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Abstract: Nowadays, improving the traffic safety of visually impaired people is a topic of widespread
concern. To help avoid the risks and hazards of road traffic in their daily life, we propose a wearable
device using object detection techniques and a novel tactile display made from shape-memory
alloy (SMA) actuators. After detecting obstacles in real-time, the tactile display attached to a user’s
hands presents different tactile sensations to show the position of the obstacles. To implement the
computation-consuming object detection algorithm in a low-memory mobile device, we introduced
a slimming compression method to reduce 90% of the redundant structures of the neural network.
We also designed a particular driving circuit board that can efficiently drive the SMA-based tactile
displays. In addition, we also conducted several experiments to verify our wearable assistive device’s
performance. The results of the experiments showed that the subject was able to recognize the left
or right position of a stationary obstacle with 96% accuracy and also successfully avoided collisions
with moving obstacles by using the wearable assistive device.

Keywords: wearable device; object detection; SMA; tactile display; model compression; assistance
for visually impaired people

1. Introduction

There are at least 2.2 billion people globally who have near or distant vision im-
pairment, and 39 million of them are blind, according to the World Health Organization
(WHO) [1]. However, because the methods for supporting their mobility are not very effec-
tive in many areas, it is still difficult for most visually impaired people to walk outdoors
or travel without the help of an assistant. Compared with the non-disabled, blind people
who have lost visual function become more dependent on other sensations, such as tactile
sensation and auditory sensation. Therefore, different types of wearable devices using
tactile sensations to transmit information about obstacles have been proposed to assist
visually impaired people [2–10].

For example, Gemperle et al., developed a wearable tactile harness-vest display [6].
By combining six vibration motors, their wearable device can relay tactile messages, such
as forward, back, left, right, speed up and slow down, to blind people. Although their
wearable devices made a great breakthrough in improving the situation of blind people,
we think that wearable devices should be able to detect obstacles in different environments
in real-time. The outdoor environment can be more complex than a carefully designed test
field. In this paper, we tried to determine how to deal with objects that appear suddenly in
a new environment instead of a designed maze.

Wagner et al. proposed an impressive tactile display that presents different tactile
sensations using commercial RC servo motors. Because the aim is to assist visually impaired
people in their daily life, the devices are required to be compact and portable. However, to
achieve higher performance, the hardware requirements of the wearable device usually
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increase. These requirements result in the device becoming unportable and expensive,
which is not conducive to promoting and popularizing their use among blind people.

In our study, we proposed a wearable assistive device that can not only detect real-time
obstacles, but can also help visually impaired people avoid collisions by using portable
and small tactile displays. To realize high-performance real-time object detection while
maintaining the portability of the device, we compressed the model of a high-performance
object detection algorithm called YOLOV3 (You Only Look Once Version 3) [11] and
successfully deployed the compressed model on a mobile device. We also designed a
compact tactile actuator based on a 0.75 mm diameter SMA wire, which is small and can
vibrate quietly. We also designed a driving circuit to reduce the space occupancy further
and ensure stability to drive these actuators efficiently.

2. Materials and Methods
2.1. Wearable Device for Blind Pedestrians

Our wearable device for assisting blind pedestrians mainly contains two sub-devices:
real-time object detection and information presentation through tactile sensation. The
relationship between each part of the sub-devices is shown in Figure 1. By deploying the
compressed YOLOV3 model on Raspberry Pi 3B+ accelerated by Neural Compute Stick 2
(NCS2), the primary function of the real-time object detection device is to detect pedestrians
in front of a blind user in real-time. Then, the detection results are transmitted wirelessly to
the tactile presentation device based on Socket Communication. According to the received
information, the tactile presentation device provides notifications to users using different
tactile sensations and by controlling the tactile actuators.
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2.2. Real-Time Object Detection Using Compressed YOLOV3 Model and NCS2

The main components of real-time object detection include a Raspberry Pi 3B+, NCS2,
and Raspberry Pi Camera Module 2 with 8 million pixels. To provide the Raspberry Pi 3B+
with a stable power supply, we chose a 5000 mAh mobile power supply, which is enough to
keep the device running for more than 3 h. An image of the entire real-time object detection
device is shown in Figure 2.
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Even though the Raspberry Pi+ is lightweight and has low power consumption, a
high-performance object detection algorithm such as YOLOV3, which has more than sixty
million parameters, cannot be directly deployed due to its insufficient computing power.
To realize high-performance object detection while keeping the device’s compactness,
we mainly used two methods, that is, YOLOV3 model compression and the acceleration
of NCS2.

