast to these, Bai et al. [29] used
a more sophisticated Ray Tracing model to generate the RSSI values.

In any event, the results reported in simulations tend to be better than the ones reported
in the real-world experiments performed in those papers that performed experiments
in both scenarios. Those simulations assuming that Line-of-Sight (LOS) conditions are
always met, included a low Gaussian noise, or implemented a simple model, represent
an optimistic view of real-world evaluation in one way or another, and therefore the results
may be much better in terms of positioning error. This is the case, for instance, in Zhang
et al. [70], where the errors in the simulation are 30%–50% better than those reported in the
real-world experiment.

The empirical results reported are usually better than those obtained with public
datasets. There are several reasons for this behavior. In general, researchers have much
more knowledge about their own testing areas than those external areas included in public
datasets, which impact the selection of the algorithm and its hyperparameters. Performing
the experiments in their own facilities enables researchers to select an optimal sub-area for
evaluation (e.g., the one with better Wi-Fi coverage or higher density of APs), have custom
deployment of APs, or even add additional supporting infrastructure in the operational
area. Therefore, public datasets are a more challenging testing scenario for algorithms;
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in addition, they allow for comparing different algorithms, as they are tested in the same
area. Thus, it is important to note the increase in the number of papers that used public
datasets in recent years, as can be seen in Figure 7.
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Year Empirical Public Map Simulated

2021 25 13 1

2020 23 11 1

2019 42 8 0

2018 11 7 1

2017 9 1 1

2016 5 0 3

Figure 7. Evolution of experimental vs. simulated studies.

5.5. Most Widely Used Public Datasets

Of the experiments reported from 2016, 22% were performed on public datasets; in
2021 this percentage rises to 39%, most likely due to the COVID-19 pandemic, although up
to six papers from these years do not indicate what type of radio map they used. Thanks to
these public datasets, researchers were able to provide useful results while continuing to
perform experiments during the pandemic. In addition, these public datasets play a key
role in research, as they allow researchers to compare different algorithms tested with the
same data.

In the list, the most commonly used public signal map is UJIIndoorLoc [71] in all its
variants (different buildings, any floor). It appears in 23 papers, and is clearly the most
important, especially in the last two years, when the rest of the maps we found appear
only once.

Other radio-maps used are IPIN2016 [72], UTSIndoorLoc [73], JUIndoorLoc [74], Rajen
Bhatt [75], Cramariuc [76], Alcala Tutorial 2017 (included in UJIIndoor), WIFINE [77], UJI
Library [78], and Tampere [79]. In Table 1 we provide a summary of different attributes
of the public datasets used, while Figure 8 shows the evolution of the use of different
public datasets over the years. Note that before 2017 there were no public datasets that
met the necessary conditions to be used in simulations, thus, we must recognize the recent
contribution of these datasets to this field of research.

Because UJIindoorLoc is the most widely used dataset, we performed a deeper analysis
into how it has been used by researchers.
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Table 1. Public dataset summary.

Public Radio Map Year Size APs rPoints Others

UJIIndoorLoc 2014 110,000 m2 520 993 three buildings with four or five floors depending on
the building.

IPIN2016 2016 150 m2 168 57 a university corridor

UTSIndoorLoc 2019 44,000 m2 589 1452 a building with sixteen floors, including three basement
levels

JUIndoorLoc 2019 2646 m2 172 2646 faculty rooms, classrooms, seminar rooms, research labs,
and corridor

Rajen Bhatt 2019 4 rooms 7 1000 conference room, kitchen, or indoor sports room

Cramariuc 2016 2 university
building

663 2651 data divided into two different University buildings.

WiFine 2020 9000 m2 436 26,418 based on 260 trajectories

UJI Library 2020 308.4 m2 448 212 data taken across fifteen months at the same positions
and directions

Tampere 2017 22,570 m2 992 4648 882 rooms on six floors
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JUIIndoor 0 0 0 0 0 2

Tampere 0 0 0 1 0 1

Figure 8. Evolution of the use of public datasets over the years.
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UJIIndoor Results Analysis

Due to the large number of articles that performed their tests with UJIIndoorLoc, it
is useful to provide a comparison of the different algorithms used on this dataset; results
without the mean error have been omitted. Table 2 shows the main papers that used the
UJIIndoorLoc dataset.

