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Abstract: This paper introduces Detection Metrics, an open-source scientific software for the assess-
ment of deep learning neural network models for visual object detection. This software provides
objective performance metrics such as mean average precision and mean inference time. The most
relevant international object detection datasets are supported along with the most widely used deep
learning frameworks. Different network models, even those built from different frameworks, can
be fairly compared in this way. This is very useful when developing deep learning applications
or research. A set of tools is provided to manage and work with different datasets and models,
including visualization and conversion into several common formats. Detection Metrics may also be
used in automatic batch processing for large experimental tests, saving researchers time, and new
domain-specific datasets can be easily created from videos or webcams. It is open-source, can be
audited, extended, and adapted to particular requirements. It has been experimentally validated.
The performance of the most relevant state-of-the-art neural models for object detection has been
experimentally compared. In addition, it has been used in several research projects, guiding in
selecting the most suitable network model architectures and training procedures. The performance of
the different models and training alternatives can be easily measured, even on large datasets.

Keywords: object detection; open-source; software tools; model evaluation

1. Introduction

The detection of objects on images and videos is a foundational area of research in
computer vision consisting of location and classification of class instances of objects on
images. It has gained enormous popularity in the last decade thanks to some milestone
advancements, which can be observed in the number of high-quality reviews published
recently on this topic [1–7]. The number of real-life applications that implement it also
exposes its importance. It is used on autonomous driving applications [8] that need to
understand the nature of the surrounding objects or in-camera filters and effects based on
objects, for example, faces [9]. Detection of objects in retail scenarios [10] can be another
application area or even traffic monitoring, as investigated in the Experimental Results
section of the present paper.

This progress has occurred due to a sequence of favorable factors and remarkable
events. For example, the great variety of massive open access quality datasets focused
on object detection and the development of deep learning architectures, especially convo-
lutional neural networks, with an impressive performance that have become notorious
over time. The availability of high computational power provided by GPUs is another
factor that has influenced this great scientific progress in the last few years. In the datasets
side, COCO [11], Imagenet [12], Pascal VOC [13], Princeton [14], Spinello [15] and Open
Images Dataset [16] are some of the most commonly adopted for this topic. These object
detection datasets and deep neural network models are constantly improved, reaching
better performance results over time and proving the current importance of this problem
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in research and industry. Nevertheless, the object detection problem is not yet completely
solved, exhibiting flaws in situations such as small object detection [17] or traffic sign
detection [18].

The object detection datasets are typically generated using software tools for anno-
tation [19], labeling the ground truth class and bounding box for each interesting object
instance that the model will learn on every image on the dataset.

Learning from a dataset with only a few annotated examples for each class, known as
few-shot learning, is also a current topic of interest in object detection [20,21]. It is partly
based on the evidence that humans only need a few examples or even one to learn to
classify an object and distinguish it. Other predominant areas of computer vision that are
closely related to object detection and whose research usually improve in parallel are image
classification [22] and image segmentation [23–25].

Developing a deep neural network model for object detection involves several steps.
One of the steps is to select the deep learning framework to code the actual network
architecture. The available options comprise TensorFlow [26], Caffe [27], Darknet [28],
Keras [29] or PyTorch [30]. Another step could be selecting one of the commonly used
architectural techniques for constructing the network. Some of them are Faster Regional-
CNN [31], Single Shot MultiBox Detector [32] and You Only Look Once (YOLO) [33].

Additionally, the typical workflow involves trial and error, changing some hyperpa-
rameters in the network architecture and retraining it several times to improve its perfor-
mance results. This situation brings the problem of objectively compare the performance
of those different trained neural network models with the same conditions so a developer
can quickly understand which model is better for a use case. The main contribution of
this paper, the Detection Metrics software tool, aims to help researchers in the testing of
object detection neural networks by providing objective performance metrics (on massive
datasets) so the user can easily compare different networks or training parameters and
see which one performs better. Its application is not focused on any particular task inside
object detection so it can be applied to a variety of projects. Several different tools form
Detection Metrics, providing each one with some helpful features to objectively compare
different neural network models for object detection. The Detection Metrics toolkit is open-
source and it is accessible via https://github.com/JdeRobot/DetectionMetrics, accessed
on 27 April 2022.

