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Abstract: Traditional machine learning methods rely on the training data and target data having
the same feature space and data distribution. The performance may be unacceptable if there is a
difference in data distribution between the training and target data, which is called cross-domain
learning problem. In recent years, many domain adaptation methods have been proposed to solve
this kind of problems and make much progress. However, existing domain adaptation approaches
have a common assumption that the number of the data in source domain (labeled data) and target
domain (unlabeled data) is matched. In this paper, the scenarios in real manufacturing site are
considered, that the target domain data is much less than source domain data at the beginning, but
the number of target domain data will increase as time goes by. A novel method is proposed for fault
diagnosis of rolling bearing with online imbalanced cross-domain data. Finally, the proposed method
which is tested on bearing dataset (CWRU) has achieved prediction accuracy of 95.89% with only
40 target samples. The results have been compared with other traditional methods. The comparisons
show that the proposed online domain adaptation fault diagnosis method has achieved significant
improvements. In addition, the deep transfer learning model by adaptive- network-based fuzzy
inference system (ANFIS) is introduced to interpretation the results.

Keywords: domain adaptation; imbalanced cross-domain data; domain transfer; ANFIS

1. Introduction

In the era of the “Industry 4.0” revolution, the stability and reliability of the mechanical
equipment is the key to maintaining consistent product quality and whether small faults
can be diagnosed in time is a necessary way to ensure the function of the entire mechanical
system and avoid total failure. Bearings are one of the most important components of
mechanical equipment. The bearing fault may lead to serious safety issues. In recent
years, many machine learning technologies have been widely and successfully used in the
field of bearing fault diagnosis [1–5]. However, the traditional machine learning methods
rely on the training data and testing data are taken from the same domain, such that the
feature space and data distribution are the same. Otherwise, the prediction accuracy of
these fault diagnosis models may be severely reduced. In fact, it is very hard to collect
training data that matches the feature space and data distribution of the testing data in real
world applications.

In rolling bearing fault diagnosis cases, the data used for training the classification
model may be collected and labeled from the motors without any load, but in practical
application is to detect the fault of the rolling bearing under various motor load conditions
(not zero). In spite of the fact that categories of faulty are the same at different work
conditions, the target data features distribution become different with the input data.
Accordingly, if the classification model that built by the training samples is applied directly
to the target samples, its performance will significantly decline. Moreover, it is costly
or even impossible to recollect all kinds of faulty data and label them at different work
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conditions for reconstructing or fine-tuning the fault diagnosis model. Therefore, there is a
need to create reliable and accurate methods to train with data from different domains but
related [6,7].

Recently, many domain adaptation methods focus on transferring information from
source domain (labeled data) to target domain (unlabeled data) by mapping the data into
shared feature space and minimizing the distance between the feature distributions of both
domains. Such as Bregman divergence [8], Kullback–Leibler divergence [9], and Maximum
mean discrepancy (MMD) [10] have been widely adopted as a discrepancy metric between
source and target domains. For rolling bearing fault diagnosis under different working
conditions, MMD is utilized to reduce the domain discrepancy between distributions via
mapping the data into a Reproducing Kernel Hilbert Space (RKHS) [11]. Although domain
adaptation methods have many advantages, it still suffers from limited target domain data.
When the target data is much less than source domain data, there may not be enough
information to calculate the domain discrepancy, which would cause the performances of
these approaches to drop significantly. Nevertheless, insufficient data in the target domain
is very common in real-world applications, so a new domain adaptation method especially
for imbalanced cross-domain data is very necessary to provide [12].