Table 2. Articles that used the UJIIndoorLoc dataset.

Art Year mAlg mError

[41] 2021 DRL 3.06 m

[80] 2021 CHISEL (CNN) 6.95 m

[21] 2021 CNN 12.4 m

[81] 2021 DeepLocBox (NN) 9.07 m

[82] 2021 Edgeloc(CapsNet) 7.93 m

[29] 2020 RNN 4.91 m

[83] 2019 RNN 4.2 m

[84] 2019 MLP 5.64 m

[85] 2018 RDF 6.72 m

[86] 2018 CNN—Single RSS vector 10.25 m
CNN—Time Series 2.77 m

In analysing these papers, we detected different strategies in researchers’ methods
of treating the original UJIIndoor data, resulting in a mean positioning error much below
the baseline. From this analysis, we can conclude that the best result obtained by correctly
using training and testing from UJIIndoorLoc is [84], with a mean error of 5.64 m.

Despite other works reporting lower positioning error results, these results cannot be
directly compared to the baseline as their evaluation was restricted to a small area within
the full operational area (a building and/or a floor) and/or the evaluation data contained
samples from the original training set, as we show in the following paragraphs. In [41],
the author separates the multi-floor and single-floor data to treat them independently, then,
from the same dataset, separates 80% for training and 20% for testing. This method can
lead to better results, as it is very likely that data taken at almost the same time can be
in both the training and test sets. On the contrary, in [80], the authors use the validation
component (1111 samples) of the dataset as the test set. The training portion of the dataset
is split into training (15,950 samples) and validation (3987 samples) subsets based on an
80:20 split. This is a good practice, as the authors do not mix training and test data.

In [82], the authors selected a subset of the original dataset. In this case, the authors
focus on data from only one part of the dataset (building 0) and only choose the strongest
RSSI signals. Literally, “In particular, the Building 0 from UJIIndoorLoc dataset is chosen to
evaluate EdgeLoc and the top-40 APs (out of a total 520 APs) are selected.” Although AP
selection can be performed as an optimisation step in this method, restricting evaluation to
just one building makes the results not directly comparable with the baseline method or
with other methods that used the full operational area.

The authors in [29] do not specify how the data were used. Literally, “In order
to better verify the performance of the algorithm, we also conducted experiments on
another widely used positioning dataset UJIIndoorLoc.” However, this algorithm requires
a set of evaluation paths to asses the proposed algorithm, which is not provided in the
original UJIIndoorLoc dataset. The full details about the data points used and how the
evaluation paths were generated are lacking, i.e., the information provided does not enable
reproducibility/replicability of the results.
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In [83], the authors use the UJIIndoorLoc as an additional experiment alongside their
main work. However, the dataset was restricted to a small subset of the UJIIndoorLoc
dataset. Literally, “The database from two random phone users (phone id: 13 and 14) in
two different buildings (building id: 0 and 1) are used.” In this way, the data to be analyzed
and trained on are much simpler and similar, resulting in optimistic performance compared
to the baseline method and other solutions using the whole UJIIndoorLoc dataset.

In [85], the authors used two datasets, including UJIIndoorLoc, to assess their pro-
posed model. Despite providing details about the other dataset, they only mention that
the UJIIndoorLoc dataset had 21,048 Wi-Fi fingerprints. It seems that the training and
evaluation sets were merged into a common superset, which was later split by building ID
in order to evaluate the model in three scenarios (buildings). Each of the three sets were
split with a ratio of 70:30 to train and evaluate the proposed RDF ensembles.

