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Abstract: As one of the main elements of reinforcement learning, the design of the reward function
is often not given enough attention when reinforcement learning is used in concrete applications,
which leads to unsatisfactory performances. In this study, a reward function matrix is proposed
for training various decision-making modes with emphasis on decision-making styles and further
emphasis on incentives and punishments. Additionally, we model a traffic scene via graph model
to better represent the interaction between vehicles, and adopt the graph convolutional network
(GCN) to extract the features of the graph structure to help the connected autonomous vehicles
perform decision-making directly. Furthermore, we combine GCN with deep Q-learning and multi-
step double deep Q-learning to train four decision-making modes, which are named the graph
convolutional deep Q-network (GQN) and the multi-step double graph convolutional deep Q-
network (MDGQN). In the simulation, the superiority of the reward function matrix is proved by
comparing it with the baseline, and evaluation metrics are proposed to verify the performance
differences among decision-making modes. Results show that the trained decision-making modes
can satisfy various driving requirements, including task completion rate, safety requirements, comfort
level, and completion efficiency, by adjusting the weight values in the reward function matrix. Finally,
the decision-making modes trained by MDGQN had better performance in an uncertain highway
exit scene than those trained by GQN.

Keywords: multi-mode decision-making; connected autonomous vehicles; reward function matrix;
uncertain highway exit scene; GQN; MDGQN

1. Introduction

Artificial intelligence is in its golden development age due to the exponential in-
crease in data production and the continuous improvements in computing power [1].
Autonomous driving is one of the main uses. A comprehensive autonomous driving sys-
tem integrates sensing, decision-making, and motion-controlling modules [2–4]. As the
“brains” of connected autonomous vehicles (CAVs) [5], the decision-making module formu-
lates the most reasonable control strategy according to the state feature matrix transmitted
by the sensing module, the vehicle state, and the cloud transmission information [6]. More-
over, it sends the determined control strategy to the motion-controlling module, including
high-level behavior and low-level control requirements [7,8]. It is crucial to complete
autonomous driving tasks safely and efficiently by making reasonable decisions based on
other modules [9].

In an uncertain interactive traffic scenario, the driving environment has rigorous dynamic
characteristics and high uncertainty, and the influences of driving behaviors of different traffic
participants will be transmitted continuously [10]. On the level of transportation overall, all
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traffic participants need to cooperate efficiently [11]. At the traffic participant level, individuals
need to judge the risk factors and make appropriate decisions sensitively based on dynamic
scene changes [12]. In [13], a Gaussian mixture model and important weighted least squares
probability classifier were combined and used for scene modeling. That model can identify
the braking strength levels of new drivers under the condition of insufficient driving data.
The key to participating in traffic scenarios for CAVs is that each CAV needs to generate
appropriate and cooperative behavior to match human vehicles and other CAVs. Therefore,
CAVs urgently demand efficient and accurate multi-agent decision-making technology to
effectively handle the interactions between different traffic participants.

The current multi-agent decision-making technologies mainly focus on deep rein-
forcement learning (DRL) due to the excellent performance of DRL in high-dimensional
dynamic state space [14]. The keys of DRL in uncertain interactive traffic scenarios can be
summarized as follows: (1) Efficient modeling of interactive traffic scenes and accurate
representation of state features. (2) Generating reasonable and cooperative decision-making
behaviors based on uncertain scene changes and individual task requirements. The design
of the reward function is an essential part of the DRL application. Concretizing and nu-
mericizing task objectives realizes the communication between objectives and algorithms.
Therefore, the design of the reward function determines whether the agent can generate
reasonable and cooperative decision-making behaviors [15]. In addition, the accurate
modeling of the interactive traffic environment and representation of state characteristics
are the requirements for agents to generate expected behaviors.

In studies of traffic scenarios using the DRL method, researchers found that in uncer-
tain interactive traffic scenarios, sparse reward problems lead to agents having a lack of
effective information guidance [16], making the algorithm difficult to converge. In order
to solve the sparse reward problem, researchers divide the original goal into different
sub-goals and give reasonable rewards or punishments. In [17], the DDPG was adopted to
settle the autonomous braking problem. The reward function was split into three parts to
solve the problems: braking too early, braking too late, and braking too quickly. In [18], the
reward function was divided into efficiency and safety rewards to train the comprehensive
safety and efficiency decision model. In addition, considering the changes in driving
task requirements and scene complexity, some studies have given different weights to the
sub-reward functions based on the decomposition of the reward function, so as to train
different decision-making modes. In [19], the reward function was divided into sub-reward
functions based on security, efficiency, and comfort. The system can realize different control
targets by adjusting the weight values in the reward function.