In this study, a novel bearing fault diagnosis framework is proposed by considering the
characteristics of fault diagnosis problems and the situation of imbalanced cross- domain
data, which is based on a combination of the convolutional neural network (CNN), the short
time Fourier transform (STFT) and Maximum mean discrepancy (MMD). Our proposed
method consists of three modules: data preprocessing, condition recognition and domain
adaptation. The data preprocessing module used STFT to convert vibration signals into
corresponding time-frequency maps (2D). The condition recognition module used CNN
to automatically learn features and accurately recognize the conditions of bearings. Last
but not least, the domain adaptation module is used as MMD as loss function to make the
features extracted by CNN become more representative in target domain. The Case Western
Reserve University bearing dataset [13] was then used to verify our proposed method. The
results show that STFT is an effective way to cope with limited target domain data and
is beneficial to the follow-up CNN training. Since the time- frequency maps having the
information of both time domain and frequency domain at the same time, which facilitates
the CNN to learn features from limited data. Also, the results indicate that the proposed
method improves the prediction accuracy about 5.23% compared with traditional methods
in the situation of only 40 target samples. Finally, the deep transfer learning model by
replacing the fully-connected layers as adaptive neuro- fuzzy inference system (ANFIS) to
provide the interpretation of classification.

The main contributions of this literature are summarized as follows:

(1) A novel bearing fault diagnosis framework is proposed. The characteristics of
fault diagnosis problems and the situation of imbalanced cross-domain data are
both considered.

(2) Replace the fully connected layers with the so-called adaptive neuro-fuzzy inference
system (ANFIS) by transfer learning. In order to improve the lack of transparency
and interpretability in ML model.

(3) As a result, our proposed method achieves a significant improvement by comparing
with other traditional methods in the situation of few target samples.

In the rest of this paper, preliminaries, including short-time Fourier transform, con-
volutional neural network (CNN), maximum mean discrepancy (MMD) and ANFIS, are
introduced in Section 2. Section 3 introduces the proposed method for online domain
adaptation with imbalanced data. Experiments and analysis using the CWRU dataset are
presented in Section 4. Finally, the conclusion is given in Section 5.
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2. Preliminaries

A. Short-Time Fourier Transform

Short-time Fourier transform (STFT) is a signal analysis method that contains time-
domain and frequency-domain information, which is specially suitable for analyzing
time-varying, non-stationary signals. The visual representation output by STFT is called
spectrogram, which adds time-domain information to the fast Fourier transform (FFT).
Most importantly, STFT could transform raw vibration signals (1D) into pictures (2D),
which are more suitable for the following CNN to process. The basic formula of STFT is
defined as follows:

STFT{x(t)}(τ, ω) =
∫ ∞

−∞
x(t)ω(t− τ)e−iωtdt (1)

where x(t) is the signal to be transformed, ω denotes the frequency, and ω(τ) is the
window function. The frequency resolution and time resolution of the spectrogram could
be determined by changing τ. For instance, the shorter length of window function provides
higher time resolution and lower frequency resolution. In this study, STFT were used to
convert vibration signals into corresponding time-frequency maps (2D).

B. Convolutional neural network and Batch Normalization

Convolutional Neural Network (CNN) proposed in 1998, it is always utilized for
classification and prediction in image processing and other researching fields [14]. Figure 1
shows the illustrated network structure of a classical CNN, generally speaking, CNN archi-
tecture is mainly composed of three parts: (1) convolutional layer; (2) pooling layer; and
(3) fully-connected layer. In this study, CNN were designed to automatically learn features
and accurately recognize the conditions of bearings. In addition, batch normalization layers
were added to the neural network in order to improve the performance of CNN [9].
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Figure 1. CNN structure [13].

The convolutional layer contains many filters, and each filter contains different inside
values that can be convolved with the input data to detect different kinds of features. As
stated above, the main function of the convolutional layer is to find out what the important
features of the input are data by learning the weights of every filter.

The pooling layers often follow convolution layers. It can be seen as a down-sampling
method, which reduces the feature map dimensions of the previous layers. As stated
above, the main function of the pooling layer is to reduce the computing costs of the
neural network.

