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Abstract: With the development of the Internet, information security has attracted more attention.
Identity authentication based on password authentication is the first line of defense; however, the
password-generation model is widely used in offline password attacks and password strength
evaluation. In real attack scenarios, high-probability passwords are easy to enumerate; extremely
low-probability passwords usually lack semantic structure and, so, are tough to crack by applying
statistical laws in machine learning models, but these passwords with lower probability have a
large search space and certain semantic information. Improving the low-probability password hit
rate in this interval is of great significance for improving the efficiency of offline attacks. However,
obtaining a low-probability password is difficult under the current password-generation model.
To solve this problem, we propose a low-probability generator–probabilistic context-free grammar
(LPG–PCFG) based on PCFG. LPG–PCFG directionally increases the probability of low-probability
passwords in the models’ distribution, which is designed to obtain a degeneration distribution that is
friendly for generating low-probability passwords. By using the control variable method to fine-tune
the degeneration of LPG–PCFG, we obtained the optimal combination of degeneration parameters.
Compared with the non-degeneration PCFG model, LPG–PCFG generates a larger number of hits.
When generating 107 and 108 times, the number of hits to low-probability passwords increases by
50.4% and 42.0%, respectively.

Keywords: information security; password-generation model; PCFG; low-probability password;
degeneration distribution

1. Introduction

Since the birth of computers in the last century, the use of passwords has become
a widespread way to verify a user’s identity [1]. This system is simple to program and easy
to use, which means the password authentication system could exist for a long time [2].
To meet safety concerns, a good password must be long and irregular. However, in practice,
people have tens or hundreds of accounts to manage, so [3] saving passwords in a notebook
or software might also cause a leakage risk [4,5]. Later, people used human-memorable
passwords, which can be attacked [6,7]. We usually measure the strength of a password
using the concept of guessing time. If a password is set using ten small letters, the attacker
needs to try at most 2610 guesses.

Businesses, especially small and medium enterprises, suffer from cyber-breaches [8],
and not fixing them in time can lead to data breaches [9]. If the victim uses plain text
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to save passwords, attackers can use the leaked username–password pair to stuff the
credentials of users onto other service providers [10], which seriously damages the users’
information security. To protect user passwords, a website usually saves the calculation
result of one-way hash functions such as SHA256 in the database rather than the plain text,
which significantly increases the cost of attacks [11,12]. For higher protection, the websites
can add a random string into plain passwords and calculate the hash value of the processed
string, called the “salted hash” [13]. It has been mathematically proven that, for a given
hash function such as SHA256, calculating the original text back from a given hash value is
almost impossible [14]. However, calculating the hash value of a given text is relatively easy,
so the attacker’s only means of obtaining the password from the hash value is to guess each
password and verify its hash value. Attackers can save all the hash values of each password
they have ever tried, and they would crack the target hash value when it meets the exact
hash text [15]. Rainbow tables can accelerate this process using the time–space trade-off
method [16]. Recovering passwords from hash values is usually called an offline attack.

It is hard to hit a hash value calculated by a long random string for the salted hash [17].
To accelerate the attack speed, some researchers focus on improving the hash calculation
speed to make attackers try faster [18], including designing a special application-specific
integrated circuit (ASIC) to calculate hash functions and deploy the program on distributed
computers [19–22]. Accelerating the guessing speed is crucial to making more guesses,
but our research in this article focuses on generating high-quality passwords. As long as
people keep using human-memorable passwords, most of them will have patterns and
laws [23], in which case the guessing time for the attacker could be much shorter than the
worst-case scenario: sl , where s is the size of all possible characters and l is the maximum
length of the password [24]. The password-generation model based on machine learning
can mine password data to generate good passwords in large quantities [25]. For this
reason, it has become a viable option for efficient password cracking.

There are different ways to build a password-generation model. A directed method
is the “brute force attack”, which entails trying all possible combinations one by one [26].
Another method is the “dictionary attack” in which a list of all possible passwords is tried
one by one [27,28]. These were quite useful for early systems that had small password
length limits. With the development of information systems, password-generation methods
based on password dictionaries and heuristic rules [29] were proposed and became the
popular methods for guessing a password. Later, a password-generation model based
on the Markov process appeared [16]. Then came probabilistic context-free grammar
(PCFG) [30], which can automatically learn from training data. With the development of
deep learning, password-generation models based on an artificial neural network (ANN)
have also been proposed, such as long short-term memory (LSTM) [31] and generative
adversarial network (GAN) [32].

During an offline password attack, high-probability passwords such as 123456 are
limited and easy to cover by a trained password-generation model. Completely random
passwords with an extremely low probability, such as 2jca3*4, do not have semantic infor-
mation; therefore, we should not use machine learning models to generate them. However,
low-probability passwords such as amen-1999-01 still contain obvious semantic information
and have large numbers [33]. In this work, the focus is on improving machine learning
models to improve the generation of low-probability passwords. On the one hand, more
low-probability passwords will provide attackers with better password dictionaries in
offline attacks. On the other hand, the strength of the passwords can be evaluated better by
low-probability models to protect user information.

Our contributions are as follows:

1. We propose a degenerate distribution algorithm suitable for machine-learning-based
password-generation models to generate low-probability passwords effectively.

2. We apply the algorithm to the PCFG model, which significantly improves the low-
probability password hit numbers.
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3. We explore the improvement in low-probability password generation of the model
when applying the degenerate algorithms using different parameters to different parts
of PCFG.