In the decision-making research involving uncertain interactive traffic scenarios, the DRL
method only takes the individual characteristics of each vehicle as the input. It ignores the
interactive influence of transitivity between vehicles. This will result in CAVs not generat-
ing reasonable and cooperative behavior, which may reduce total traffic efficiency and the
occurrence of traffic accidents. Graph representation can accurately describe the interactions
between agents, representing the relationship between vehicles in uncertain interactive traffic
scenarios. Therefore, some researchers focused on the graph reinforcement learning (GRL)
method and modeled the interaction with graph representation [20]. In [21], a hierarchical
GNN framework was proposed and combined with LSTM to model the interactions of het-
erogeneous traffic participants (vehicles, pedestrians, and riders) to predict their trajectories.
The GRL method combines GNN and DRL: the features of interactive scenes are processed by
GNN, and cooperative behaviors are generated by the DRL framework [22]. In [23], the traffic
network was modeled by dynamic traffic flow probability graphs, and a graph convolutional
policy network was used in reinforcement learning.

This paper proposes an innovative, dynamic reward function matrix, and various
decision-making modes can be trained by adjusting the weight coefficient of the reward
function matrix. Additionally, the weight coefficient is further set as a function of reward,
forming an internal dynamic reward function. In the traffic environment adopted in this
paper, the randomness and interactions between HVs and CAVs are strengthened by using
some human vehicles making uncertain lane changes. Two GRL algorithms are used in this
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paper, GQN and MDGQN. Finally, we report a simulation based on the SUMO platform and
a comparative analysis from various perspectives, such as reward functions, algorithms,
and decision-making modes. The schematic diagram of the designed framework is shown
in Figure 1.
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Figure 1. The schematic diagram of the designed framework. Letters N, A, and M represent node
feature matrix, adjacency matrix, and CAV mask matrix respectively.

To summarize, the contributions of this paper are as follows:

1. Innovative dynamic reward function matrix: we propose a reward function matrix
including a decision-weighted coefficient matrix, an incentive-punished-weighted
coefficient matrix, and a reward–penalty function matrix. By adjusting the decision-
weighted coefficient matrix, the decision-making modes of different emphases among
driving task, traffic efficiency, ride comfort, and safety can be realized. Based on the
premise that the incentive-punished function matrix separates the reward and the
penalty, the optimization of individual performance can be achieved by adjusting the
incentive and punishment ratio of each sub-reward function. In addition, the weight
coefficient of the incentive-punished-weighted coefficient matrix is further set as a
function of reward functions, which can reduce the impact of proportional adjustment
on important operations, such as collision rate.

2. Adjust the parameters to train multiple decision-making modes: We compare the
proposed reward function matrix with the traditional reward function under the
same conditions. By adjusting the parameters of the decision-weighted coefficient
matrix and the incentive-punished-weighted coefficient matrix, we can achieve ag-
gressive or conservative incentive and punitive decision-making modes, respectively.
Specifically, the four decision-making modes trained in this paper are the aggressive
incentive (AGGI), aggressive punishment (AGGP), conservative incentive (CONI),
and conservative punishment (CONP).

3. Modeling of interactive traffic scene and evaluation of decision-making modes: We
designed a highway exit scene with solid interactions between CAVs and human
vehicles (HVs) and adopted two algorithms to verify their differences. Addition-
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ally, we also propose a set of indicators to evaluate the performance of driverless
decision-making and used them to verify the performance differences among various
algorithms and decision-making modes.

This article is organized as follows. Section 2 introduces the problem formulation.
Section 3 introduces the methods used. Section 4 proposes the reward function matrix.
Section 5 describes and analyzes the simulation results. Section 6 summarizes this paper
and gives the future development directions.

2. Problem Formulation
2.1. Scenario Construction

As is shown in Figure 2, a 3-lane highway containing two exits was designed, and the
three lanes were sorted from bottom to top as first, second, and third lanes. All the vehicles
(HVs and CAVs) enter the road segment from the left of “Highway 0”. The color of vehicle
indicates its type and intention. In this paper, the vehicles were set as follows for safety
principles and actual human driving rules:

Highway 0 Highway 1 Highway 2

Exit 0 Exit 1

HV3

CAV HV1

HV2

Figure 2. The highway exit scene with solid interactions between CAVs and HVs.

• A white body with a colored roof represents an HV, and an all-blue vehicle represents
a CAV;

• The HV with the red roof (HV1) is set to appear in three lanes randomly and can only
go out from “Highway 2”;

• The HV with the orange roof (HV2) is set to emerge from the second lane and can go
out from “Exit 1“ when it is in the first lane and go out from “Highway 2” when it is
in the other lanes;

• The HV with the green roof (HV3) is set to only appear from the first lane and can
only go out from “Exit 0”;

• When there is no car at the longitudinal distance of 10 m in the lane to be changed, the
HV2 will be switched to the right;

• The CAV is set to appear in three lanes randomly and can go out from “Highway 2”,
“Exit 0”, and “Exit 1”.