2. Related Work

In this section, we conduct a review of relevant state-of-the-art related work in object
detection using deep learning.

2.1. Datasets

In recent years, the research community has introduced many free-access image
datasets for object detection. Some of them include competitions that have helped boost the
advancements in object detection and computer vision in general. Some of them, supported
in Detection Metrics, are the following:

• ImageNet [12]: ImageNet is the largest public collection of images, containing 14,197,122
samples, where 1,034,908 images have been annotated with bounding boxes, ideal for
training and evaluating object detection models.

• Pascal VOC [13]: Pascal VOC’s 2012 release contains 11,530 images in training and
validation datasets, spanning 20 classes. It encloses a total of 27,450 bounding box
annotated objects.

• Spinello dataset [15]: Spinello is a dataset consisting of 3000+ RGB-D images captured
using a Microsoft Kinect containing people. It focuses on person detection and tracking
in 3D space.

• Princeton RGB dataset [14]: This dataset contains 100 RGB-D videos of high diversity
focused on the design and comparison of tracking algorithms. It is similar to Spinello
and also uses a depth sensor to capture images.

https://github.com/JdeRobot/DetectionMetrics
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• Common Objects in Context (COCO) [11]: COCO is designed for both object detection
and segmentation. It contains around 330,000 images of which 200,000 are labeled,
containing 1.5 million object instances in total.

• Open Images Dataset [16]: Open Images Dataset V6 is the largest existing dataset with
object location annotations, containing 1.6 M images with 16 M bounding boxes for
600 object classes.

Even though they are not natively supported in Detection Metrics, there are additional
image datasets focused on more specific tasks, such as traffic signs [34], small object
detection [35] or human detection in crowd scenarios [36]. Since Behavior Metrics is open-
source, support for new datasets can be implemented easily.

2.2. Frameworks

Object detection deep learning models are implemented using different deep learning
frameworks [37] instead of coding everything from scratch. These frameworks have
common pre-built code components, ready to use and optimized for performance, making
it easier for a programmer to build a model. These frameworks are often open-source,
are developed in the most common programming languages such as Python or C++ and
some have additional support from private companies. For example, Google develops
Tensorflow [26] and Keras [29]. Both frameworks provide instruments to create networks
based on tensors, with Tensorflow providing a deeper control for the user and Keras acting
as a wrapper for Tensorflow’s functionality. PyTorch [30] is an open-source framework
developed by Meta that has gained strong popularity among the research community in the
last few years. Additionally, Caffe [27] and Darknet [28] are other open-source frameworks.

2.3. Performance Metrics

Various performance metrics are frequent in object detection benchmarks. They help
understand the performance of the different architectures and decide the most suitable
option for a concrete scenario. A model with a slightly worse performance result on some
metrics but, for example, with a better mean inference time, could be more useful in certain
conditions than others with different results. Some of the most common metrics in object
detection that are also present in Behavior Metrics for evaluation are:

• Average Precision (AP): Fraction of the total amount of correct predictions. Ranges
from 0 to 1.

Precision =
True positives

True positives + False positives
(1)

• Average Recall (AR): Fraction of the total amount of predictions that are detected.
Ranges from 0 to 1.

Recall =
True positives

True positives + False negatives
(2)

• Mean Average Precision (mAP) and mean Average Recall (mAR): We usually consider
a range from 0.5 to 0.95 for Intersection over Union (IoU). The IoU metric compares
the ground truth bounding box with the detected ground truth and retrieves a value
between 0 and 1, indicating how close the detected bounding box is to the ground
truth. The higher the value of IoU, the closer to the ground truth bounding box. In the
present work, mAP and mAR with IoU values from 0.5 to 0.95 is calculated (IoU =
0.5:0.95) for the dataset classes.

IoU =
Area o f overlap
Area o f union

(3)

• Mean inference time: Average time spent generating predictions. In milliseconds,
the importance of these metrics depends on the scenario where the model is ap-
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plied. This metric could be relevant in environments that imply generating fast and
precise answers.

2.4. Network Models

There are two main groups in the classification of object detection network architec-
tures: Region Proposal-Based Framework and Regression/Classification-Based Framework,
as classified in [3]. In the first one, a chain of correlated steps is conducted. These differenti-
ated steps usually lead to a bottleneck in real-time. In the second group, the techniques are
based on regression and only involve one global step, improving the computation time.