In [86], the authors randomly split the training set into training and validation sets
with a ratio of 80:20. Then, the resulting solution based on CNN was tested over the
1111 evaluation samples, as in the original dataset for the models based on single RSS
readings. However, for the method they proposed based on multiple consecutive RSS
readings, they had to manipulate the original dataset, splitting the original training set
into training, validation, and testing sets with 60%, 20% and 20% of data from the original
training set, respectively, i.e., the proposed method was not assessed over an independent
test set.

Finally, the original division for training and evaluation provided in UJIIndoorLoc
was followed in [81,84]. In [21], the authors do not detail how they trained their model with
the UJIIndoorLoc dataset, as they only mention that the dataset contains 21,049 fingerprint
samples. Although there is no clear indication about which data were used for training and
evaluation, the context provided in the paper suggests that the authors used the evaluation
data properly.

To sum up, the UJIIndoorLoc dataset includes a set for training and a set to test the
accuracy of an IPS based on Wi-Fi fingerprinting. However, several authors mixed the two
sets to apply cross-validation in order to create their own training, validation, and/or test
sets, which led to data leakage. In these cases, overly optimistic results were obtained in
validation and testing, as the subsets were not independent. In addition, we have observed
that full details are often not provided when reporting experiments, which does not enable
full reproducibility or replicability of research.

5.6. Experimental Scenarios

Regarding the scenarios in which experiments take place, there is a great diversity of
areas. The spaces range from universities to parking lots, stores, residential buildings, etc.
As can be seen in Figure 9, 31 articles used an area of less than 100 m2, 26 between 100 m2

and 500 m2, 13 between 500 m2 and 1000 m2, and 21 higher than 1000 m2. It is important to
highlight that in scenarios smaller than 100 m2, the use of rooms drops to 41%. In the overall
studies, this value is 66%. Although it is true that there are experiments in very small
spaces, in general this value indicates that precision is usually prioritized over realistic
environments. It should be noted that there are articles with more than one experiment
and/or simulation, and every area in these papers is counted here.

Another important aspect of Wi-Fi fingerprinting radio maps is whether they are used
in spaces without rooms or with rooms. This simple fact can greatly change the results
of a study. Specifically, 103 of the radio maps used have rooms in their experimentation
space, 53 were in spaces without any rooms (spaces without walls), and there are 5 papers
that do not indicate any such parameter. Finally, it should be noted, again, that most of the
works are performed with the focus on obtaining the best results, and not on performing
experiments in a realistic environment. For example, changes in RSSI signals are not
significant in experiments of short duration and in very delimited spaces.
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31
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21

Size of scenario

100 m² > X 100 m² < X < 500 m² 500 m² < X < 1000 m² X > 1000 m²

100 > X 100 < X < 500 500 < X < 1000 X > 1000

31 26 13 21

Figure 9. Size of scenarios used in experiments (in square meters).

6. Conclusions

In this paper, we have shown an analysis of the use of machine learning for indoor po-
sitioning in Wi-Fi based systems. The starting point has been a systematic review, following
the PRISMA guidelines, of the current status of the application of deep learning algorithms
applied to indoor positioning using Wi-Fi. Information from 119 articles published between
2016 and 2021 has been extracted and analyzed. In total, 161 simulations or experiments
were analyzed.

In this study, we observed a tendency to use Neural Networks in solutions based on
the use of Wi-Fi networks. However, we did not find any optimal or standard configuration.
In addition to Neural Networks, SVM is widely used as well.

We noted the predominant use of RSSI Wi-Fi signals, although the studies that focus
on the CSI are very promising, and are the ones that have obtained the best accuracy;
furthermore, in the last year there has been an increase in the number of articles focusing on
the use of this information. The only drawback is the difficulty of accessing this information
on a Wi-Fi signal.

In analyzing the quality of the results, the Mean Error is the most widely used metric,
followed by Accuracy (in percentage). In all cases, the articles analyzed in this review
provided results followed the ISO/IEC 18305 guidelines.