The interaction between CAVs and HVs is enhanced through the above setting. The
setting of HV1 enhances the uncertainty of the scene considerably, increasing the require-
ments for CAVs’ decision-making. Straightening away from “Highway 2” is the most
straightforward choice with the lowest collision risk, owing to CAVs’ least lane change
decisions. In addition, due to the uncertain lane change behavior of HV2, it is difficult for
CAVs to explore “Exit 1” safely, and the collision risk of leaving the highway from “Exit 1”
is higher than it is for other exits. Specific scenario setting parameters are shown in Table 1:
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Table 1. Specific scenario setting parameters.

Parameter Value Parameter Value

Length of “Highway 0” 150 m Number of HV1 20
Length of “Highway 1” 200 m Number of HV2 10
Length of “Highway 2” 150 m Number of HV3 15

Time step 0.1 s Number of CAVs 15
Initial velocity of HV1 24m/s Probability of HV1 appearing every 0.1 s 0.18
Initial velocity of HV2 22 m/s Probability of HV2 appearing every 0.1 s 0.08
Initial velocity of HV3 20 m/s Probability of HV3 appearing every 0.1 s 0.12
nitial velocity of CAVs 20 m/s Probability of CAVs appearing every 0.1 s 0.12

2.2. State Representation

The scenario is modeled as an undirected graph. Each vehicle in this scenario is
regarded as the node of the graph, and the interaction between vehicles is considered the
edge of the graph. Three matrices can represent the state space: a node features matrix
Xt, an adjacency matrix At, and a CAV mask matrix Mt; each of them are described in
the following.

Node Features Matrix: The vehicle’s features are speed, position, location, and in-
tention, denoted as [Vi, Yi, Li, Ii]. The node features matrix represents the features of each
vehicle in the constructed scenario, which can be described as follows:

Nt =



[V1, Y1, L1, I1]
[V2, Y2, L2, I2]

· · ·
[Vi, Yi, Li, Ii]
· · ·

[Vn, Yn, Ln, In]

 (1)

where Vi = vi−actual
/

vmax denotes the ratio of actual longitudinal velocity to maximum

longitudinal velocity. Yi = yi−actual

/
Lhighway denotes the percentage of actual longitudinal

position of the total length of the highway. Li denotes the one-hot encoding matrix of
the current lane of vehicles. Ii denotes the vehicle’s one-hot encoding matrix of current
intention (change to left lane, change to right lane, and go straight).

Adjacency matrix: In this paper, the interactions between vehicles are embodied in the
information sharing between vehicles, expressed by the adjacency matrix. The calculation
of the adjacency matrix is based on three assumptions:

• All CAVs can share information in the constructed scenario;
• Information cannot be shared between HVs;
• Vehicles can share information with themselves aii = 1.
• All CAVs can share information with HVs in their sensing range.

The derivation of the adjacency matrix is as follows:

At =



a11 a12 · · · · · · a1n
a21 a22 · · · · · · a2n
...

...
. . .

...
aij

...
...

. . .
...

an1 an2 · · · · · · ann


(2)

where aij denotes the edge value of the ith vehicle and the jth vehicle. aij = 1 denotes that
the ith vehicle and the jth vehicle share information; aij = 0 denotes that the ith vehicle
and the jth vehicle share no information.

CAV mask matrix: CAV mask is used to filter out the embeddings of HVs after the
GCN fusion block. The specific mathematical expression is as follows:
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Mt = [m1, m2, · · · , mi, · · ·mn] (3)

where mi = 0 or 1. If the ith vehicle is controlled by the GRL algorithm, mi = 1; otherwise,
mi = 0.

2.3. Action Space

At each time step, each CAV has a discrete action space representing potential actions
to be executed at the next time step, as follows:

ai = {alane−change, aacceleration} (4)

where alane−change indicates that the lane change action can be taken, including a left lane
change, right lane change, or straight line; aacceleration denotes the discrete acceleration that
CAV can take, and its value is equalized by interval [−8 m · s−2, 5 m · s−2] at 0.5 m · s−2.

3. Methods

This section describes the principles of the methods used, including graph convolu-
tional neural networks, Q-learning, GQN, and MDGQN.

3.1. Graph Convolutional Neural Network

GCN is a neural network model that directly encodes graph structure. The goal is to
learn a function of features on a graph. A graph can be represented by G = (V, E) in theory,
where V denotes the set of nodes in the graph, the number of nodes in the graph is denoted
by N, and E denotes the set of edges in the graph. The state of G is considered a tuple of
3 matrices of information: feature matrix X, adjacency matrix A, and degree matrix D.

• The adjacency matrix A is used to represent connections between nodes;
• The degree matrix D is a diagonal matrix, and Dii = ∑j Aij;
• The feature matrix X is applied to represent node features, X ∈ RN×F, where F

represents the dimensions of the feature.