Other methods have introduced transformer architectures [38] that base their work-
flow on attention mechanisms and have obtained remarkable experimental results with a
promising future [39,40].

We briefly introduce an explanation of three of the most successful network archi-
tectures, including Faster Regional-CNN (Faster R-CNN) in the Region Proposal-Based
Framework group and Single Shot MultiBox Detector (SSD) and You Only Look Once
(YOLO) in the Regression/Classification-Based Framework group.

2.4.1. Faster Regional-CNN

Faster R-CNN [31] is a multi-component detector comprising a Region Proposal
Network (RPN) that first generates highly probable regions. Later layers classify these
region proposals and, in the last step, a bounding box regressor reduces the localization
error of the predicted bounding boxes. Faster R-CNN is an improvement upon R-CNN
and Fast R-CNN to make it more real-time and robust. Faster R-CNN also generates much
fewer region proposals compared to R-CNN and Fast-RCNN leading to reduced detection
time while simultaneously maintaining detection accuracy.

Stages in Faster R-CNN:

• Anchor generation: Anchors are regions that may contain an object. So, anchor
generation must be as thorough as possible because if a particular region is mixed
then there is no way that it would be detected in the succeeding layers. These anchors
are later refined using a bounding box regressor to reduce the localization error to
better localize objects. Anchor Generation uses sophisticated algorithms to cover the
whole image, such as selective search, which is later fed into the Region Proposal
Network (RPN).

• Region Proposal Network: The job of this component of the network is to generate
regions with a high probability of containing objects. It takes anchors as input and
produces highly probable regions. Again, if a region containing an object is not
proposed then there is no way that the component would detect it in the following
layers. Moreover, the number of regions should be as low as possible to reduce
detection time and as thorough as possible to reduce false negatives.

• Classifier and bounding box regressor: The final component of the network classifies
proposals from RPN into an object class or background (i.e., negative or no object
present). Classification occurs first and then its results are better localized to reduce
the localization error or to accurately place the bounding box on the classified object.
This component regresses four parameters, namely x, y, w, and h, where x and y are
the top-left coordinates and w and h are the width and height of the bounding box.

2.4.2. Single Shot MultiBox Detector

SSD [32] (SSD) proposes a more unified approach toward object detection compared
to Faster R-CNN in which detections are generated in a single forward propagation of a
unified network. This approach uses different techniques to propose regions. The whole
working pipeline, including region proposal, classification, and bounding box regressor (to
reduce localization loss), is part of a single unified network, which significantly increases
the prediction speed.
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Grids which can be 8 × 8 or 4 × 4 divide the given image into grids. For each box
present in the grid, SSD predicts the offsets for the bounding box present in that grid
and the confidence score (probability of each class in the particular region) for all object
categories. Then each box is matched to a single class, and the final results are used to
compute loss, including both classification and localization loss.

2.4.3. You Only Look Once (YOLO)

The idea of SSD’s unified detection inspired this network architecture. It also uses a
similar system to the one introduced by SSD to propose regions for further classification
and regression.

Similar to SSD, YOLO [33] also divides the input image in a grid, and the grid size is
variable (i.e., depends on the dataset and the type of problem it is being used for). Assum-
ing a grid size of S × S, for each grid cell B bounding boxes are generated where B is also a
variable and depends on the dataset and the type of problem it is being used for. For in-
stance, B = 2 for Pascal VOC dataset. After generation, these bounding boxes are sent for
classification and regression, to output final bounding box predictions. Additionally, YOLO
also has a very creative loss function, which takes care of both the classification and local-
ization error, i.e., a single combined loss function is used to minimize both classification
and localization error.

The prime selling point of YOLO was real-time detection which was made possi-
ble by using its unified network proposal. The accuracy for YOLO is great, in certain
cases lower than other network models but the speed is high, making its use in real-time
scenarios possible.

From its initial release, several improvements have been applied to YOLO until the
last versions available, YOLOv4 [41] and YOLOv5 [42]. For example, in YOLOv3 [43],
bounding boxes using dimension clusters as anchor boxes are included, proposed in [44] or
a hybrid feature extractor approach between YOLOv2 and residual networks. YOLOv4
and YOLOv5 follow the same idea of incremental improvements taking different ideas that
have been proven to work and making YOLO more efficient.