The structure of this paper is as follows. In Section 2, we summarize different kinds
of guessing methods. In Section 3, we introduce the low-probability generation– proba-
bilistic context-free grammar (LPG–PCFG) model based on the degeneration distribution.
In Section 4, we show our experiment result and analyze the reason for the difference
in each parameter. In the last section, we present our conclusion and prospects for the
future research.

2. Related Work

Password-attacking algorithms can be divided into brute force and dictionary cracking.
In the brute force cracking method, attackers try to exhaust all strings that satisfy a par-
ticular requirement through an enumeration algorithm [34]. With the help of a graphics
processing units (GPUs) and distributed computing [35], this method may be efficient in
a small password space. These two attacks were first proposed to attack the UNIX security
system [36]. However, when the maximum length of the password and the size of the
character dictionary increase, the number of operations increases exponentially. Currently,
it is usually difficult to traverse all strings with limited computing resources [37]. In the
dictionary-cracking method [38], attackers first generate a dictionary containing a large
number of potential passwords and then try to crack the password. To increase the crack
rate, some passwords in the dictionary are transformed by setting rules. Hashcat [39] sets
some common transformation rules to simulate human password creation, for example
by turning “love” into “l0ve”. The program John the Ripper [40] modifies, cuts, and
expands words and adds more rules, so it could be more flexible and efficient in cracking.

These two methods are not effective, especially in a huge password space, because
they have to perform a huge number of attempts, and some generated passwords are
almost meaningless [41]. Instead of attempting a traversal search, generation methods
based on machine learning directly learn the probability distribution of passwords, so they
obtain better results.

2.1. PCFG

The PCFG [30] model splits a password into several variables according to the type
of character (letter, digit, or special), so it can model the characters of different parts
separately. Houshmand adds keyboard rules in PCFG to consider the relationship of
adjacent characters on the keyboard [42]. This rule makes the model crack some extra
passwords that follow keyboard rules. Vears performs deep semantic mining on the
letter variable [43]. For passwords, it performs segmentation and parts-of-speech tagging
operations. The model replaces a letter with a similar word on the basis of semantic analysis.
Li proposes a Personal-PCFG that treats the user name, email prefix, name, birthday, mobile
phone number, and ID card as new variables [44] that have the same status and positively
affect targeted attacks. In addition, other common content such as Chinese Pinyin, date,
and common character combinations have also been added to the PCFG model [45], which
inspired Deng to construct a conditional random field generation model [25]. Han realized
the syntax knowledge transfer from short to long passwords by using a transPCFG model.

On the whole, compared with other models based on statistical learning, the PCFG
model has finer modeling granularity [46]. It subdivides the high-probability password
structure to increase the number of passwords generated and improve the cracking ratio.
Experiments show that it can crack more passwords because of the finer structural divisions.

2.2. Other Password-Generation Models

Other models are based on different assumptions, but they also achieve good cracking.
The Markov model thinks that passwords just have local relevance so that each character
just correlates with its first several characters [16]. The Markov model treats all characters
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equally regardless of type. Tansey proposes a multilayer Markov model that expands the
number of layers from one to n. More layers give the model a stronger representational
ability to generate better passwords [47]. Based on the Markov model, Durmuth introduced
OMEN, which generates passwords in descending order of probability [48]. OMEN makes
repeating a password impossible, so it greatly improves cracking efficiency. Guo proposes
a dynamic Markov model, which reduces the repetition rate of password generation [49].
Experimental results show that it definitely has advantages in a targeted attack. The Markov
model and its variants usually have a good comprehensive performance [50].

A neural network with deep layers usually has a larger capacity and better feature
extraction capability, so the password-guessing models based on deep learning have
received more attention [51]. Sutskever first generated long text using a recurrent neural
network (RNN), which indicated that it was suitable for capturing the relationship between
characters [52]. Since a password is essentially a sequence of strings, Melicher used an RNN
to generate passwords [31]. The RNN outputs a character in each time step and receives it
as the input of the next time step. Xu improved the network architecture and replaced the
RNN with LSTM, to mine long-range dependency [53]. Teng proposes PG-RNN, which
increases the number of neurons and has a competitive effect on different datasets [54].

The GAN [55] is a powerful generation model that has a strong learning ability in
computer vision [56,57] and natural language processing [58]. Hitaj introduces PassGAN to
generate passwords [32]. In the PassGAN model, every character is encoded by a one-hot
vector and the password is organized into a sparse matrix. The model implicitly learns the
probability distribution of the password by minimizing the distance between a fake and
real distribution. Nam uses relative GAN to improve the objective function, and it greatly
improves password generation through multisource training [59]. Nam improves the
generator by using an RNN to obtain a better iterative representation [60]. Guo analyzes
the generation effect of the GAN and proposes a PG-GAN model that can reduce the
password repetition rate [61].

First, compared to the RNN and GAN models, PCFG has an apparent speed advantage.
During training, many weight parameters have to be trained, and some problems such
as “non-convergence mode collapse” may appear [62]. In training, PCFG just needs to
count frequency, but in the generation process, it needs fewer calculations than a neural
network, which has to perform a large number of multiplication and activation operations.
Then, considering password generation quality, the assumption of the Markov model is
simple and the learning ability of the neural network is restricted to model capacity [63].
Passwords generated by PCFG usually comply with most password patterns, and mining
semantic information to letter variables could guarantee a reasonable password. Eventually,
the neural network model generates duplicate passwords, especially in GAN.

In summary, the PCFG model has fine-grained modeling accuracy and has an advan-
tage in comprehensive ability, including the time cost and quality of generated passwords.
Therefore, we modified the PCFG model to generate low-probability passwords.