GCN is a multi-layer graph convolution neural network, a first-order local approxi-
mation of spectral graph convolution. Each convolution layer only deals with first-order
neighborhood information, and multi-order neighborhood information transmission can
be realized by adding several convolution layers.

The propagation rules for each convolution layer are as follows [24]:

Z = g(H, A) = σ(D̂−1/2 ÂD̂−1/2H(l)W(l) + b) (5)

where Â = A + IN is the adjacency matrix of the undirected graph G with added self-
connections. IN is the identity matrix; D̂ii = ∑j Âij and W(l) are layer-specific trainable
weight matrices. σ(·) denotes an activation function, such as the ReLU(·) = max(0, ·).
H(l) ∈ RN×D is the matrix of activations in the lth layer, H(0) = X.

3.2. Deep Q-Learning

Q-learning [25] is a value-based reinforcement learning algorithm. Qt is the expec-
tation that Q(st, at) can obtain benefits by taking action at(at ∈ At) under the state of
st(st ∈ St) at time t. The environment will feed back the corresponding reward Rt accord-
ing to the agent’s action. Each time step produces a quadruplet (st, at, rt, st+1), and it is
stored in the experience replay. Deep Q-learning [26] replaces the optimal action–value
function with the deep neural network Q(s, a, ω). The following is a description of the
principle of the algorithm.

The predicted values of DQN can be calculated according to the given four-tuple
(st, at, rt, st+1):

q̂t = Q(st, at, ω) (6)
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The TD target can be calculated based on the actual observation reward rt:

ŷt = rt + γ ·max
a∈A

Q(st+1, a, ω) (7)

DQN updates network parameters according to the following formula:

ω ← ω− α · (q̂t − ŷt) · ∇ωQ(st, at, ω) (8)

where α represents the learning rate.

3.3. Graph Convolutional Q-Network (GQN)

As described in Section 3.2, Q-learning uses a Q-Table to store the Q value of each
state–action pair. However, if the state and action space are high-dimensionally continuous,
there will be the curse of dimensionality; that is, with a linear increase in dimensions,
the calculation load increases exponentially. GQN [27] replaces the optimal action–value
function Q?(s, a) with the graph convolutional neural network Q(s, a, θ):

Q(s, a, θ) = ρ(Z, a) (9)

where Z is the node embeddings output from graph convolution layer. ρ represents the neural
network block, including the fully connected layer. θ is the aggregation of all the weights.

The specific training process of GQN is the same as DQN [26]. Firstly, the predictive
value of GQN can be calculated according to the four-tuple (st, at, rt, st+1) sampled from
the experience replay:

q̃t = Q(st, at, θnow) (10)

However, since the Q-network uses the same estimate to update itself, it will cause
bootstrapping and lead to deviation propagation. Therefore, another neural network can be
used to calculate the TD target, called the target network Q(s, a, θ−now). Its network structure
is precisely the same as that of the Q-network, but the parameter θ−now is different from θnow.
Selecting the optimal action and forward propagation of the target network:

a? = arg max
a∈A

Q(st+1, at, θ−now) (11)

q̃t+1 = Q(st+1, a?, θ−now) (12)

Calculation of TD target ŷt and TD error δt:

ŷt = rt + γ · q̃t+1 (13)

δt = q̃t − ŷt (14)

The gradient ∇θQ(st, at, θnow) is calculated by the backpropagation of a Q-Network,
and the parameter of the Q-Network is updated by gradient descent:

θnew ← θnow − α · δt · ∇θQ(st, at, θnow) (15)

where θnew is the parameter of the updated Q-Network. α represents the learning rate.
Finally, GQN adopts the weighted average of the two networks to update the target

network parameters:
θ−new ← τ · θnew + (1− τ) · θ−now (16)

where τ represents soft update rate.

3.4. Multi-Step Double Graph Convolutional Q-Network (MDGQN)

MDGQN further adopts double Q-learning and a multi-step TD target algorithm
based on GQN. As shown in Section 3.3, the target network cannot completely avoid
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bootstrapping, since the parameters of the target network are still related to the Q-Network.
The double Q-learning algorithm is improved based on the target network. The Q-learning
with the target network uses the target network to select the optimal action and calculate
the Q value of the optimal action. However, the double Q-learning selects the optimal
action according to the Q-Network and uses the target network to calculate the Q value of
the optimal action. Equation (11) is modified as follows:

a? = arg max
a∈A

Q(st+1, at, θnow) (17)

The multi-step TD target algorithm can balance the significant variance caused by Monte
Carlo and the significant deviation caused by bootstrapping. Equation (13) is modified as
follows:

ŷt = ∑m−1
i=0 γirt+i + γm · q̃t+m (18)

where ŷt is called the m-step TD target.