Regarding their experiments, we found that most of the papers used empirical results.
These papers usually show better results, however, this is generally due to better prepared
environments. One important element that we found is that most of the papers prioritize
improved results instead of working in a real environment. Thus, although test field sizes
range from 6.7 m2 to 10,000 m2, many of these experiments are performed in small work
spaces with many reference points and/or APs, or in open spaces without walls, which
leads to unrealistic results in everyday environments. Likewise, we found studies in which
training and validation data are misused by using repeated values for both sets.

On the other hand, forty papers used public datasets, among which the most popular
was UJIIndoorLoc. Using public datasets allows for comparisons to be made between
algorithms, as they are tested in the same environment. However, a deep analysis on
how UJIIndoorLoc has been used revealed that many authors created their own test and
validation data from the training dataset, which leads to overfitting and therefore, to better
results than would be obtained with the baseline dataset.
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The tables included in this review should be useful for those who want to focus their
work based on the size of their work area, choice of machine learning algorithms, and
desired accuracy, as well as their choice of the currently most commonly used metrics.
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Appendix A. Full Features of Reviewed Articles

Table A1. Summary of reviewed articles.

Art Year Est AP rPoint fMap fmRoom mAlg sAlg mError oError sType

[41] 2021

pMap 168 57 IPIN2016 N DRL 0.92 m RSSI

pMap 589 1452 UTSIndoorLoc Y DRL 1.72 m RSSI

pMap 520 993 UJIIndoorLoc Y DRL 3.06 m Only Building B1 RSSI

[22] 2021
pMap 96 80 JUIndoorLoc Y BayesNet Dempster–Shafer Accuracy = 80% between 3 and 3.6 m RSSI

pMap 520 993 UJIIndoorLoc Y BayesNet Accuracy = 98% in 2 m RSSI

[87] 2021 exp 7 116 1052 m2 Y SISAE (NN) 1.93 m std = 1.34 m RSSI

[44] 2021

exp 1 32 49.9 m2 N CNN 1.76 m CSI

exp 1 45 40 m2 N CNN 1.16 m CSI

exp 1 66 48.8 m2 Y CNN 2.54 m CSI

exp 1 15 32 m2 N CNN 0.91 m CSI

[45] 2021
sim 15 158 1160 m2 Y ASDELM (ELM) Accuracy = 85,90% in 1 m CSI

exp 22 47 384 m2 Y ASDELM (ELM) Accuracy = 77% in 1 m CSI

[88] 2021 pMap 520 993 UJIIndoorLoc Y DNNIP Accuracy = 89% building and floor RSSI

[80] 2021 pMap 520 993 UJIIndoorLoc Y CHISEL (CNN) autoencoder 6.95 m Accuracy = 99.6% building , 83.97% floor RSSI

[46] 2021 exp 1 40 131.3 m2 Y BPNN adaptive genetic algorithm Accuracy = 90.47% in 4 m CSI

[30] 2021
pMap 520 993 UJIIndoorLoc Y NNELILS (NN) 67% to 78% localization accuracies RSSI