The batch normalization (BN) layer usually inserts between the convolutional layer
and the pooling layer. BN is a method used to make neural networks converge faster and
more consistently when training by re-centering and re-scaling the inputs from different
layers. Ideally, the resulting normalized activation has zero mean and unit variance. In
this study, we adopt BN right after each convolution and before activation, following [15].
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The input of the batch normalization layer is X ∈ Rm×k, where k and m denote the feature
dimension and the batch size, and the BN layer transforms each feature i ∈ {1 . . . k} into:

x̂i =
xi − E

[
Xj
]√

Var
[
Xj
] , yj = γj x̂i + β j (2)

where xi is an input feature and yj is the corresponding output, Xj denotes the jth layer
of network, and γj and β j control the scale and shift of the input to retain data diversity,
which is determined by training.

The fully-connected layers are used as a classifier at the end of CNN architecture
to classify the extracted features. The fully-connected layers consist of multiple hidden
layers, which is equivalent to the neural network. In general cases, the features extracted by
convolution layer must be sent to the fully connected layer to complete the final operation
of the model.

C. Maximum Mean Discrepancy

Maximum mean discrepancy (MMD) is a criterion used to estimate the difference
between two probability distributions. MMD is defined as the squared distance of the mean
embedded features in the reproducing kernel Hilbert space (RKHS). MMD only becomes
zero if (and only if) the two distributions are the same. In this paper, MMD is used to
calculate the domain discrepancy between the source domain (xs) and the target domain
(xt). Suppose the probability distribution of the source domain data is P and that of the
target domain data is Q, MMD could be defined as:

( f , P, Q) = sup f∈F
(
Exs∼P[ f (xs)]− Ext∼Q

[
f (xt)]) (3)

where f : x → H is a projection function. As we choose f, which is the unit ball in a universal
RKHS, Equation (3) can be rewritten as:

D
(

XS, XT
)
=‖ 1

nS

nS

∑
i=1

φ
(

x(S)i

)
− 1

nT

nT

∑
j=1

φ
(

x(T)j

)
‖Hk (4)

where Hk denotes the RKHS with a characteristic kernel k, which is related to the feature
map φ. MMD is calculated by the kernel method for practical application, which originally
came from SVM. The kernel function can be defined as k

(
xs, xt) = 〈φ(xs), φ

(
xt)〉.

Kernel choice is also very important as it will affect the performance of MMD. Accord-
ing to [16], multi-kernel MMD which use different kernels for ensuring is one of the best
kernel choices. A multi-kernel MMD function consisted of Nk radial basis function kernels
are shown below:

k
(

xS, xT
)
=

Nk

∑
j=1

kσj

(
xS, xT

)
(5)

where kσi is the Gaussian kernel and σi its corresponding bandwidth. In this paper, the
MMD is adopted for domain adaptation.

D. Adaptive Neuro-Fuzzy Inference System

Adaptive neuro-fuzzy inference system (ANFIS) [17] is a combination of artificial
neural networks (ANNs) and fuzzy inference systems (FIS). ANNs are models that are
usually referred to as black boxes, because they are too complex or deep for a human to
understand how the model achieved its goal. For lots of real-world problems, ANNs have
a big advantage by not requiring physical pre-information before training a model, but
their utility has been critically limited due to the interpretation that the “black box” model
is difficult. In contrast, the FIS model is like a white box, it provides the fuzzy logic rules
of human thinking for decision making with imprecise and non-numerical information,
i.e., the model designers can figure out how it works. All in all, ANFIS applies the ANNs
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technique to compute the parameters of a fuzzy model automatically and the outputs map
out into the fuzzy model can be explainable. In this study, ANFIS is adopted to replace
the fully-connected layers (last two layers) of the network in order to provide reliable
prediction and understand the mechanism underlying the algorithms, which can make
artificial intelligent methods more transparent.

The architecture of ANFIS is shown in Figure 2. Five layers are used to construct this
model. For simplicity, we assume the fuzzy inference system under consideration has two
inputs x1 and x2 and one output f . Suppose that the rule base contains two fuzzy if-then
rules of Takagi and Sugeno-type [18].

Rule 1 : I f x1 is A1 and x2 is B1, then f1 = α1x1 + β1x2 + γ1

Rule 2 : I f x1 is A2 and x2 is B2, then f2 = α2x1 + β2x2 + γ2
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Layer 1: The first layer is used to convert the inputs into a fuzzy set by membership
functions (MFs).