4. Reward Functions

The design of the reward function is an important criterion and goal of the DRL
training process. Based on four aspects—the results the of the driving task, traffic efficiency,
ride comfort, and safety—the reward function is divided into four blocks. Further, we
propose a reward function matrix including a decision-weighted coefficient matrix, an
incentive-punished-weighted coefficient matrix, and a reward–penalty function matrix.

r = tr(Ak1 Ak2 Ar)

= tr




kr

ke
kc

ks





krI
krP

keI
keP

kcI
kcP

ksI
ksP



T

rresult−I
rresult−P

re f f iciency−I
re f f iciency−P

rcom f ort−I
rcom f ort−P

rsa f e−I
rsa f e−P




(19)

Specific parameters are described below:

1. Ak1 is the decision-weighted coefficient matrix. kr, ke, kc, and ks denote the weights of
reward and penalty functions based on the results of the driving task, traffic efficiency,
ride comfort, and safety.

2. Ak2 is the incentive-punished-weighted coefficient matrix. krI , keI , kcI , and ksI denote
the weights of reward functions based on the results of the driving task, traffic
efficiency, ride comfort, and safety, respectively. krP, keP, kcP, and ksP denote the
weights of penalty functions based on the results of the driving task, traffic efficiency,
ride comfort, and safety, respectively.

3. Ar is a reward–penalty function matrix. rresult−I , re f f iciency−I , rcom f ort−I , and rsa f e−I are
reward functions based on the results of the driving task, traffic efficiency, ride comfort,
and safety, respectively. rresult−P, re f f iciency−P, rcom f ort−P, and rsa f e−P are penalty func-
tions based on the results of the driving task, traffic efficiency, ride comfort, and safety,
respectively.

By adjusting the weight coefficient of the decision-weighted coefficient matrix and
incentive-punished-weighted coefficient matrix, DRL can train different goal-oriented
decision-making modes. In the decision-making process of autonomous vehicles, the upper
control module can choose different decision-making modes according to different needs.
In order to select a decision-making model with excellent comprehensive performance and
strong contrast, we conducted multiple sets of experiments, and some experimental data
were put in Appendix A. This paper determined four decision modes: AGGI, AGGP, CONI,
and CONP, by adjusting the parameters in Tables 2 and 3.



Sensors 2022, 22, 4586 9 of 18

Table 2. Weight coefficient of the decision-weighted coefficient matrix.

Parameters Conservative Aggressive

The weight of task kr 0.2 0.25
The weight of efficiency ke 0.2 0.35
The weight of comfort kc 0.25 0.15
The weight of safety ks 0.35 0.25

Table 3. Weight coefficient of the incentive-punished-weighted coefficient matrix.

Parameters Incentive Punished

The weight of incentive sub-reward function krI0 , keI0 , kcI0 , ksI0 0.6 0.4
The weight of punished sub-reward function.krP0 , keP0 , kcP0 , ksP0 0.4 0.6

Since the change of weight coefficient will dilute some essential rewards or punish-
ments, this paper improves the reward function against this defect. The weight coefficient
of the incentive-punished-weighted coefficient matrix is further set as a functional of re-
ward functions, which forms an internal dynamic reward function. The specific formula is
as follows: 

krI = krI0 · exp
(
(rresult−P + rcom f ort−P)/100,000

)
keI = keI0 · exp

(
(rresult−P + rcom f ort−P)/80,000

)
ksI = ksI0 · exp

(
(rresult−P + rcom f ort−P)/150,000

) (20)

Based on [3], the specific reward functions and penalty functions were designed.
Firstly, we designed the corresponding reward function and penalty function based on the
results of the driving tasks. The independent variable of the reward function is the number
of CAVs and HV2 reaching destinations, which aims to train decisions that can assist HVs
in completing driving tasks. The penalty function is designed based on collisions.

rresult−I = 300(nr1 + nr2) (21)

rresult−P = −60,000, i f collision (22)

where nr1 is the number of CAVs leaving from “Exit 1”. nr2 is the number of CAVs leaving
from “Exit 1”.

To train the decision-making model to improve traffic efficiency, this paper divides the
speed interval of CAVs into three parts. The corresponding reward and penalty functions
were designed to curb speeding, encourage high-speed driving, and punish low-speed
blocking for these three-speed ranges. In order to make CAVs faster and more stable
to explore the optimal speed, we used the exponential function to design a soft reward
function [28].

re f f iciency−I = exp
[

6× (vy − vy min)

vy max

]
, i f vy min ≤ vy ≤ vy max (23)

re f f iciency−P =

{
− exp(vy − vy max), i f vy > vy max

− exp
(

1 +
vy min−vy

3

)
, i f vy < vy min

(24)

where vy is the velocity of the CAV. vy max represents the maximum velocity allowed by the
current lane; its value is 25 m · s−1, or 15 m · s−1.