2.2.1. YOLOV3 Model Compression

First, a model compression method was used to remove the redundant structures of
the neural networks. We introduced a layer and channel pruning method to compress
the YOLOV3 model. After the compression, the size of the YOLOV3 model decreased to
5% of its original size, leading to a significant increase in the speed of model inference.
This slimming compression method contains four stages: initial training, sparsity training,
channel pruning and a fine-tuning stage [12]. The data and results of each step are given in
Section 3.

2.2.2. Accelerate Compressed Model by NCS2

The second method was used to accelerate the device by NCS2. Because of the low
price and compact size requirements, mobile devices generally do not load GPUs. Therefore,
some large-size image processing or object recognition algorithms cannot perform with high
accuracy on mobile devices. NCS2 can solve this problem by providing edge computation
to optimize the compressed model and accelerate the calculation speed. The details of
using NCS2 are given in Section 3.

2.3. Tactile Presentation Device Using SMA and Vibration Motors

The tactile presentation device contains a Raspberry Pi Zero, a 9 V battery as the power
supply, a 3 V buck module, two driving boards, and a tactile display consisting of SMA
actuators. Raspberry Pi Zero is regarded as the core controller that receives the obstacle
information from the real-time object detection wirelessly, and controls the general-purpose
input/output (GPIO) to output pulse width modulation (PWM) current with different
frequencies and duty ratios. After passing the driving board, the PWM current outputted
by Raspberry Pi Zero is amplified and then used to drive the tactile display. The amplified
PWM with different frequencies and duty ratios, controls the tactile actuators to present
different tactile sensations. The tactile presentation device is shown in Figure 3.
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2.3.1. Tactile Display

The tactile display is designed to transmit obstacle information to a blind person by
presenting different tactile sensations. To enrich the types of tactile sensations presented
by the tactile display, we combined two types of tactile actuators in the tactile display:
shape-memory alloy (SMA) actuators and vibration motors. Both of them can be electrically
driven by periodic signals. SMA actuators are composed of a metal pin and a 5 mm long
SMA wire with a diameter of 0.075 mm [13]. The structure is shown in Figure 4.
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Figure 4. Structure of SMA actuators. (a) Structure of pin-type tactile actuator driven by SMA wire.
(b) Stimuli presented by vibrating pin.

SMA is a metal that can change its shape when the temperature changes. When the
temperature rises to the transformation temperature, the length of the SMA wire shrinks to
5% of the original length [14]. Then, this deformation of the shrinkage can be amplified by
the metal pin, as shown in Figure 4. The PWN current is used to drive the SMA actuators
of our device.

The PWM wave has two states in one period: ON and OFF. The duty cycle reflects the
proportion of the duration of the PWM cycle in the ON state. A high duty cycle corresponds
to high power because the time of the ON state is longer than the time of the OFF state.
When the PWM wave is in the ON state, current flows through the SMA actuators, and the
current generates energy to heat the SMA wire, causing it to shrink. In the OFF state, the
SMA wire cools down by radiating heat into the air, and return to its original length. The
waveforms of the PWM are shown in Figure 5.
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When the amplitude of PWM is expressed as H (V) and the time of ON states is ex-
pressed as W (ms), W*H, which is equivalent to the electrical energy, represents the current
energy. Therefore, we used Raspberry Pi zero to control the frequency and duty cycle of
the PWM wave to make the SMA actuators generate vibrations of different frequencies and
intensities. Vibrations with different frequencies are perceived as different tactile sensations
by the users.

The vibration motor is also controlled by the PWM wave. Compared with SMA
actuators, the vibration of the vibration motor is stronger and more easily perceived by a
user. Since the vibration frequency of the vibration motor cannot be changed, the type of
produced tactile sensation is a particular one. Since the SMA actuators and the vibration
motors have their advantages, we have combined them to design two different tactile
displays, tactile display 1 and tactile display 2.