O1i = µAi (x1), f or i = 1, 2
O2i = µBi (x2), f or i = 1, 2

(6)

where x1 and x2 are the input nodes i, A and B are the linguistic labels (small, large,
etc.) associated with this node function. Usually, we choose µAi (x1) and µBi (x2) to be
Gaussian-shaped functions, where MFs have maximum and minimum values equal to 1
and 0, respectively. In other words, O1i is the degree to which the given x1 satisfies the
quantifier Ai and O2i is the degree to which the given x2 satisfies the quantifier Bi.

Layer 2: The second layer represents the multiplication of the incoming signals and
sends the product out.

Wi = µAi (x1)× µBi (x2) = O1i ×O2i, f or i = 1, 2 (7)

where the output signal Wi represents the firing strength of the rule.
Layer 3: The third layer is used to normalize the firing strength by computing the ratio

of the ith node firing strength to the sum of all the rules’ firing strengths.

Wi =
Wi

W1 + W2
, f or i = 1, 2 (8)

where the Wi is the normalized firing strength.
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Layer 4: The fourth layer represents that each node function multiplied by its weight
value.

O4i = Wi × fi, f or i = 1, 2 (9)

where f1 and f2 are the fuzzy if–then rules as mentioned above.
Layer 5: The last layer is used to compute the overall output as the summation of all

incoming signals.

O5i = ∑
i

Wi × fi =
∑i Wi fi

Wi
= Overall output (10)

3. On-Line Domain Adaptation
3.1. Model Architecture

According to the results of [19], STFT has great potential to preprocess vibration
signals and is beneficial to the follow-up CNN training. In this study, the architecture of the
proposed CNN model is shown in Figure 3. At first, the vibrational signals (raw data) are
transformed into STFT time-frequency spectra, the raw vibrational signal is transferred into
image. Then, a CNN model with seven layers including one input layer, two convolution
layers, two pooling layers, one fully connected layer, and one output layer, is trained to
classify the bearing conditions. The detailed network structure of the CNN is introduced in
Table 1. Finally, a domain adaptation model is trained to reduce the distribution distance
between two domains (target and source). Please note that a large imbalanced data ratio
between source and target sets is considered for the manufacturing site. In addition, the
cross-entropy (CE) loss is utilized for the training of source data and the MMD loss is
adopted to minimize the distribution difference.
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Table 1. Architecture of the proposed method.

Layer Type Parameters

2D Convolutional Layer (1st) Filter Number = 6 Filter Size = (9, 9)
Batch Normalization layer (1st) Activation Function = Leaky ReLU

Max Pooling Layer (1st) Filter Size = (2, 2)
2D Convolutional Layer (2nd) Filter Number = 12 Filter Size = (3, 3)

Batch Normalization layer (2nd) Activation Function = Leaky ReLU
Max Pooling Layer (2nd) Filter Size = (2, 2)

Flatten -
Fully Connected Layer 100 neurons
Softmax Output Layer 10 neurons

3.2. Optimization Objective

CNN architecture is used to extract the discriminative features of different classes.
Therefore, the cross-entropy loss (CE) function Lc is considered as a term of loss function to
minimize the classification error on the source domain.

Additionally, for narrowing the distribution distance between two domains, MMD
between source and target samples, is also considered as a term of loss function. The
multi-kernel MMD loss could be rewritten as follows from Equation (5):

Lm = Σk∈K MMDk

(
f S, f T

)
(11)

where f S and f T are the source and target domain features’ representations in the last fully
connected layer of the network. In this study, five kernels K ∈ {1, 2, 4, 8, 16} were chosen
and set as the same weight because of its high performance [12].

Combining cross-entropy loss with maximum mean discrepancy loss as a total objec-
tive function, the network could learn not only to capture the domain invariant features
between two domains but also to extract the discriminative features of different classes.
That is, the model would classify well in both of the two domains as the loss function
converges. Hence, the overall objective function is represented using Equation (6) as:

Ltotal = Lc + βLm (12)

where β is penalty coefficient, we set its value to 1 in the whole study for simplicity.