3. Detection Metrics Tool Kit

Detection Metrics, the main contribution of this project, is a multi-platform command-
line and graphical software application that provides several tools for comparing deep
learning architectures for object detection images. Its GUI is based on Qt framework
(see Figure 1) and written in C++. The software application is supported by the most
common operating systems providing it as a Docker image. Thanks to this technology, the
functionality remains the same independently from the platform. It accepts neural network
architectures trained using different frameworks: Tensorflow 2, Keras 2, PyTorch 1, Caffe
2 and Darknet (provided using the YOLO-OpenCV 4.2 module). Additionally, Detection
Metrics provides support for a wide variety of dataset formats, having COCO, ImageNet,
Pascal VOC, Princeton RGB, Spinello, and Open Images datasets supported.

The application supports two primary use cases: batch evaluation (headless mode) and
live detection. The following sections cover these use cases in detail. A third supported use
case is using Detection Metrics as a ROS Node inside a distributed application. The nodes
are the building blocks of the applications in the Robot Operating System (ROS) approach.
In this workflow, Detection Metrics acts as an executable node integrated in the distributed
robotics application. It is a node that performs live detections, shares them with other
ROS nodes, captures datasets, and stores metrics. For example, a ROS based application
for a robot endowed with an onboard camera may use Detection Metrics this way for
experimentally comparing object detection deep learning models.
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Figure 1. Detection Metrics GUI. The user can select the tool to use from the tool kit and enter the
parameters directly using the graphical interface. In addition to the GUI, the headless mode is also
available using the command-line and a configuration file to access the functionality.

3.1. Global Architecture and Workflows

The simplified architecture of the application can be illustrated as a black box (see
Figure 2). It usually receives a batch of datasets and a group of deep learning trained models
and it outputs objective metrics for the experiments generating predictions using the deep
learning models over the datasets provided. This workflow is the headless evaluation.

Detection
Metrics

Datasets

Metrics
Deep

learning
models

Figure 2. Detection Metrics illustrated as a black box diagram. Detection Metrics receives a batch of
datasets and deep learning models as input, calculates all the metrics from combining the datasets
and deep learning models and finally outputs the metrics results.

Inside the black box, the application uses several tools that can also be used indepen-
dently, especially when using the graphical part of the application. This use case allows the
researcher to run several trained models over a batch of datasets easily at the same time,
comparing their experimental performance and obtaining an idea of what is the best model
for the problem that they are trying to solve.
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Going into the detail of the architecture, there are six differentiated building blocks
that integrate the tool set (see Figure 3). They are the Viewer, Detector, Evaluator, Deployer,
Labeling and Converter. These six parts can be combined in three divided sections. Two of
them are the main workflows or modules.

VIEWER

DETECTOR DEPLOYER

CONVERTER

EVALUATOR

LABELLING

Input images

Annotations

Generated
annotations

Object detection
model

Generated
annotations

Input source

Input images

Annotations

Input images

Annotations

HEADLESS EVALUATION

LIVE DETECTIONS VISUALIZATION

DATASET CONVERTER

Figure 3. General Detection Metrics architecture. The software provides three main use cases:
headless evaluation, live detections visualization and dataset converter. Each of them has a set of
tools (in blue), that can be used individually or combined.

The second use case is live detection visualization. The main difference with the
headless evaluation is that the sources for the live detection can be videos or live streams,
for example, cameras. They generate detection online predictions and these predictions can
be saved or even modified with the Labeling functionality. Finally, the Converter remains
disconnected from the rest of the modules and common pipelines. Its application is the
conversion between datasets formats.

Viewer is a tool used to display annotated datasets that is not part of the main work-
flows. When evaluating using the GUI, this means that while running, the user can view the
detections the model is generating and compare them with the ground truth because both
images and annotations are displayed. This tool supports several dataset implementations:
COCO, Imagenet, Pascal VOC, Princeton RGB, Spinello and Open Images dataset. It also
supports displaying and labeling depth images (for the datasets that give support to this
feature) by converting them into a human-readable depth map.

Images are displayed one by one, showing the image with its corresponding de-
tected objects with a bounding box and a tag label naming the class group it belongs to.
The bounding box and label have different colors depending on their detected prediction.