3. Method
3.1. Random Sampling

After completing the training of the password-generation model G using the training
dataset, a probability value is assigned to each password x on the support set SM, as shown
in Figure 1. Since the password distribution approximately conforms to the Zipf law [64,65],
the frequency of a password is inversely proportional to its frequency ranking in the
password set. There will be many low-probability passwords in the password distribution
P(x), but it will be tough to use enumeration and random sampling directly. Next, we
analyze these two methods.
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Figure 1. Relationship among string space, support set, and low-probability password.

For the generation model based on enumeration, the password is usually generated
in approximate descending order of probability; that is, the passwords with high prob-
ability are first generated, and then, the passwords in a lower probability interval are
generated. Therefore, in the early stage of inferencing of the model, many passwords
that are not in the low-probability interval will be generated. Regarding the design of
the search algorithm, the enumeration method inevitably traverses and accesses high-
probability passwords when searching for low-probability password intervals, which
cannot be the model’s sole focus because that would be a waste of computing resources.
Finally, the range of low-probability password intervals is extensive compared to those of
high-probability, and searching for low-probability passwords would result in unacceptable
computational overhead.

The password-generation model can be regarded as random sampling directly from
the probability distribution P(x). However, since the chance of occurrence is related to its
probability value, the model usually prefers high-probability passwords and has a weaker
preference for generating low-probability passwords. Considering the inhomogeneous
distribution of password probability values in P(x), there is a magnitude difference between
the values of high-probability and low-probability passwords, so directly using random-
sampling-based methods to generate low-probability passwords will have lower efficiency.

Compared to the random generation method, the password-generation model based
on random sampling reduces the attention range from the string space SS to the sup-
port set SM so that the learned password features can be used fully, leading to a more
extensive, more significant low-probability password-generation potential. Compared to
the enumeration method, random sampling does not establish a mandatory password
output priority, and in any random sampling, a password with any probability may be
generated. Although the frequency of passwords follows a statistical law in a random
sample, this method retains many possibilities for creating low-probability passwords. We
chose to optimize the password-generation model based on random sampling to adapt it
to low-probability tasks.

3.2. Degeneration Distribution

The trained password-generation model models the password, and its distribution
is recorded as the distribution Dori. In Dori, the probability value of the low-probability
password xl relative to the high-probability password xh has many orders of magnitude
difference. The degeneration distribution Ddeg is a password distribution obtained from
the evolution of the modeling distribution Dori. The difference between the probability
values of xl and xh is significantly reduced, as shown in Figure 2. Random sampling from
the degenerate distribution Ddeg can improve the generation of low-probability passwords.
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Figure 2. Evolution relationship between modeling distribution and degeneration distribution.

The degeneration distribution Ddeg is an intermediate state between the modeling and
uniform distributions Duni, where Dori retains all the learned password features. At the
same time, Duni cannot reflect any password features; it assigns the same probability value
to all passwords in the support set. In its initial evolution from the modeling distribution
Dori to Duni, the closer the degeneration distribution comes to the uniform distribution,
the better the distribution will be for generating low-probability passwords. However,
the generated passwords will lack the learned features when the degeneration distribu-
tion is very close to the uniform distribution. It is challenging to trade-off high-quality
and low-probability passwords in a limited number of generation times. In summary,
there is an optimal degeneration distribution D∗deg that can achieve a balance between
the modeling and uniform distributions so that many low-probability passwords can be
generated efficiently.

To obtain the degeneration distribution, a high-probability password in the modeling
distribution Dori is necessary; then, it is possible to modify its probability value. The random
sampling method has a natural preference for high-probability passwords, which means
they can be extracted by random sampling in Dori, after which the degeneration distribution
can be obtained by directly reducing the probability value. To make the degeneration
distribution always take the uniform distribution as the endpoint in the evolution, we
adopted the following mechanism: whenever the password x+ was obtained by sampling
the generation model, its probability was modified to p(x+)− α, and the x− possibility
of other passwords in the support set was changed to p(x−) + α/(NS − 1), where NS
represents the number of password elements in the support set. This was recorded as
Rule 1, as shown in Table 1. In addition, considering that the granularity of PCFG modeling
is small, we designed three different probability modification rules, denoted as Rules 2–5,
to find the optimal degeneration distribution. The specific methods are shown in Table 1.

Table 1. Five probability modification rules of degeneration distribution.

Rule Adjust p(x+) Adjust p(x−)

Rule 1 p(x+)− α p(x) + α/(Ns − 1)
Rule 2 p(x+)− α p(x−) + α/(1− p(x+))p(−)
Rule 3 βp(x+) p(x−) + (1− β)p(x+)(1− p(x+))p(x−)
Rule 4 βp(x+) p(x−)(1− β)p(x+)(1− p(x+))p(x−)
Rule 5 1− γ(1− p(x+)) γp(x−)
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Next, we explain that the five password probability adjustment rules in Table 1 can
change the degeneration distribution approach in the direction of a uniform distribu-
tion. We used the Kullback–Leibler (KL) divergence to measure the distance between the
degenerate Ddeg and uniform distributions Duni:

DKL(Duni||Ddeg) = −logNS −
1

NS

NS

∑
i=1

log pdeg
i (1)

where pdeg
i represents the probability of password xi in the degenerate distribution. We

performed a first-order Taylor expansion in the neighborhood of pdeg = [pdeg
1 , pdeg

2 , . . . , pdeg
N ],

and this approximate expression was obtained:

DKL(Duni||Ddeg) ≈ −log NS −
1

NS

NS

∑
i=1

log pdeg
i − 1

N

i=1

∑
N

1

pdeg
i

(pnew
i − pori

i ) (2)

The distribution after the small adjustment of Ddeg is denoted as Dnew, and the corre-
sponding password probability is pnew = [pnew