3.3. General Procedure of the Proposed Method

In this study, a novel method is proposed for fault diagnosis of rolling bearing with
online imbalanced cross-domain data. The general procedure for proposed method is
shown in Figure 3 and the basic steps are described as follows.

Step 1: The vibration data of rolling bearing is measured by acceleration sensors in
real application, herein we use CWRU dataset to instead this part for testing. The state of
bearings is classified as normal, ball fault, inner raceway fault, and outer raceway fault.

Step 2: In the preprocessing stage, STFT were used to convert vibration signals into
corresponding time-frequency spectra (2D). The results of STFT is shown in Figure 4.

Step 3: In the training stage, the CNN model is constructed for classify the bearing
conditions from the time-frequency spectra. The initial learning rate is 0.0001, the optimizer
is Adam, and loss function is using eqs. (12). Calculate the loss of the CNN model and
update the parameters until the stopping criterion is reached

Step 4: Target domain testing samples are used to authenticate our proposed method.
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4. Experiments and Results

In this section, the proposed method is conducted on a rolling bearing fault dataset, and
the detailed information of the hyperparameters can be found in Table 2. The models are
written in Python by using the PyTorch repository on the GPU (NVIDIA GeForce GTX 1660).

Table 2. Hyperparameters of the proposed method.

Hyperparameters Value

Epochs 40
Learning rate 0.0001

Optimizer Adam
Batch size 64

Sample length 500
Source domain training sample 2000
Target domain training sample 0~2000
Target domain testing sample 400

4.1. Dataset Description

The rolling bearing dataset used in this study was provided by the Bearing Data
Center of Case Western Reserve University (CWRU). The dataset has been widely used in
related research works [20–24]. The CWRU bearing vibration data were collected from the
drive end of the motor through an accelerometer at 12,000 samples/second. There was one
healthy condition and three fault types (ball fault, inner raceway fault, and outer raceway
fault) with three different damage sizes (0.007, 0.014, and 0.021 inches), which provide the
experiments with 10 categories of classification tasks. The experiment was also repeated
under different motor loads, including 0, 1, 2, and 3 horsepower (hp). At each load, motors
have different rotational speeds, which could be considered as different domains.

Raw data were split into specific shapes: 2400 samples of 500 sample length without
overlapping. The preprocessing procedures on the source domain data (labeled) and the
target domain data (unlabeled) are the same. In the first experiment, the vibration signal
with 0 hp load is chosen as the source domain, and 3 hp load is chosen as the target
domain. The number of target domain data for the domain adaptation training is gradually
increasing (from 0 to 2000), but that of the testing data remains unchanged (400). As for the
source domain data, it remains 2000 for the entire experiment. Each condition was trained
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10 times and the average and standard deviation were calculated, which could be used to
represent the accuracy and stability respectively.

4.2. Results and Discussion

The classification average accuracy and standard deviation results of the proposed
method (STFT + CNN) are summarized in Table 3 and the results of the traditional method
(FFT + NN) are shown in Table 4. Through the results, we obtain observations as follow:

(1) When the number of target domain data reaches 26, the accuracy of the proposed
method will be over 90%, whereas a traditional method needs 40 target data to achieve
a prediction accuracy of 90%. When the number of target domain data reaches 150,
the accuracy will be over 99% for our proposed method, while a traditional method
needs 1000 data to achieve over 99% accuracy.

(2) When the target domain data starts out very low (<40), the testing accuracy will in-
crease rapidly as the target data increases. If the target domain data is over 50, the stan-
dard deviation of the testing accuracy starts to decrease as the target data increases.

(3) The comparison results of the accuracy and standard deviation (STD) of ten indepen-
dent trials are shown in Figure 5: solid lines denote the results of FFT + NN; and
dashed-lines denotes the results of STFT + CNN. Obviously, it can be observed that
the proposed method outperforms (higher accuracy and smaller STD) the traditional
method for imbalanced cross-domain data.