pMap 96 80 JUIndoorLoc Y NNELILS (NN) 2.2 m to 2.6 m RSSI

[89] 2021 pMap 309 3951 Tampere Y CMDRNN (cnn) 8.26 m std = 1.31 m RSSI

[21] 2021
pMap 520 993 UJIIndoorLoc Y CDAE i CNN 12.4 m RSSI

pMap 152 670 Alcala Tutorial 2017 N CDAE-CNN 1.05 m RSSI

[89] 2021 pMap 520 993 UJIIndoorLoc Y CMDRNN (cnn) 8.26 m std = 1.31 m RSSI

[90] 2021 exp 113 30 3600 m2 Y WiFiNet (cnn) Accuracy = 91.89% in 2 m RSSI

[81] 2021 pMap 520 993 UJIIndoorLoc Y DeepLocBox (NN) 9.07 m RSSI

[33] 2021 exp 15 150 200 m2 Y SVM M-LS 2.7 m RSSI

[47] 2021

exp 1 N/A 14 m2 N NN 0.18 m CSI

exp 2 N/A 18 m2 N NN 0.03 m CSI

exp 2 N/A 6.7 m2 Y NN 0.08 m CSI

[48] 2021
exp 1 317 148.5 m2 Y BLS(NN) 2.54 m CSI

exp 1 176 126 m2 N BLS(NN) 1.48 m CSI

[82] 2021
exp 6 132 460 m2 Y Edgeloc(CapsNet) 99% under 2 m RSSI

pMap 520 993 UJIIndoorLoc Y Edgeloc(CapsNet) 7.93 m RSSI

[91] 2021 exp 1 210 600 m2 Y MLR 4.03 m RSSI

[77] 2021 exp 436 654 WIFINE Y RNN 3.05 m RSSI

[92] 2021 exp 191 349 360 m2 N DNN 1.08 m RSSI

[49] 2021 exp 1 17, 486 CTW 2019 challenge N CNN 0.12 m CSI

[93] 2021
exp N/A 292 600 m2 Y CNN 1.86 m Accuracy = 95% in 5.41 m RSSI

exp N/A 262 1360 m2 Y CNN 1.86 m Accuracy = 95% in 5.41 m RSSI

[94] 2021

exp 12 680 6000 m2 N DNN 3.6 m RSSI

exp 12 170 6000 m2 N DNN 3.7 m RSSI

exp 12 40 6000 m2 N DNN 3.8 m RSSI

[95] 2021 exp 4 54 69.35 m2 Y ANN Accuracy = 13.84% < 0.5 m & 23.07% 0.5 < 1 m RSSI

[50] 2020 exp 3 21 45 m2 Y CNN 1.27 m std = 0.68 m CSI

[36] 2020 exp 4 264 112 m2 N RF 1.68 m RSSI

[51] 2020

exp 4 63 75.6 m2 N CNN 1.61 m CSI

exp 4 N/A 44.8 m2 N CNN 1.11 m CSI

exp 4 N/A 16 m2 N CNN 0.98 m CSI

[96] 2020 exp 4 10 169 m2 Y CNN 0.98 m RSSI

[54] 2020 exp 5 34 55 m2 N MLP Regression 0.37 m RMSE = 0.84 m SNR

art: Article; mAlg: Main algorithm used; est: Experimental or pMapulated study; sAlg: Other algorithms used
in the study; AP: APs used; mError: Mean Error; rPoint: Reference Points used in offline phase; oError: Other
metrics reported in the study; fMap: Size of experimental room or radio-map used; sType: Signal type used;
fmRoom: Rooms used in exp/pMap.
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Table A2. Summary of reviewed articles.