In order to improve the ride comfort of all vehicles in this traffic section, the corre-
sponding reward function and penalty function are designed based on the acceleration and
lane change times of all vehicles.

rcom f ort−I = exp(3)× nc1 (25)
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rcom f ort−P = −2000× nc2 − exp
(m

2

)
(26)

where nc1 is the number of vehicles with acceleration of [−2 m · s−2, 2 m · s−2]. nc2 is
the number of vehicles with acceleration of (−∞,−4.5 m · s−2]. m is the number of lane
changes in this traffic section within 0.5 s.

Superior security performance is the premise of developing decision technology [29].
In [30], the length of CAVs’ safety time is one of the most important factors affecting road
safety. This paper introduces the safety time of the CAVs into the corresponding reward
function. The definition of the safety time is as follows:

t1 = tsa f e− f ollower =
yAV − y f ollower

v f ollower − vAV
(27)

t2 = tsa f e−leader =
yleader − yAV
vAV − vleader

(28)

where yAV is the longitudinal position of the CAV. yleader and y f ollower are the longitudinal
positions of the front and rear vehicles of CAV, respectively. vleader and v f ollower are the
longitudinal speeds of the front and rear vehicles of CAV, respectively.

A driving hazard diagram is proposed to represent the degree of danger of the vehi-
cle’s state based on safety time tsa f e− f ollower and tsa f e−leader. As shown in Figure 3, three
primary colors are used to represent the degrees of danger in this state. The red region
represents collision accident danger, and the deeper the color, the greater the likelihood.
The yellow area indicates that the vehicle needs to pay attention to the occurrence of a
possible emergency. The green area indicates that the vehicle is in a safe state. By dividing
Figure 3 into five categories, the sub-reward functions were designed. On the basis of
the above principles, a security-based reward function is proposed for training security
decisions. The formula is shown in Table 4.

1IΩ2IΩ

2IΩ3IΩ

1PΩ

1PΩ

2PΩ

Figure 3. The driving hazard diagram.

Table 4. The security-based reward function.

Subfunction Category Calculation

rsa f e−I

ΩI1 max
(

exp(min(t1,t2)−5
2.5 ), exp(2)

)
ΩI2 max

(
exp(max(t1,t2)−5

2.5 ), exp(2)
)

ΩI3 exp(2)

rsa f e−P
ΩP1 − exp(4−min(t1, t2))
ΩP2 − exp(4−max(t1, t2))
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5. Experiments
5.1. Parameter Setting

In this section, we show the solid interaction scene designed through SUMO. Firstly,
based on this scene, the proposed reward function is compared with the traditional reward
function. The two algorithms were used to train four decision-making modes, and the
differences between different algorithms and modes are compared. Finally, the perfor-
mances of four decision-making modes based on the two algorithms are evaluated. The
main parameters for algorithms are listed in Table 5.

Table 5. Parameters of the graph reinforcement learning.

Parameters Value

Optimizer Adam
Nonlinearity Relu
Learning rate 0.005

Discount factor 0.99
Updating rate 0.05
Minibatch size 32

Multi-step 3

5.2. Evaluation Indexes

In order to further evaluate the test performance of each decision-making mode, four
kinds of evaluation indexes are proposed, namely, efficiency index, safety index, comfort
index, and task index.

1. Efficiency: The average longitudinal velocity of CAVs and all vehicles in this scenario
is proposed and used to evaluate the traffic efficiency of CAVs and the comprehensive
efficiency of total traffic flow under different decision modes. Their functions are
defined as follows:

v̄AVs =

n
∑

i=1

m
∑

j=1
vAV−ij

N
(29)

v̄s. =

n
∑

i=1

m
∑

j=1
vij

Nall
(30)

where vAV−ij represents the longitudinal velocity of the ith CAV detected at the jth
time step. vij is the longitudinal velocity of the ith vehicle detected at the jth time step.
N indicates the total number of CAVs’ longitudinal velocities detected in all-time
steps. Nall indicates the total number of all vehicles’ longitudinal velocities detected
in all-time steps.

2. Safety: Due to the presence of multiple CAVs in the test scenario, we define the
collision rate as the probability of each CAV collision accident in each episode.

pcollision =
Ncollision

NCAV
(31)

where Ncollision is the number of collisions in a single episode. NCAV represents the
number of CAVs.

3. Comfort: For the evaluation of comfort, we mainly studied the deceleration of all
vehicles under different decision-making modes. All vehicles’ total emergency braking
times Nbraking in a single episode are defined as comfort evaluation indexes. It should
be noted that the deceleration between (−∞,−4.5 m · s−2] is regarded as emergency
braking.
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4. Task: Based on the solid interaction between CAVs and HVs in the test scenario, the
driving task completion rates of CAVs and HV2 are used as the task indexes. Their
functions are defined as follows.

pCAV =
NCAV−Exit1

NCAV
(32)

pHV2 =
NHV2−Exit1

NHV2
(33)

where NCAV−Exit1 is the number of CAVs that left via “Exit 1”. NHV2−Exit1 indicates
the number of HV2 that left via “Exit 1”. NHV2 represents the number of HV2.