When used separately from the evaluation, it provides slightly different functionality.
Given a set of images and annotations, it displays them one by one. Additionally, the final
annotated images that Viewer displays can be further filtered based on some specific classes
(i.e., only particular classes will be labeled and only images containing those specific classes
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are displayed). This option can be interesting when looking for images that contain objects
belonging to a specific class.

3.2. Headless Evaluation

The headless evaluation is one of the main use cases of the application. This mode is
accessible directly via command-line. A researcher can determine a set of experiments that
will run independently and unattended (fully autonomous), retrieving the final experiment
report with the objective metrics that will help detect flaws and advantages for each model
in each scenario.

This mode, as explained above, receives a batch of datasets and deep learning models,
runs the inferences for each model over each dataset, and outputs objective metrics. In-
side this process, three Detection Metrics tools are involved: Viewer, Detector and Evaluator.
When working detached as headless, these three tools work together as one but they are
additionally available separately when using the graphical user interface (GUI) application.

3.2.1. Detection Generation

Detector tool is responsible for generating a new annotated dataset with predicted
labels given a neural network trained model and a dataset. The generated dataset contains
the images with the detected objects, their position in the image, and probabilities for the
predictions. Different inference frameworks are supported: TensorFlow, Keras, Darknet,
Caffe and PyTorch. When this tool is run, it also communicates with the Viewer to show
the detections with the ground truth, giving an intuition of the performance visually.

In order to provide the different frameworks support, Detector has interfaces for each
of them, connecting the actual deep learning framework to the tool in an agnostic way that
prevents the user from facing any complexity. Thanks to the modularity of the Detector
tool and the fact that the project is open-source, when new deep learning frameworks are
created, they can be added without modifying the inner structure of Detector. In addition,
the engineer or scientist saves evaluation time since they create the experiment description
structure and it runs autonomously without explicitly consider the differences of the
underlying frameworks or dataset structures and only focuses on the experimental results.

The console provides log information about the execution. This information shows for
each image the predicted detected objects classes with their probabilities sorted. Addition-
ally, information about the mean amount of time spent inferring the images is shown, a
metric that is usually evaluated when the model is supposed to run in a live environment,
instead of a situation where the inference time is not critical.

3.2.2. Evaluation of Detections with Objective Metrics

Evaluator can evaluate two annotated datasets with the same dataset format on a
fully autonomous basis considering one as the ground truth and the other as the generated
detections dataset. Evaluator supports mAP and mAR metrics as described in the related
work section of this paper or more detailed in COCO dataset paper [11]. It outputs mAP
and mAR performance metrics for each class and for a range of IoU thresholds.

Every object detection in an image will be evaluated, comparing the detection in both
datasets. Since the evaluation procedure in the application is written in C++, it provides
faster performance than the original COCO toolbox written in Python. This procedure is
done for every image in the dataset, loading, comparing and then releasing the resources,
making a fair comparison.

When running in headless mode, the set of experiments is evaluated after the two
previous steps and then creates a report in csv format with the experimental information.

Using the GUI, Evaluator can also be used independently, providing additional fea-
tures. The evaluation can be further filtered by a specific object class from the detected
dataset, so only the classes selected will be considered during the evaluation. There are two
types of IoU available in Evaluator: bounding boxes and masks. Additionally, the different
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person classes available in some of the dataset class names can be merged into just one
person class that contains all the different ones.

3.3. Live Detection Visualization

The second main use case is live detection visualization. One of the main differences
between this use and the headless is the input source. For the Deployer, the main tool used
for this use case, the input can be a video file or even a stream of images coming from a
video camera—for example, a webcam. It receives the input and generates predictions in
real-time on the images it receives, using the provided deep learning trained model.

Once the desired network model and framework for inferring have been chosen, the
tool displays a video player that plays the input while displaying the objects detected with
their class names in real-time. If the input is a video file, two video players are displayed,
one of them with the raw video and the other one with the video and detected objects,
similarly to Detector. This video player offers the flexibility to pause and play it again or go
back and forward in the playback frame by frame. Another feature provided by Deployer
is the confidence threshold (minimum value to consider a detection) that can be adjusted
to different values to show the differences in the inferences in real-time. This will affect
the real-time detections in the video since if the threshold is set to a high value the number
of objects that will be found in a frame will probably be lower and the other way around,
while the video plays, the console outputs the detected objects for each frame of the video
with the percentage of confidence and the time spent on inferring.