Art Year Est AP rPoint fMap fmRoom mAlg sAlg mError oError sType

[23] 2020 pMap 520 993 UJIIndoorLoc N KNN,LR,SVM,RF RMSE = 1.87 m RSSI

[55] 2020 exp 6 112 460 m2 Y capsnet 0.68 m RSSI

[31] 2020 exp 8 133 512 m2 N Deep Fuzzy Forest 1.36 m RMSE = 1.79 m RSSI

[52] 2020

exp 1 32 50 m2 N CNN 1.77 m CSI

exp 1 24 40 m2 N CNN 1.16 m CSI

exp 1 66 49 m2 N CNN 2.54 m CSI

[97] 2020 exp 6 50 60 m2 N RF Bernoulli distribution RMSE = 2.50 m RSSI

[98] 2020
exp 25 240 315 m2 N RF Co-forest 2.44 m RSSI

exp 5 N/A NULL N RF 4.44 m RSSI

[24] 2020 pMap 7 1000 Rajen Bhatt Y MLP Accuracy = 94.4% RSSI

[25] 2020 pMap 520 993 UJIIndoorLoc Y CNN Accuracy = 88% RSSI

[99] 2020 exp 195 300 800 m2 N DNN HMM 1.22 m RMSE = 1.43 m RSSI

[32] 2020 exp 3 56 87.75 m2 N DNN LC 0.78 m std = 1.96 m CSI

[28] 2020 exp 4 236 1148 m2 Y BPNN GA-PSO 0.22 m RSSI

[26] 2020
exp 10 102 568.4 m2 Y LSTM LF-D 1.48 m RSSI

exp 30 353 2750 m2 Y LSTM 1.75 m RSSI

[27] 2020
pMap N/A N/A Cramariuc Y SEQ2SEQ LSTM 5.5 m RSSI

pMap. N/A N/A Cramariuc Y SEQ2SEQ 3.08 m RSSI

[100] 2020

pMap N/A N/A IPIN2016 Y CNN,LSTM 4.93 m RSSI

pMap N/A N/A IPIN2016 Y CNN,LSTM 5.4 m RSSI

pMap 520 993 UJI Library Y CNN,LSTM 3.2 m RSSI

pMap 520 993 UJI Library Y CNN,LSTM 4.98 m RSSI

[56] 2020 exp 5 22 293 m2 Y DNN Accuracy = 95.45% in 3.65 × 3.65 m RSSI

[29] 2020
exp N/A 157 5500 m2 Y RNN DL 3.05 m std = 2.818 m RSSI

pMap 520 993 UJIIndoorLoc Y RNN 4.92 m std = 3.719 m RSSI

sim 4 00 1681 m2 Y RNN DL 2.42 m to 2.92 m RSSI

[101] 2020 sim 54 54 10,000 m2 N MLP 3.35 m RSSI

[9] 2020 exp 3 7 25 m2 Y DNN RESNET 0.11 m RMSE = 0.08 m SNR

[102] 2020 pMap N/A 40 UJI Library N CNN SVR 2.15 m RSSI
[66] 2019 exp 3 30 540 m2 N DBN cross entropy and the mean squared NULL RSSI

[34] 2019 exp 2 59 125 m2 Y SVM 0.7 m RSSI

[57] 2019 exp N/A 206 NULL Y DNN Stacked AutoEncoder Accuracy = 85% RSSI

[35] 2019 exp 1 100 100 m2 N SVM 1.9 m std = 0.07 m CSI

[103] 2019 exp N/A N/A NULL NULL CNN RMSE = 0.31 m RSSI

[104] 2019
exp 1 N/A 63 m2 Y SVM 96.4% RSSI

exp 1 N/A 63 m2 Y MLP 96.5% RSSI

[53] 2019 exp N/A N/A NULL NULL SVM RMSE = 0.42 m CSI

[58] 2019 exp 16 83 305 m2 Y DNN 2 m RSSI

[59] 2019
pMap 520 993 UJIIndoorLoc Y CNN Accuracy = 95.92% RSSI

pMap 309 3951 Tampere Y CNN Accuracy = 94.13% RSSI

[105] 2019 exp 6 300 300 m2 N MEA-BP 0.72 m RSSI

[67] 2019 exp 50 N/A NULL NULL ELM NULL RSSI

[61] 2019 exp 256 74 1664 m2 Y CNN Accuracy = 95.4% in 4 m RSSI

[62] 2019 exp 54 180 1209 m2 Y RDF Accuracy = 89% at room level RSSI

[64] 2019 exp 256 74 300 m2 Y CNN 1.46 m Accuracy = 94% std = 2.24 m RSSI

art: Article; mAlg: Main algorithm used; est: Experimental or pMapulated study; sAlg: Other algorithms used
in the study; AP: APs used; mError: Mean Error; rPoint: Reference Points used in offline phase; oError: Other
metrics reported in the study; fMap: Size of experimental room or radio-map used; sType: Signal type used;
fmRoom: Rooms used in exp/pMap.
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Table A3. Summary of reviewed articles.