(4) Note that the imbalanced ratio with a value of infinity means that there is no domain
adaptation process. This means that the model is trained by source data and then
obtains the inference results using target inputs directly. We can observe that the
accuracies of STFT + CNN and FFT + NN are both lower (74.54% and 67.84%) than
results with domain adaptation. This illustrates the advantage of domain adaptation.
In addition, the performance of STFT + CNN is better than the result of FFT + NN,
which demonstrate the improved performance of the proposed approach.

(5) Figure 6 shows that the proposed method (STFT + CNN) has better performance
than traditional cross-domain fault diagnosis methods (FFT + NN) when there is a
lack of target domain data (from 0 to 2000). Although the traditional method is good
enough (99%) to use in the condition that source domain and target domain data are
both sufficient, its accuracy will drop rapidly when two domains data are imbalanced.
For example, when we have 40 target samples, the proposed method could reach
an accuracy of about 95%, but the traditional fault diagnosis method only has an
accuracy of roughly 90%.
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Table 3. Results of the proposed method with imbalanced cross-domain data.

Number of Source
Domain Data

Number of Target
Domain Data Imbalanced Ratio Average Accuracy

(%)
Standard Deviation

(10 Trials)

2000 0 (without DA) ∞ (without DA) 74.54 4.590
2000 10 200 77.17 4.326
2000 20 100 82.61 4.595
2000 24 83.33 87.19 8.518
2000 26 76.92 91.79 2.994
2000 30 66.67 92.36 4.976
2000 40 50 95.89 1.895
2000 50 40 96.13 2.417
2000 60 33.33 97.71 2.194
2000 70 28.57 97.92 0.982
2000 80 25 97.19 0.718
2000 100 20 98.13 0.570
2000 120 16.67 98.56 0.464
2000 150 13.33 99.03 0.714
2000 200 10 99.06 0.561
2000 400 5 99.39 0.480
2000 500 4 99.44 0.644
2000 1000 2 99.71 0.325
2000 2000 1 99.78 0.245
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To evaluate the performances of the proposed method, another cross-domain fault diag-
nosis method was adopted for comparison, deep adversarial domain adaptation (DADA) [25],
which was designed specifically for a small amount of data. The DADA model uses a domain
discriminator to replace the MMD loss to bridge the gap between two domains.

There are experiments on different cross-domain tasks in Table 5. These results once
again verified the benefits of the proposed method. The DADA model shows its stability, its
accuracy does not drop dramatically as target data decreases. But considering the accuracy
when data becomes sufficient, the performance of the proposed method is better than the
DADA method. It can even better adapt to the lack of data than the DADA method, which
was designed especially for this condition. Moreover, by comparing the results of FFT+NN
and FFT+CNN, it can be found that CNN is more adaptable to a small amount of data than
NN. Furthermore, from the comparing the results of FFT+CNN (1D) and STFT+CNN (2D),
CNN is more suitable for extracting 2D features than 1D features when encountering the
lack of target domain data.
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Table 4. Results of traditional method with imbalanced cross-domain data.

Number of Source
Domain Data

Number of Target
Domain Data Imbalanced Ratio Average Accuracy

(%)
Standard Deviation

(10 Times)

2000 0 (without DA) ∞ (without DA) 67.84 3.760
2000 10 200 70.38 7.043
2000 20 100 78.81 6.139
2000 30 83.33 85.03 8.919
2000 40 50 90.66 4.913
2000 50 40 90.09 2.353
2000 60 33.33 92.63 3.493
2000 70 28.57 95.84 0.970
2000 80 25 96.09 2.611
2000 100 20 96.91 2.124
2000 150 16.67 96.00 2.113
2000 200 13.33 97.19 1.304
2000 400 10 97.47 2.496
2000 800 5 98.93 0.768
2000 1000 4 99.36 0.274
2000 1200 2 99.39 0.375
2000 2000 1 99.58 0.274

Table 5. Classification accuracy for six different quantity of target domain data.