The predicted labels can be saved to an output file if needed, setting an output folder,
which for example can be used to create new image datasets with annotations from a video
record or webcam output.

Labels Correction on Demand

Deployer provides the user with different tools related to labeling a dataset. The idea
of generating human-annotated datasets has previously been described [19] and it is useful
to complement the deep learning approach and its possible errors. This functionality is
provided in the video player created when using Deployer.

• The first feature is the possibility of adjusting the bounding boxes generated. The user
can adjust the size and position of a certain detection bounding box stopping the video
when the error is found and then adjusting the distribution of the box to the object.

• The second feature is changing the class name for every detected object. This means
that a user can select a detected bounding box in the video image and change the class
name in real-time to one of the class names provided or to a completely different one,
also having the chance of adjusting the probability of the selection.

• The third feature is related to the previous ones and is adding new detections. The user
can draw a new bounding box in a stopped frame and then give this a class name
and probability.

This workflow can be interesting for generating completely new datasets for research
of industrial purposes, creating first the proposals that some object detection model predicts
and then adjusting the result by modifying the predicted bounding boxes and predicted
classes or adding new predictions that are relevant for a specific task.

3.4. Dataset Converter

The dataset formats are usually specific for a certain implementation, so the purpose
of this tool is to convert a dataset format into another format. This tool receives as input
a dataset with the objects class names that are supported by it and the type of dataset
format it implements. It needs the type of dataset as input to create a reader, a tool that
understands the format for a specific dataset. The format implementation of the wanted
dataset to be converted is also needed, so Detection Metrics creates a writer, another tool
that knows how to write on a specific dataset format. Converter also gives the opportunity
of filtering by object classes if it is provided with a set of class names, so a user can select
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which object classes to consider in the output dataset or even map the object classes to
writer classes in the output dataset. This means that in the case that the object class names
in the input and output dataset are different, the application tries to map from the input
class names to the output ones, considering the common class name connection between
the common datasets and also considering synonyms.

The converted dataset can be split into test and train parts. To do so, a training ratio is
provided to the tool and it divides the dataset into two separated parts. This option can be
useful to create divisions of the converted dataset.

After the conversion is completed, Viewer functionality can be used to display the
converted dataset and make sure the process is completed successfully or it also can be
used with the different tools provided by Detection Metrics.

4. Experimental Results and Discussion

This section describes two experiments conducted using Detection Metrics software.
In the first experiment, we compare the performance of the most well-known state-of-
the-art detection networks and validate the published results from the original network
authors. In the second experiment, we demonstrate its usage in a real research application
and how it has been used in the development process. It allows the iterative improvement
of the networks providing objective feedback about their performance with real data. Both
experiments validate the broad range of applicability of this scientific software.

4.1. Comparison of State-of-the-Art Detection Networks

In this experiment, four different pre-trained object detection networks are evaluated
using Detection Metrics. The goal is to compare the results obtained by the toolkit with
those published by the original authors. The selected networks include several popular
object detection methods [3]: SSD, Faster RCNN and YOLOv3. In the process, the Headless
evaluation mode of Detection Metrics (Figure 4) was used. The measured performance
metrics are compared among them and also with those published by the authors.

DETECTOR
EVALUATOR

Input images

Annotations

Generated
annotations

Object detection
model

SSDInceptionv2

YOLOv3

Faster RCNN Resnet101

Faster RCNN Resnet50 FPN

COCO minival
Results

Figure 4. Experiment pipeline using headless evaluation. Detection Metrics receives a set of deep
learning models and a dataset and generates annotations with Detector that are the input to Evaluator
for obtaining the experimental results.

The evaluation dataset is COCO minival, a small subset of COCO’s validation set.
Since the dataset is part of the validation set, some networks could be biased towards
having greater performance than the real one (with a test dataset which they have not ever
seen) because they were trained on the COCO dataset. The experiments were run on an
Nvidia GeForce GTX 1080 GPU.