1 , pnew
2 , . . . , pnew

N ]. We denote the probability
of the currently generated password x+ as pnew

i and all other passwords x− as pnew
j with

j ∈ 1, 2, . . . , NS. To compare the changes in KL divergence caused by the above rule adjust-
ment, we had to verify the positive and negative first-order term A of the approximate
expression of the KL divergence. In Rule 1, pnew

i = pori
i − α and pnew

j = pori
j + α/(NS − 1),

so A becomes
A =

1
N

α

pori
i
− 1

N ∑
j∈{1,2,...,N}

1
pori

i

α

N − 1
(3)

According to the inequality,

1
x1

+
1
x2

+ · · ·+ 1
xn
≥ n2

x1 + x2 + · · ·+ xn
s (4)

We can obtain:

A ≤ 1
N

α

pori
i
− 1

N
α

N − 1
(N − 1)2

1− pori
i

(5)

When pori
i × N ≤ 1, A ≤ 0. In Rule 2, pnew

i = pori
i − α and pnew

j = pori
j + α/(1−

pori
i )pori

j , so then, A becomes

A =
1
N

α

pori
i
− 1

N ∑
j∈{1,2,...,N}

α

1− pori
i

(6)

Obviously, if pori
i × N ≥ 1, then A ≤ 0. In Rule 3, pnew

i = βpori
i and pnew

j = pori
j + (1−

β)pori
i /(N − 1), so then, A becomes

A =
1
N
(β− 1)− 1

N ∑
j∈{1,2,...,N}

1
pori

j

(1− β)pori
i

N − 1
(7)

According to the inequality, we have

A ≤ 1
N
(β− 1)− N − 1

N
(1− β)pori

i (8)

If pori
i ×N ≥ 1, then A ≤ 0. Finally, in Rule 5, pnew

i = 1− (1− pori
i )γ and pnew

j = γpori
j ,

so then, A becomes
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A = − 1
N

1− (1− pori
i )γ− pori

i
pori

i
− N − 1

N
(γ− 1) (9)

Similarly, if pori
i × N ≥ 1 is satisfied, then A ≤ 0. It can be shown that when the

probability of model G generating a password is above the average value and the evolution
of the degenerate distribution is performed according to Table 1, the degenerate distribution
will continue to move closer to a uniform distribution.

3.3. LPG–PCFG

We applied the degeneration distribution acquisition method described above to
the PCFG model and designed the corresponding LPG–PCFG model, for which training
was divided into two stages: modeling and degeneration. In the modeling stage, LPG–
PCFG learned to obtain the modeling distribution Dori through the training dataset; in the
degeneration stage, the model mainly learned the degeneration distribution Ddeg. In the
inference phase, we used the random sampling algorithm to sample Ddeg for password
generation, as shown in Figure 3.

LPG-PCFG

Training 
dataset

Train Degenerate

Degenerate 
method

Generate 
password

Change 
probability

LPG-PCFG

Generate password 
from modeling 

distribution

Modeling 
distribution

Generation 
distribution

Finish

Model stage Degenerate stage Generation stage

Generate password 
from degeneration 

distribution

Figure 3. Evolution relationship between the modeling and degeneration distributions.

3.3.1. Modeling Stage

The LPG–PCFG model distinguishes the characters in the password into three types:
letters (case-insensitive) l, numbers d, and characters s. The letter part contains 26 let-
ters, the number part 10 numbers, and the character part symbols such as !, @, . . . , ?.
The structure of any password can be parsed from left to right according to its character
type. For example, the corresponding structure of the password 123abc123!! is d3l3d3s2.
We denote l3, d3, s2 as letter, numeric, and special character variables. The LPG–PCFG
model assumes that different variables are independent of each other, so the probability
of a password is the product of the structural probability and each partial probability.
For example, the probability of 123abc!! is

p(123abc!!) = p(d3l3s2)p(123|d3)p(abc|l3)p(!!|s2) (10)

We parsed the password structure for each password in the training dataset and
decomposed it into several parts of letters, numbers, and special characters during the
modeling stage. For numeric variables, we counted the occurrence frequencies of those
of different lengths, such as d1, d2, d3. For special character and letter variables, it was
necessary to conduct similar frequency statistics. All password structures were considered
uniformly, and the counts are the different frequency of occurrence of the structure. By nor-
malizing the results of the structure statistics ps and d1, d2, d3 . . . s1, s2, s3 . . . l1, l2, l3 . . . and
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the statistical results of different length variables, we obtained the probability distribution
Dps of the password structure and the probability distributions of different variable types
as Dd1 , Dd2 , Dd3 . . . Ds1 , Ds2 , Ds3 . . . Dl1 , Dl2 , Dl3 , as shown in Figure 4.

Training data

abcd123!!!

123456

iloveyou

......

L4D3S3 D6

L8 ......

abdc iloveyou

...... ......

123 123456

...... ......

!!! ......

...... ......

......
p(L4D3S3)=0.01
p(D6)=0.0001
p(L8)=0.0002

......

......
p(abdc)=0.02

p(ccba)=0.0021
p(zxcv)=0.002

......

......
p(iloveyou)=0.001

p(aaaaaaaa)=0.0007
p(asdfghjk)=0.00022

......

......
p(123)=0.04

p(456)=0.0001
......

......
p(123456)=0.1

p(654321)=0.031
......

......
p(!!!)=0.005

p(!@#)=0.0001
......

......
p(****)=0.05
p(!!!!)=0.002

......

Base structure

Split

Count &
Normalize

......

......

......