Source: 2 hp Target: 0 hp
Methods The number of target domain training data

20 50 100 500 1000 2000
DADA 87.42% 88.08% 88.17% 88.58% 88.92% 91.25%

FFT + NN 85.92% 93.42% 96.08% 99.17% 99.75% 99.92%
FFT + CNN 93.81% 96.67% 98.83% 99.33% 99.67% 99.92%

STFT + CNN
(Proposed) 92.50% 98.25% 98.92% 99.42% 99.50% 99.92%

Source: 0 hp Target: 2 hp
Methods The number of target domain training data

20 50 100 500 1000 2000
DADA 84.83% 88.58% 91.17% 91.42% 92.50% 93.00%

FFT + NN 82.17% 92.00% 96.50% 99.75% 99.67% 99.83%
FFT + CNN 90.58% 97.33% 98.42% 99.73% 99.92% 99.92%

STFT + CNN
(Proposed) 95.75% 97.42% 99.17% 99.83% 99.83% 100.00%

Source: 1 hp Target: 3 hp
Methods The number of target domain training data

20 50 100 500 1000 2000
DADA 95.75% 95.92% 96.67% 97.33% 97.42% 97.75%

FFT + NN 88.75% 93.58% 97.17% 99.17% 99.50% 99.58%
FFT + CNN 94.33% 97.67% 99.00% 99.67% 99.75% 99.92%

STFT + CNN
(Proposed) 94.83% 98.50% 98.87% 99.42% 99.83% 99.83%

Source: 3 hp Target: 1 hp
Methods The number of target domain training data

20 50 100 500 1000 2000
DADA 81.00% 84.33% 85.50% 86.17% 86.25% 86.83%

FFT + NN 80.67% 89.00% 88.92% 97.33% 99.50% 99.67%
FFT + CNN 87.67% 96.25% 97.00% 99.08% 99.58% 99.67%

STFT + CNN
(Proposed) 89.92% 97.00% 97.17% 98.92% 99.58% 99.75%
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4.3. Transfer Learning Model by ANFIS

As the mention in literature [26], the trust AI systems should be introduced that are
results. FIS based on human expert experience to make decisions with imprecise and
non-numerical information, i.e., the If-Then fuzzy rules are designed by human experiences
to predict the corresponding output. In literature [17], ANFIS combines the advantages
of FIS (human thinking) and ANN (learning ability) which is built by dataset. It has layer
structure similar to neural networks but with the operations of fuzzy inference system, e.g.,
rules layer, defuzzification layer. Herein, ANFIS is utilized to combine with the proposed
model (shown in Figure 7). By replacing the last two layers of the network with ANFIS and
fixed the parameters of the remaining CNN model which makes the AI model becomes
more explainable. As shown in Figure 2, inputs of ANFIS is the flatten variables and
each input having two fuzzy membership functions, the first-order Sugeno-type ANFIS
is created. We could know why the system outputs this value from the given input by
the membership function and fuzzy rule we set. However, some strengths are not always
advantageous, the performance of ANFIS is a little worse than artificial neural networks.
In this study, combining the ANFIS to the proposed model at the condition of enough
target domain data, the corresponding performce in accuracy is about 94%. By the way, the
corresponding computational effort is reduced due to the paramaters of CNN are fixed.
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5. Conclusions

This paper proposed a novel method to solve the online domain adaptation rolling
bearings fault diagnosis problem with imbalanced cross-domain data, which is consis-
tent with actual applications. The superiority of proposed method was demonstrated by
comparisons with the other peer methods. The proposed method has great potential for
handling with imbalanced cross-domain data. Since the time-frequency spectra having the
information of both time domain and frequency domain at the same time, which facilitates
the following deep neural network to learn features from limited data. The main drawback
of this paper was that it assumed that sufficient and well-labeled source domain data are
available for training. In real world application, it is costly or even impossible to obtain all
kinds of faulty data and label them at precise conditions. Finally, the proposed approach
was modified by transfer learning using ANFIS, the corresponding results show well per-
formance in accuracy, in addition, there is a trade-off between model interpretability and
model accuracy.
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