Art Year Est AP rPoint fMap fmRoom mAlg sAlg mError oError sType

[106] 2019 exp 4 42 80 m2 N RBF LM 1.42 m RMSE = 1.459 m RSSI

[107] 2019 exp N/A 300 302 m2 Y SVM 4.6 m RSSI

[60] 2019 exp 5 10 NULL N RF Accuracy = 97.5% in 2 m RSSI

[108] 2019 exp 8 107 512 m2 Y K-ELM RMSE = 1.7123 m std = 2.418 m RSSI

[109] 2019 exp 9 96 560 m2 Y QKMMCC average = 0.76m RSSI

[65] 2019
pMap 520 993 UJIIndoorLoc Y RNN Accuracy = 87.41%floor std = 0.83 m RSSI

exp 7 N/A 4 Rooms Y RNN Accuracy = 95.8% std = 0.60 m RSSI

[83] 2019
pMap 520 993 UJIIndoorLoc Y RNN 4.2 m std = 3.2 m RSSI

exp 6 365 336 m2 Y RNN 0.75 m std = 0.64 m RSSI

[110] 2019 exp 9 261 300 m2 N BPNN 2.7 m Accuracy = 90% RSSI

[111] 2019 exp 8 66 736 m2 Y SDA 3.7 m Accuracy = 84% RSSI

[112] 2019
exp 1 42 50 m2 N CNN 0.46 m without obstacles RSSI

exp 1 42 50 m2 N CNN 1.11 m with some obstacles RSSI

[113] 2019

exp 1 15 20 m2 Y MLP 1.42 m RSSI

exp 1 15 20 m2 Y CNN 1.67 m RSSI

exp 1 15 14.4 m2 N MLP 1.43 m RSSI

exp 1 15 14.4 m2 N CNN 1.51 m RSSI

[114] 2019 exp 258 9 125 m2 Y CNN 3.91 m Accuracy = 84% RSSI

[63] 2019 pMap N/A N/A NULL Y BPNN ACO Accuracy = 91.4% RSSI

[115] 2019 pMap 520 993 UJI Library Y CNN, GRP 3.6 m 90% less 2m RSSI

[42] 2019 exp 1 25 26.4 m2 N BPNN PCA-PD 1.42 m std = 1.1511 m CSI

[84] 2019

exp N/A 20 1200 m2 Y MLP SDAE 3.05 m 1day RSSI

exp N/A 57 2400 m2 Y MLP SDAE 3.39 m 2 days RSSI

pMap 520 993 UJIIndoorLoc Y MLP SDAE 5.64 m 10 days RSSI

[116] 2019 pMap 520 993 UJIIndoorLoc Y VAE RMSE = 4.65 m RSSI

[117] 2019
exp 6 49 1600 m2 Y DNN 0.95 m Open Doors RSSI

exp 6 49 1600 m2 Y DNN 1.26 m Closed Doors RSSI

[118] 2019
exp 4 228 1200 m2 Y ANN 1.22 m RSSI

exp N/A N/A N/A Y ANN 1.90 m RSSI

[119] 2019 exp 7 25 1728 m2 N RNN LSTM 1.05 m std = 0.8856 m RSSI

[120] 2019 exp 15 71 4000 m2 Y NN GA 3.47 m RSSI

[121] 2019 exp 4 50 1100 m2 Y BGM 2.9 m RSSI

[122] 2019
exp 122 48 629 m2 Y DNN 2.64 m RSSI

exp 59 139 65 m2 N DNN 1.21 m RSSI

[123] 2018 pMap 520 993 UJIIndoorLoc Y CNN 95.76% floor level RSSI

[124] 2018 pMap 7 1000 Rajen Bhatt Y RF 98.3% floor level RSSI

[125] 2018 exp 20 2100 8250 m2 Y DNN 3.95 m std = 2.72 m RSSI

[126] 2018 exp 16 202 806 m2 Y SMN PCA 1.85 m std = 1.04 m RSSI

[127] 2018 pMap 520 993 UJIIndoorLoc Y DQN 78.79% in 1 m RSSI

[37] 2018 exp 50 180 75 m2 Y RF 1.29 m 90% in 3 m RSSI

[128] 2018 exp N/A N/A NULL Y DNN 83.6% floor with people , 99.6% without RSSI

art: Article; mAlg: Main algorithm used; est: Experimental or pMapulated study; sAlg: Other algorithms used
in the study; AP: APs used; mError: Mean Error; rPoint: Reference Points used in offline phase; oError: Other
metrics reported in the study; fMap: Size of experimental room or radio-map used; sType: Signal type used;
fmRoom: Rooms used in exp/pMap.
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Table A4. Summary of reviewed articles.