The selected networks are an implementation of SSD Inception v2, a Faster RCNN
Resnet 101, YOLOv3 and a Faster RCNN Resnet 50 FPN. The first and second are down-
loaded from the TensorFlow detection model zoo [45]. It offers a broad variety of pre-trained
networks with metrics. For YOLOv3 the configuration and weights were downloaded from
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the official documentation and the fourth is included in PyTorch vision model zoo [46].
With this set of different networks, the wide variety of frameworks supported is shown
in a real experiment, involving in this experiment TensorFlow, PyTorch and the YOLO-
OpenCV module.

In Table 1, the results obtained are shown. For SSD Inception v2, YOLOv3 and Faster
RCNN Resnet101 networks the mean inference times are close to the ones provided by the
original researchers, slightly higher for the experiments conducted with Detection Metrics.
This is probably due to the different GPU used and computational load at the time of the
experiment on the computer. TensorFlow’s pre-trained networks and YOLOv3 official
results were obtained using an Nvidia GeForce GTX TITAN X card. Regarding the Faster
RCNN Resnet50 FPN network the difference is significant, maybe because this PyTorch’s
pre-trained network was tested by its authors using 8 V100 GPUs and in the experiment
with Detection Metrics a single one GPU was used.

Table 1. Comparison of official network results with results generated using Detection Metrics. Our
software is used to replicate official results of common network architectures programmed in different
deep learning frameworks, probing the software capabilities for working with different frameworks
and providing common metrics that match the official results. The result x is used when the official
results do not give that information.

Network Framework Published
mAP

mAP Using
Detection

Metrics

Published
mAR

mAR Using
Detection
Metrics

Published Mean
Inference

Time

Mean
Inference

Time Using
Detection
Metrics

SSD
Inceptionv2

TensorFlow-
Keras 0.24 0.27 x 0.31 42 44

YOLOv3 Darknet 0.55 (IoU = 0.5) 0.47 (IoU = 0.5) x 0.5 (IoU = 0.5) 29 31
Faster RCNN

Resnet101
TensorFlow-

Keras 0.32 0.37 x 0.43 106 122

Faster RCNN
Resnet50 FPN PyTorch 0.35 0.37 x 0.46 59 102

Detection Metrics considers both AP and AR in the evaluation, providing these metrics
from a IoU of 0.5 to 0.95 and the mean of each metric for that range. The mAP measured
values are also approximately equal to those published by the original researchers, with
slightly better numbers when using Detection Metrics in general. The numbers confirm
the results provided by the authors of each network. Regarding the network comparison,
YOLOv3 is the best-performing network in mAP, as expected.

With this experiment, the use of Detection Metrics for the validation of the results
of widely used detection network models and their cross-framework comparison has
been illustrated.

4.2. Usage on a Deep Learning Real Research Application

This section presents the use of Detection Metrics in the development of a real appli-
cation, Smart-Traffic-Sensor [47]), proving its usefulness and the added value it provides.
This real application monitors road traffic using computer vision. It continuously receives
road images as input and generates as output the images with the detected objects, their
classification, their predictions and some traffic statistics (see Figure 5).

For this experiment, four neural network architectures were trained using different
frameworks (Tensorflow, Darknet and Keras) in the task of detecting vehicles in different
lightning and camera conditions. Their performance was compared using Detection Metrics
software, especially the automatic Headless evaluation, following a similar strategy as
displayed in Figure 4 but with a different set of networks and dataset. These architectures
are SSD with a VGG-16 backbone [48], SSD with MobileNet v2 [49] backbone, YOLOv3 [50]
and YOLOv4 [41]. For both YOLOv3 and YOLOv4 models, pretrained instances were
first used, prior to the retrain with the custom dataset. The models were generated using
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different deep learning frameworks, showing that Detection Metrics supports all of them.
A new dataset with 9774 real traffic images was also created using Detection Metrics [47].

Figure 5. Smart-Traffic-Sensor application has two windows. The window where the options are
selected via mainly check-boxes and results are shown as text and the window where the results
are shown graphically while the application is running. In the second window, the selected video is
played and the detected cars are displayed with a bounding box and their identification.

In Table 2, the comparison of the used networks, obtained using the automatic Head-
less evaluation, is shown. The metrics used to compare the performances are mAP, mAR
and the mean inference time in milliseconds. A value of 0.5 is considered as the IoU thresh-
old to consider a prediction as having enough quality to be considered correct. In each
row, a different neural network is considered and in the columns, the output statistics are
displayed. The experiments were conducted on a computer with a GeForce RTX 3070 GPU.