Letter variables

Count &
Normalize

Digital variables

Count &
Normalize

Special variables

Count &
Normalize

Figure 4. Schematic diagram of the LPG–PCFG model training process.

The letter part usually contains much complex semantic information, so directly
treating it as the whole string will not achieve fine-grained modeling. The LPG–PCFG
model uses an n-gram language model for further semantic mining to model the letter
parts. Each letter in the section has only a probabilistic connection to its n preceding letters,
but not to the other letters. We denote cn|c1, c2, . . . , cn−1 as n-gram segments, where ci
represents a particular letter. A letter variable lm containing m letters can be decomposed
into m n-gram segments, so the probability calculation method of the letter variable lm is
the probability multiplication of multiple n-gram segments. For example, the probability
of the letter string abc is p(a)p(b|a)p(c|ab).

3.3.2. Generation Stage

Since the password needs to be generated in the LPG–PCFG model in both the de-
generation and generation stages, we first describe the generation method of the LPG–
PCFG model.

When generating a password, the password structure probability distribution Dps
must first be randomly sampled to obtain a specific structure, for example, the selected
structure l4d3s3. Then, the variables of different parts are filled in independently from left
to right. The digital dn and the special character variables sn can be directly obtained by
random sampling in the probability distribution Ddn and Dsn . For the the letter variables
ln, it is necessary to sample continuously n times according to the n-gram model to obtain
n letters, that is, continuous sampling in the conditional probability distributions such as
p(C), p(C|c1), p(C|c1c2), . . . . The password-generation process is shown in Figure 5.
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......
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Figure 5. Schematic diagram of LPG–PCFG model generation process.

3.3.3. Degeneration Stage

In the degeneration stage, whenever a password x+ is generated, its probability
value p(x+) needs to be reduced. When applying the probability adjustment idea to the
LPG–PCFG model, we considered the following four aspects:

(1) The probability expression of a password is composed of four probability factors:
structural, numerical, special character, and letter n-gram. If the probability is reduced
for all factor parts during adjustment, the password probability value having the same
character part as the password will also be significantly reduced, which may cause some
low-probability passwords to disappear directly. For example, the selected high-probability
password “abcd” is very easy to obtain by sampling, while the password “abcd!12” has a
low probability. If p(a), p(b|a), p(c|ab), and p(d|abc) are reduced at the same time, the prob-
ability of the password ” may be reduced to such an extent that it is a challenge to be
sampled later. Therefore, the LPG–PCFG model selects only one factor for probabilis-
tic modification.

(2) When modifying the probability of the factor, the conditional probability distribu-
tion of the letter part, which includes up to 26 elements, is relatively simple. The distribu-
tions Dsn may include many elements, especially when n is relatively large, even into the
thousands or tens of thousands. In addition, the password structure distribution Dps also
includes more elements. The high-frequency adjustment of these probability distributions
with many features requires a sizeable computational resource overhead, and this limitation
also made us choose only one factor for probability modification.

(3) When we adjust the probability of a single factor, we only reduce it to a certain
extent, not to 0. As shown in the previous example, if the probability of p(b|a) is directly
reduced to 0, the likelihood of the password “abcd!12*” also becomes 0 correspondingly,
due to the multiplicative relationship of conditional probabilities. If p(b|a) is not modified
afterward, the likelihood of “abcd!12*” always remains 0, so it is impossible to sample.

(4) For the modeling distribution of the LPG–PCFG model, the size of its support
set |SM| is much smaller than that of the string space |SS|. For the password that has
a probability assigned as 0 by the LPG–PCFG model, its feature is fragile. The passwords
in the support set and the string space may have shared strings, but to ensure that the
probability adjustment does not affect the non-support set part in the string space, the LPG–
PCFG model only restricts adjustment of the probability distribution to the support set.
The other passwords in the area always have a probability value of 0.

To sum up, the degeneration distribution used by the LPG–PCFG model is as fol-
lows: When the password x+ is generated, a distribution P(C) is randomly selected from
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the distribution of the password structure, numeric variable, special character variable,
and n-gram conditional probability distribution in the letter variable, where C is a random
variable and the distribution values in C are c1, c2, c3 . . . , while the corresponding proba-
bility is p(c1), p(c2), p(c3) . . . . Let the element that increases the probability be ci and the
element that decreases the probability be (cj), where j ∈ {1, 2, . . . }. The LPG–PCFG model
correspondingly designs the modification method of P(C) according to the above five rules.
(1) Subtracting the constant α from p(ci) gives p(ci)− α, while increasing p(cj) becomes
p(cj)+ α/(n− 1); (2) subtracting the constant α gives p(ci)− α, while increasing p(cj) gives
p(cj) + α/(1− p(ci))p(cj); (3) press p(ci) by the ratio of β to βp(ci) while increasing p(cj)
gives p(cj) + (1− β)p(ci)/(n− 1); (4) p(ci) reduced to β becomes βp(ci), while increasing
p(cj) becomes p(cj) + (1− β)p(ci)/(1− p(ci))p(cj); (5) reduce p(ci) to 1− γ(1− pi), while
increasing p(cj) to γp(cj).

4. Experiment and Discussion
4.1. Experiment Setup

To verify the effectiveness of the LPG–PCFG model, we conducted model implemen-
tation, training, and related comparative experiments on the rockyou [66] public dataset.

The implementation environment was the Ubuntu 16.04.6 LTS operating system; the
programming language was python 3.6; the central processing unit used for program
running was an Intel(R) Xeon(R) Silver 4116, with the main frequency being 2.10 GHz and
12 cores and 128 GB of memory.