Art Year Est AP rPoint fMap fmRoom mAlg sAlg mError oError sType

[129] 2018
pMap N/A N/A UJI Library Y RNN 2.48 m 99.6% floor level RSSI

pMap N/A N/A UJI Library Y LSTM 2.6 m 99.5% floor level RSSI

[85] 2018 pMap 520 993 UJIIndoorLoc Y RDF 6.72 m std = 4.82 m RSSI

[130] 2018 exp 7 101 404.5 m2 Y FF-DNN RMSE = 0.32 m , 53.123% in 0.5 m RSSI

[43] 2018 exp 4 25 80 m2 N RF 0.40 m CSI

[131] 2018 exp 4 67 1664 m2 Y SVM 1.34 m RSSI

[86] 2018 pMap 520 993 UJIIndoorLoc Y CNN 2.77 m 100% for floor prediction RSSI

[132] 2018 exp N/A N/A NULL NULL SVR RBF Kernel 95% in 1.81 m RSSI

[133] 2018 exp 40 180 1209 m2 Y RF 95% accuracy 1.5 × 1.5 m RSSI

[134] 2018 exp 8 40 580 m2 Y RVFL 0.43 m RMSE = 0.5830 m RSSI

[69] 2018
sim 4 36 441 m2 N RVM PLS 0.84 m RSSI

exp 6 25 156 m2 Y RVM PLS 41% in 1 m and 91% in 2 m RSSI

[135] 2017 exp 3 110 109.25 m2 N FF-DNN RMSE = 0.6782 m RSSI

[136] 2017
exp 4 N/A NULL N ANN RMSE = 1.1045 m RSSI

exp 6 N/A NULL N ANN RMSE = 1.2288 m RSSI

[137] 2017 exp 16 126 304 m2 Y SVM 1.43 m RSSI

[138] 2017 sim 6 441 100 m2 N LS-SVM 2.56 m RSSI

[139] 2017 exp 38 411 600 m2 Y ELM 1.91 m RSSI

[140] 2017 exp 28 67 30 m2 N ANN 2.2 m RSSI

[141] 2017 exp 185 480 NULL Y SVM 100% shop level RSSI

[142] 2017 pMap 520 993 UJIIndoorLoc Y DNN 92% floor recognition RSSI

[143] 2017 exp 8 48 53.35 m2 N SVR 86.2% in 1.5 m and 90.4% in 2 m RSSI

[144] 2017 exp N/A N/A NULL Y SVM 97.31% flat and 88.38% floor RSSI

[145] 2016 exp 22 84 387.75 m2 Y BPNN 0.98 m RSSI

[146] 2016 sim 4 25 400 m2 N MLP-ANN 0.27 m std = 0.36 m RSSI

[147] 2016 sim N/A N/A NULL NULL EB-ANN RMSE = 0.4991 m RSSI

[148] 2016 exp 5 54 150 m2 Y SVR 70% in 5 m RSSI

[149] 2016 exp 16 188 1125 m2 Y ANN 1.89 m 90% in 2.971 m RSSI

[70] 2016
sim 12 1600 1600 m2 N SVR RMSE = 1.42 m RSSI

exp 13 116 1000 m2 Y SVR RMSE = 1.8 m , 74% in 2 m RSSI

[150] 2016 exp N/A 112 460 m2 Y SVM 1.2 m RSSI

art: Article; mAlg: Main algorithm used; est: Experimental or pMapulated study; sAlg: Other algorithms used
in the study; AP: APs used; mError: Mean Error; rPoint: Reference Points used in offline phase; oError: Other
metrics reported in the study; fMap: Size of experimental room or radio-map used; sType: Signal type used;
fmRoom: Rooms used in exp/pMap.
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