Table 2. Results of the comparison of networks extracted using Detection Metrics. The results from
this experiment were extracted using the software presented in this work. Combining different
deep learning frameworks and network architectures, Detection Metrics generates results based on
common metrics that provide information for comparing the different strategies easily.

Network Framework Transfer
Learning mAP mAR Mean Inference

Time (ms)

SSD VGG-16 Keras Yes, retrained 0.7478 0.7831 13
SSD MobileNet v2 TensorFlow Yes, retrained 0.5484 0.6136 10

YOLOv3 Darknet No, pretrained 0.4577 0.5843 34
YOLOv3 Darknet Yes, retrained 0.8926 0.9009 15
YOLOv4 Darknet No, pretrained 0.4799 0.5879 24
YOLOv4 Darknet Yes, retrained 0.9056 0.9670 13

The results show that the best performing model is the YOLOv4 with transfer learning
using the real traffic dataset, which is used in the final Smart-Traffic-Sensor application.
The results for YOLOv3 are close to those for YOLOv4.

In another experiment, Detection Metrics toolkit was also used to compare the per-
formance of Smart-Traffic-Sensor and Traffic-Monitor [51], a previous version of the ap-
plication that did not use deep learning techniques at al. Instead, Traffic-Monitor was
based on Support Vector Machines (SVM). The traffic dataset was divided into three dif-
ferent groups, as illustrated in Figure 6: the first one contains images whose conditions
are easy to detect (good lightning conditions and high camera resolution), and the second
one includes images where the weather conditions are bad and the third one low-quality
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images. This dataset was the input for Smart-Traffic-Sensor and Traffic-Monitor. Table 3
shows and compares the measured performance computed with Detection Metrics. In the
comparison, two versions of Smart-Traffic-Sensor are considered, one using YOLOv3 and
another using YOLOv4. The best performance for both mAP and mAR metrics is obtained
by Smart-Traffic-Sensor with YOLOv4 for every group of images, obtaining an important
improvement from the previous version based on classical machine learning techniques.
The enhancement is even greater in bad weather images.

Figure 6. The dataset used for developing Smart-Traffic-Sensor includes different image types: low
quality, bad weather and good conditions (good lightning conditions and good camera resolution).

Table 3. Comparison of systems in different types of dataset images using Detection Metrics.
The toolkit provides common detection statistics not only for deep learning systems but also for
systems of different nature (Traffic-Monitor).

Dataset Image Type Good Conditions Bad Weather Poor Quality

System Type mAP mAR mAP mAR mAP mAR

Traffic-Monitor 0.4374 0.5940 0.2407 0.3162 0.4479 0.6303
Smart-Traffic-Sensor YOLOv3 0.8926 0.9009 0.9899 0.9926 0.9439 0.9444
Smart-Traffic-Sensor YOLOv4 0.9056 0.9670 0.9904 0.9949 0.9902 0.9911

5. Conclusions

Detection Metrics, an open-source scientific software for the automatic evaluation of
deep learning object detection models, has been presented in this paper and it is its main
contribution. We have described its two main workflows for working with object detection
networks and large datasets. First, Headless evaluation (Section 3.2), which automatically
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runs several models independently across large image datasets returning predicted object
and experimental objective metrics. Second, Live detection visualization (Section 3.3),
which allows users to see the predicted detections on the screen on real time. We have
proven how the described workflows and the extra tools available in the toolkit can be used
by researchers to develop object detection applications and quantitative objective deep
learning model comparisons.

Two experiments have been conducted. The first one replicates the published results
from original authors of widely used state-of-the-art detection networks. The second one
was the development of a real-world application using DetectionMetrics to create a domain-
specific dataset of annotated images and to provide feedback about different detection
networks to be embedded in the final application. In this experiment, the application
helped in the decision of the best solution for the particular requirements of the research
project. With them, we have demonstrated some of the toolkit’s possible use cases and its
usefulness in the decision process, saving time for the researchers.

Additionally, the toolkit is open-source, its code can be audited, modified, or extended
for different needs of particular scenarios and other use cases, due to its modularity.
Its source code is available at https://github.com/JdeRobot/DetectionMetrics, accessed
on 27 April 2022.
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