The algorithm of the LPG–PCFG model in the training stage is shown in Algorithm 1.
When the initial training stage was completed, the degenerate stage needed to be per-
formed. The algorithm used in the related experiments in the degeneration stage of the
LPG–PCFG model is shown in Algorithm 2. It should be noted that the speed affecting
the model included the degeneration times, rules, range, and rate. The degeneration rules
comprised the above five rules, and the degeneration range included password structures
and different types of variables. The degeneration rule and range significantly affected
model performance, and we explore them here in-depth. Finally, for the degeneration
LPG–PCFG model, the random sampling algorithm used in the generation stage is shown
in Algorithm 3.

Algorithm 1: LPG–PCFG model training algorithm.

1 Set the initial password structure statistics as Tps
2 Set the numbers statistics as Td
3 Set the special characters statistics as Ts
4 Set the letters n-gram statistics as Tl
5 for password sample x in training set:
6 Pause the structures of x and obtain ps = v1v2v3 . . . vn
7 for v in ps:
8 if v is number:
9 Update Td

10 end if
11 if v is special characters:
12 Update Ts
13 end if
14 if v is letter:
15 Update n-gram table
16 Update Tl
17 end if
18 end for
19 Update Tsp
20 end for
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Algorithm 2: LPG–PCFG model degeneration algorithm.

1 Set degeneration rule as DR, degeneration times as ND
2 for i = 1:ND:
3 Generate a password x through random sampling
4 Pause the structures of x and obtain ps = v1v2v3 . . . vn
5 Randomly select a part from ps, vs, vd, vl to degenerate the probability
6 if Selected and the changed part is a number:
7 Change Tn according to DR
8 end if
9 if The selected and the changed part is a letter:

10 Randomly select an n-gram part to change
11 Change Tl according to DR
12 end if
13 if The selected and the changed part is a special character:
14 Change Ts according to DR
15 end if
16 if Selected and the changed part is structure:
17 Change Tps according to DR
18 end if
19 end for

Algorithm 3: LPG–PCFG model generation algorithm.

1 Set generation numbers as NG
2 for i = 1:NG:
3 Set x as an empty string
4 Randomly select a password structure from Dps
5 for v in ps:
6 if v is a number:
7 Randomly select a number string form Td
8 Concat number string into x
9 end if

10 if v is a letter:
11 Continuously sample random letters according to the n-gram table Tl
12 Concat letters into x
13 end if
14 if v is a special character:
15 Randomly select a special character string form Ts
16 Concat special characters string into x
17 end if
18 end for
19 x is a generated password
20 end for

4.2. Effect of Parameter

First, in the LPG–PCFG model, the training set of the rockyou public dataset is used to
complete model training and obtain the modeling distribution Dori. Since the degeneration
rule, range, rate, and times affect the distribution Ddeg, we used the control variable
method to examine, in turn, the influence of the above factors in the degeneration stage.
To reasonably compare the performance of various degeneration distributions, a certain
number of passwords in the experiment were first generated. When examining the hits of
low-probability passwords, we counted the number of password hits in a test set in the
range of (10−12, 10−9).
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4.2.1. Effect of Degeneration Rate

For the five specific degeneration rules, we uniformly limited the probability adjust-
ment range to the structure parts: letters, numbers, and special characters. The number of
degeneration times was selected as 106; the number of generated passwords was 107; the
adjustment rate was a gradient in an order of magnitude setup. The degeneration rates in
Rules 1 and 2 were 0.99, 0.999, 0.9999, 0.99999, 0.999999, 0.9999999, 0.99999999; the degener-
ation rates in Rules 3 and 4 were 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8; the degeneration
rate of Rule 5 was 1.01, 1.001, 1.0001, 1.00001, 1.000001, 1.0000001, 1.00000001. The number
of low-probability passwords hits in the test set is shown in Tables 2–4.

Table 2. Effect of degeneration rate on low-probability password hits (Rules 1 and 2).

Degeneration
Rate 0.99 0.999 0.9999 0.99999 0.999999 0.999999999 0.999999999

Rule 1 1587 1209 1447 1489 1532 1510 1492
Rule 2 510 1169 1436 1765 2011 1869 1580

Table 3. Effect of degeneration rate on low-probability password hits (Rules 3 and 4).

Degeneration
Rate 10−2 10−3 10−4 10−5 10−6 10−7 10−8

Rule 3 587 1209 1447 1489 1532 1510 1492
Rule 4 510 1169 1436 1765 2011 1869 1580

Table 4. Effect of degeneration rate on low-probability password hits (Rule 5).

Degeneration
Rate 1.00000001 1.0000001 1.000001 1.00001 1.0001 1.001 1.01

Rule 5 1648 1815 1887 1653 1757 1113 992

The experimental results show that the degeneration rate has a very significant effect
on the model performance of LPG–PCFG. For example, in Rule 2, the degeneration rate
of 0.99 and 0.9999999 produced an order of magnitude difference in the number of hits.
For different degeneration rules, under the condition of 106 degenerations, the relationship
between the rate parameter and the number of low-probability password hits was also
different. In Rules 1–3, with an increasing degeneration rate, the number of hits increased
gradually and tended to be stable; in Rules 4 and 5, the number of hits increased first and
then decreased, which achieved the best performance at 10−6 and 1.000001, respectively.
Overall, when the degeneration rate was larger, the number of hits was generally lower,
and when the degeneration rate was lower, LPG–PCFG tended to have a better performance.
However, a too-low degeneration rate may not have generated a high hit count.