5.3. Validation of the Reward Function

The proposed reward function was used in GQN and MDGQN to train different
decision-making modes while improving training efficiency. In [27], the traditional reward
function only considers intention reward, speed reward, lane-changing penalty, and col-
lision penalty. In this article, this traditional reward function is used as the baseline, and
the reward of the CONP decision-making mode training process is compared. In order
to allow them to make a fair comparison based on the maximum and minimum reward
values they can achieve, the reward values in the training process are normalized.

As shown in Figure 4, using the proposed reward function for training can explore the
maximum reward rapidly. The traditional reward function’s training process experiences
repeated reward reductions, and the maximum reward cannot be explored in the specified
number of rounds. In addition, the training stability is greatly improved by comparing the
reward fluctuation in the training process with the baseline. After the 200th episode, the
average normalized reward values of Baseline-GCQ, CONP-GCQ, and CONP-MDGCQ
were 0.7399, 0.9882, and 0.9886, respectively; and their variances were 0.0871, 0.0028, and
0.0049. Under the condition of using the GQN algorithm, the CONP decision-making
model was 35.40% better than the average of baseline, and the variance is only 3.27% higher
than that of the baseline. In summary, the proposed reward function can promote the fast
convergence of the algorithm and greatly enhance the stability of the training process.

Figure 4. The comparison between the proposed reward function and baseline.

5.4. Training of Different Decision-Making Modes

As shown in Figure 5, under the four decision-making modes, the MDGQN algorithm
converged faster than GQN, and the fluctuation of reward decline decreased significantly.
This verified that MDGQN effectively alleviates the overestimation problem after using
the multi-step TD target and double Q-learning algorithm to explore the optimal action
more quickly. Based on MDGQN algorithm analysis, the AGGI decision-making mode
converged in the 80th episode. In contrast, the AGGP decision-making mode did not fully
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converge until the 160th episode, which further verifies that the reward and punishment
ratio of the reward function affects the convergence speed of the algorithm. In summary,
by comparing the four decision-making modes, the aggressive decision-making mode uses
more punishment than the conservative decision-making mode. The incentive decision-
making mode can promote the convergence of the algorithm faster than the punished
decision-making mode.

Figure 5. The training reward diagrams of four modes are compared and verified by the GQN and
MDGQN algorithms. (a) The AGGP decision-making mode, (b) the CONP decision-making mode,
(c) the AGGI decision-making mode, and (d) the CONI decision-making mode.

Furthermore, the training decision-making mode was tested, and the reward mean and
variance are compared. As shown in Figure 6, MDGQN explored higher reward thresholds
and averages than GQN in all four decision modes. Under AGGP, AGGI, CONP, and CONI
decision-making modes, the corresponding test reward variances of MDGQN were 93.91,
80.26, 64.71, and 87.10; these were less than 108.51, 108.19, 93.78, and 97.01 for GQN. It can
be concluded that the test stability of the CONP decision mode is the strongest, but the
ability to distinguish algorithm differences is poor. AGGI is the decision-making mode that
can best reflect the differences between algorithms, but the test stability decreases slightly.
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Figure 6. Test reward diagram of four decision-making modes. Orange represents the decision-
making mode using the GQN algorithm, and green indicates the decision-making mode using the
MDGQN algorithm. In the figure, the two ends of the error rod represent the maximum and minimum
values of the test values.

5.5. Evaluation of Decision-Making Modes

Based on Figure 7, the two algorithms are first compared. In the four modes, the
average speed of CAVs was better than that of GQN except for the CONI decision mode.
MDGQN performed better than GQN in the speed of total traffic flow under the four
modes. However, the proportion of CAVs’ average speed increase in the total traffic flow’s
average speed increase is less than 1. In the CONI decision-making mode, the average
speed of CAVs trained by MDGQN was lower than that of GQN, but the total traffic flow
speed increased. This shows that based on the designed reward function, the MDGQN
algorithm can obtain decisions that improve the total traffic efficiency by training CAVs. As
shown in Table 6, MDGQN had a lower collision rate, fewer emergency braking times, and
a higher arrival rate of CAVs and HV2 than GQN under the same decision-making mode,
except for a slight increase in the number of emergency braking incidents under CONP
decision-making mode. This can be analyzed from the corresponding data. Under the
CONP decision-making mode, the pHV2 of MDGQN was 0.717, which was 18.12% higher
than that of GQN. When the HV2 increases in “Exit 1”, the uncertainty of the scene will
enhance, increasing the number of emergency brake events. From the above results, it can
be concluded that the comprehensive performance of the MDGQN algorithm is superior to
that of GQN in this specific autonomous driving scene, and the MDGQN is more suitable
for solid, interactive, uncertain scenes.