4.2.2. Effect of Degeneration Range

Next, we discuss the effect of the degeneration range on model performance. In the
LPG–PCFG model, the four parts—password structure, letters, numbers, and special charac-
ters (respectively, denoted as p, l, n, s)—are mutually independent in password probability
calculations. These four parts also have different ranges of expression. Intuitively, the pass-
word structure has the most comprehensive expression range; for the letters and numbers,
it is relatively weak; special characters usually have the lowest, so we set up multiple
degeneration ranges. To perform a more detailed analysis of the degeneration effect, we
also considered the influence of the degeneration rate and fixed the number of degeneration
at 106. The number of password generations was still set to 107. The experimental results
under Degeneration Rules 4 and 5 are shown in Tables 5 and 6, respectively.
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Table 5. Effect of degeneration range on low-probability password hits (Rule 4).

Degeneration
Range 10−2 10−3 10−4 10−5 10−6 10−7 10−8

plns 510 1169 1436 1765 2011 1869 1580
p 1121 1350 1858 2061 2129 2218 1484

lns 1496 1542 1553 1579 1596 1520 1604
ns 1494 1516 1537 1546 1572 1604 1549
l 1512 1521 1551 1589 1592 1620 1533

Table 6. Effect of degeneration range on low-probability password hits (Rule 5).

Degeneration
Range 1.00000001 1.0000001 1.000001 1.00001 1.0001 1.001 1.01

plns 1648 1815 1887 1653 1757 1113 992
p 1895 2301 2170 2081 2023 1177 1299

lns 1429 1545 1533 1628 1533 1487 1512
ns 1508 1489 1602 1568 1448 1608 1567
l 1532 1575 1575 1537 1578 1498 1552

The experimental results showed that defining different degeneration ranges sig-
nificantly affected model performance. When the range included the four parts, plns,
the number of low-probability password hits varied with the degeneration rate and reached
the maximum number of hits at a specific rate. When the degeneration range did not in-
clude the password structure (lns, ns, or l), the number of hits remained almost unchanged
and relatively stable. When the degeneration range was p or plns, the changing trends
were consistent, and both exhibited a significant increase in hits.

From the analysis of the above results, it could be seen that modifying the distribution
of the password structure obtained a better degeneration distribution compared with letters,
numbers, and special characters. In this regard, we believe that the structure distributions
of high-probability and low-probability passwords are quite different. When the structural
part of the passwords has degenerated, more patterns corresponding to low-probability
passwords appear, so the random sampling can generate more low-probability passwords.

4.2.3. Effect of Degeneration Times

Now, we discuss the effect of the number of degenerations. Section 4.2.2 showed that
password structure is the optimal choice for the adjustment range, so in this section, we
only considered adjusting the degenerate password structure. Since the adjustment rate
significantly influences the number of hits, it was still set to the gradient configuration of
Sections 4.2.1 and 4.2.2. The number of degenerations was set to 102, 103, 104, 105, and 106,
respectively. The number of generated passwords remained set at 107. The experimental
results according to Degeneration Rules 4 and 5 are shown in Tables 7 and 8.

Table 7. Effect of degeneration times on low-probability password hits (Rule 4).

Degeneration
Times 10−2 10−3 10−4 10−5 10−6 10−7 10−8

102 1243 1205 1965 2015 1863 1722 1880
103 1456 1432 1922 2119 2083 1675 1484
104 1546 1349 1968 2160 1995 2109 1949
105 1671 1544 1760 2001 2187 1941 1541
106 1121 1350 1858 2061 2129 2218 1989
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Table 8. Effect of degeneration times on low-probability password hits (Rule 5).

Degeneration
Times 1.00000001 1.0000001 1.000001 1.00001 1.0001 1.001 1.01

102 1599 1637 1620 1571 1429 1450 1501
103 1922 1934 2003 1710 1814 1277 1439
104 2230 2167 2169 1790 1968 1881 1514
105 2026 2015 2169 2054 1949 2150 2019
106 1895 2301 2170 2081 2023 1177 1299

It can be seen from the results that the impact of the number of degenerations on
low-probability password hits was complex. Overall, for any number of degenerations,
the number of hits still varied with the degeneration rate, and the highest number of
hits was obtained at a specific degeneration rate. Second, for any degeneration rate,
as the number of degenerations increased, the number of hits increased overall. However,
the above two trends do not strictly conform to all experimental data. They may also
violate phenomena under certain conditions, such as when the degeneration rate in Rule 5
is 1.00000001 and the degeneration number is 104.

For the above experimental phenomena, we believe that the features of low-probability
passwords are relatively insignificant enough, so the LPG–PCFG model often needs slow-
and high-frequency adjustments when obtaining the degenerate distribution. Otherwise,
the password features are easily lost. Higher degeneration times and lower degeneration
rates enable fine-tuned distribution adjustments, while lower degeneration times may
make the adjustment insufficient for a good degeneration distribution.

4.2.4. Effect of Degeneration Rule

Based on the above experiments, we discuss how the degeneration rules affected
the hits of low-probability passwords. We comprehensively considered three factors:
degeneration rate, range, and times. The selection of the degeneration rate is shown
in Section 4.2.1, the choice of degeneration range in Section 4.2.2, and the selection of
degeneration times in Section 4.2.3. Under the fixed condition of 107-times password
generation, the optimal model under the five degeneration rules was screened. The results
are shown in Table 9.

Table 9. Maximum number of low-probability password hits with different degeneration rules.

Degeneration
Rules

Degeneration
Speed

Degeneration
Range

Degeneration
Times Hit

Rule 1 0.999999 p 105 1624
Rule 2 0.999999 p 105 2238
Rule 3 10−7 p 106 1688
Rule 4 10−7 p 106 2218
Rule 5 1.0000001 p 106 2301

The experimental results showed that different degenerate rules will generate different
numbers of low-probability password hits when generated 107 times. Rules 1 and 3 can
hit about 1600 passwords, while Rules 2, 4, and 5 can hit about 1600–2200. When the
optimal performance of Rules 1 and 2 was obtained, the degeneration rate was 0.999999,
and the degeneration times were 105; the degeneration rate corresponding to the optimal
models of Rules 3 and 4 was 10−7, and the degeneration times were both 106. In addition,
the degeneration ranges corresponding to the above five rules were all p, which is only the
modified password structure.
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4.3. Model Performance Comparison

Finally, we compared the performance of the LPG–PCFG model with the PCFG
model. According to the conclusion of Section 4.2.4, the LPG–PCFG model with the
best performance was selected according to Degeneration Rule 2; the range was p; the
times were 105; the rate was 0.999999. For a fine comparison of the performance of the
modeling and degeneration distributions, the number of generated passwords was set to
107 and 108, respectively, and the number of hits to low-probability passwords is shown in
Figures 6 and 7.
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The results showed that below 107 generations, LPG–PCFG can hit 2238 low-probability
passwords, while PCFG hit 1488, a relative increase of 50.4%; under generating 108 times,
LPG–PCFG can hit 21,208 passwords, while PCFG hit 14,932, a relative increase of 42.0%. It
can be seen from the curve that LPG–PCFG can always hit more low-probability passwords

Figure 7. Performance comparison between LPG–PCFG and PCFG models (generated 108 times).

The results showed that below 107 generations, LPG–PCFG can hit 2238 low-probability
passwords, while PCFG hit 1488, a relative increase of 50.4%; under generating 108 times,
LPG–PCFG can hit 21,208 passwords, while PCFG hit 14,932, a relative increase of 42.0%. It
can be seen from the curve that LPG–PCFG can always hit more low-probability passwords
than PCFG regardless of the number generated. The difference in the number of hits
between the two will increase with the number of generated passwords.
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To sum up, on the basis of PCFG, LPG–PCFG finally obtained a satisfactory degen-
eration distribution by finely controlling the degeneration rate, range, times, and rules.
The degenerate distribution limits high-probability passwords and significantly increases
the probability value of low-probability passwords. At this time, random sampling in the
degenerate distribution found a larger number of low-probability passwords. The results
fully demonstrated the effectiveness of the LPG–PCFG model.

However, this algorithm could not effectively improve the low-probability password
hit capability of the LPG–PCFG model in all cases. Next, we discuss the different cases of
model failure. The degradation rate represents the range of each degradation operation.
The results showed that, in most cases, the degradation rate was too large or too small,
limiting the model’s low-probability password generation ability. We believe there were
two reasons when the degradation rate was too large. First, the probability distribution
of the model was excessively degraded, resulting in a password with a lower probability
that also had a similar probability to the password in the target interval, thus diluting the
occurrence probability of the password in the low probability interval. Second, excessive
changes caused by a single degradation may have damaged the modeling of password
semantic features, resulting in model failure. In the research on the degradation range,
we found that it was the most effective for password structure, but the worst for numbers
and special characters. We believe that this phenomenon occurred mainly because the
password structure part contained more semantic information; the combination of special
symbols and specific numbers had less semantic information, so the effect of degener-
ate directional numbers and special characters was not good. In the degradation times,
the failure situation was similar to the reason for the degradation rate. Insufficient times
prevented an improvement in the password probability of the target interval. At the same
time, too many degradation times led to the probability of excessive degradation and
password dilution outside the target interval, which possibly impaired the modeling of
semantic features. In the research on degenerate rules, Rules 1 and 3 did not work well,
and the difference between these rules and others was that these two rules would even
increase the probability of missing passwords. In comparison, the three different rules
made passwords with relatively high probability boost relatively higher probability. We
believe that the average increase in low-probability passwords may have caused password
probability outside the target range to increase too quickly, thus diluting the probability of
the occurrence of passwords in the target range.

5. Conclusions

The trained password-generation model completed the modeling of the password
probability distribution. At this time, whether based on the random sampling method
or enumeration method, high-probability passwords were straightforward to generate,
while many low-probability passwords were not easily generated, resulting in insufficient
coverage of low-probability-interval passwords. We analyzed the three aspects of password
distribution, sampling method, and model design and proposed a degenerate distribution
suitable for dealing with low-probability password generation. Based on the PCFG model,
but with finer granularity, we presented the low-probability password-generation model
LPG–PCFG based on a degenerate distribution. By finely tuning multiple factors such as
degeneration rate, range, times, and rules, we obtained the optimal LPG–PCFG.

The LPG–PCFG model has the following advantages:

1. Compared with neural-network-based password generation, the LPG–PCFG model
had high efficiency and low resource consumption in both the training and genera-
tion stages.

2. Compared with a state-of-the-art PCFG model based on statistical machine learning,
LPG–PCFG had a significantly improved low-probability password generation. Af-
ter 107 generations, the number of hits increased by 50.4%, and after 108 generations,
LPG–PCFG had a relative improvement of 42.0%.
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3. The degradation algorithm proposed in this paper is interpretable. We mathematically
proved that in continuous degradation, the model’s evaluation of the password
distribution gradually approached a uniform distribution, so the chances of finding
a probabilistic password will gradually increase.

This paper proposed a degeneration algorithm to generate low-probability passwords
in specific intervals that proved to be effective in a PCFG model. In password generation,
neural networks show excellent performance; however, numerous learnable parameters
usually lead to a certain degree of overfitting, which means that neural network model
generalization is poor. In the following work, we will focus on applying this algorithm
to solving the problems of overfitting and insufficient generalization in models of neural
network password generation.
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