Additionally, the four decision-making modes are compared. Compared with the
conservative decision-making mode, the aggressive decision-making mode had a higher
average speed, a higher collision rate, more emergency braking incidents, and a higher
vehicle arrival rate. Compared with the punished decision-making model, the average
speed of the incentive decision-making mode was slightly higher, the collision rate was
higher, the number of emergency braking incidents was higher, and the arrival rate of HV2
was further improved. Among the four decision-making modes, AGGI decision-making
mode had the highest traffic efficiency; CAVs and HV2 had the highest arrival rate, but
their collision rate and number of emergency braking incidents were are also the highest.
The collision rate and emergency braking incidents of CONP decision mode were the
lowest, but the traffic efficiency was the lowest, and the arrival rates of CAVs and HV2
were the lowest. Those performance differences are consistent with the weight coefficient
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allocation of the proposed reward function matrix. This fully proves that the proposed
reward function matrix can effectively train various decision-making modes to adapt to
autonomous driving scenarios.

Figure 7. Average longitudinal velocity of CAVs and total traffic flow under four decision-making
modes. The CAV-GQN means the average longitudinal speed of CAVs under the training of the
GQN algorithm. The CAV-MDGQN represents the average longitudinal velocity of CAVs under the
MDGQN algorithm training. The V-GQN indicates the average longitudinal speed of the total traffic
flow under the training of the GQN algorithm. The V-MDGQN indicates the average longitudinal
velocity of total traffic flow under MDGQN training. The two ends of the error rod indicate the
maximum and minimum values of the test values.

Table 6. Test evaluation results.

Modes Algorithm pcollision Nbraking pCAV pHV2

AGGP GQN 0.0111 3.1 0.991 0.763
MDGQN 0.0067 1.867 1 0.813

AGGI GQN 0.0133 3.567 1 0.93
MDGQN 0.0022 2.533 1 0.937

CONP GQN 0.0045 1.667 0.987 0.607
MDGQN 0.0 1.9 0.996 0.717

CONI GQN 0.0111 2.5 1 0.857
MDGQN 0.0045 2.3 1 0.83

6. Conclusions

We proposed a reward function matrix, including a decision-weighted coefficient
matrix, an incentive-punished-weighted coefficient matrix, and a reward–penalty function
matrix. By adjusting the weight coefficient of the reward function matrix, various decision-
making modes can be trained. We trained four decision-making modes, namely, AGGI,
AGGP, CONI, and CONP; and the GQN algorithm and the MDGQN algorithm based
on GQN improvement were used for verification by comparison. A large number of
simulation results proved the following three conclusions. Firstly, the proposed reward
function can promote the fast convergence of the algorithm and greatly improve the
stability of the training process. Taking the CONP decision-making mode as an example,
the average normalized reward value after the 200th round was 35.40% higher than that of
the baseline, and the variance was only 3.27% greater than that of the baseline. Secondly,
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the comprehensive performance of the MDGQN algorithm is superior to that of GQN.
Under the four decision-making modes, the averages and variances of test reward values
of MDGQN are better than those of GQN. In terms of driving performance, MDGQN
performs better than GQN, except that the number of brakes increases slightly in CONP
decision-making mode. Finally, the proposed reward function matrix can effectively train
various decision-making modes to adapt to different autonomous driving scenarios. With
an increase in incentive weight, the comparison effect of the algorithm is more obvious,
but the security will decrease. In our future work, we will further study the interactions of
autonomous vehicles and decision mode switching.
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Appendix A

In the training process of decision-making mode, we adjusted different weight co-
efficients to find a mode with high comprehensive performance. To better validate the
effectiveness of the proposed reward function matrix at training different decision patterns,
we list four other sets of parameter settings, as shown in the Table A1.

Table A1. Parameter settings.

Modes kr ke kc ks kI0 kP0

(a) 0.1 0.1 0.2 0.6 0.6 0.4
(b) 0.4 0.4 0.05 0.15 0.6 0.4
(c) 0.25 0.35 0.15 0.25 0.75 0.25
(d) 0.2 0.2 0.25 0.35 0.7 0.3

The simulation results are shown in Table A2. From this we can conclude that too
much of an increase in the proportion of safety will lead to a decline in the completion
rate of the driving tasks, especially CAVs’ loss of the driving task objectives. Excessive
increases in the proportions of the driving tasks and efficiency can lead to a rapid decline
in safety. An increase in incentive rewards will lead to a decrease in security, and higher
task completion rate and efficiency. Based on the above results, four groups of reasonable
parameters were selected, and four decision models, CONP, CONI, AGGP, and AGGI,
were trained.

Table A2. Test evaluation results.

Modes v̄ pcollision Nbraking pCAV pHV2

(a) 20.872 0.033 1.967 3.733 10.967
(b) 21.747 1.367 7.833 9.733 15
(c) 21.581 0.333 4.367 9.633 15
(d) 21.41 0.233 2.8 8.933 15
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