We attached four vibration motors and four SMA actuators to tactile display 1, as
shown in Figure 6a. The input of each actuator has its pin assigned as PIN1~8. The output
of each actuator was connected together and assigned as PIN 9.
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Tactile display 2 was designed as a distributed architecture, consisting of unit 1,
unit 2 and unit 3 as shown in Figure 6b. Two sets of vibration motors were attached to
two different displays on the top, and four SMA actuators were attached to the display
below. The input of each tactile generator also had its pin assigned as PIN1~3, PIN4~5 and
PIN7~10, while the output was assigned as PIN3, PIN6 and PIN11, respectively.

2.3.2. Current Amplifier Circuit as Driving Board

We found that a 5 mm long SMA wire with a diameter of 0.075 mm can generate
obvious deformation powered by a 0.8 A current, at least. However, Raspberry Pi can only
output logical signals (3.3 V as high and 0 V as low), and the output current value is only
about 80 mA.

To amplify the output current, we designed a current amplifier circuit as a driving
board to connect with the GPIO of Raspberry Pi. The driving board was designed based
on the Darlington transistor current amplifier, which is composed of two ordinary bipolar
transistors, as shown in Figure 7a. In our wearable device, multiple tactile actuators are
independently controlled to present tactile sensation at the same time. To make the control
efficient, we designed the driving board as a multiple I/O current amplifier circuit, as
shown in Figure 7b.
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3. Results
3.1. YOLOV3 Model Compression
3.1.1. Initial Training

We sampled 4193 images of pedestrians from the COCO dataset. These images
were used with annotations for training the YOLOV3 model at this stage. Among the
4193 images, we used 3353 images for the training set and 839 images for the verification
dataset. An example of the tagged images we used to train the model is shown in Figure 8.
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In our experiment, the YOLOV3 was trained for 100, 300, and 200 epochs in each
training stage, respectively, by using the stochastic gradient descent (SGD) optimization
method. The initial learning rate was 0.001, and the batch size was 64. We also recorded
the precision, recall, and loss value to measure the performance of YOLOV3 during the
training process. The loss value is a measurement of how well the model is able to predict
the expected outcome. The smaller the loss value becomes, the closer the model’s predicted
result is to the actual value. The other two metrics can be defined according to the confusion
matrix shown in Table 1.

Table 1. Confusion matrix.

True Value

True False

Prediction
True True Positive (TP)

Correct
False Positive (FP)

Type 1 Error

False False Negative (FN)
Type 2 Error

True Negative (TN)
Correct
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The precision metric indicates the proportion of samples that are predicted to be
positive samples that are truly positive samples. It is used to describe the detection accuracy
of the object detection algorithm, given by

Precision =
TP

TP + FP
(1)

The recall metric indicates the number of positive objects predicted as positive images
in all labeled images. It is used to describe the prediction ability, given by

Recall =
TP

TP + FN
(2)

The precision, recall curve, and loss value of the training and testing dataset during
the initial training are shown in Figure 9.
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We concluded that as the training progressed, the precision and recall of the YOLOV3
model continued to increase and reached above 0.82 at the end of the initial training, while
the loss value of the model dropped from 6.903 to around 1.183 in the training dataset
and from 4.984 to 1.996 in the testing dataset. Therefore, in this initial training stage, the
YOLOV3 model began to have some ability to detect objects. The model at this time had
good performance on a computer with GPU support. However, it was still difficult to
deploy it on mobile devices because the memory of the mobile device was too low to run
millions of parameters.

3.1.2. Sparsity Training

From Figure 9, it can be noted that the YOLOV3 model became over-fitted at the
end of the initial training stage. The over-fitting problem can be solved by adding L1
regularization to the loss function and re-training the YOLOV3 model. The loss function in
the sparsity training stage was given by

Loss = ∑(x,y) l(f(x, W), y) + λ∑γεΓ|γ|, (3)



Sensors 2022, 22, 4537 8 of 14

where x and y were the training input and target value, respectively. W denoted the
trainable weights of the neural networks. The first part of the loss function represents
the loss function of YOLOV3, while the second part is known as L1 normalization, which
is regarded as a method to solve the overfitting problem. γ is the scaling factor of each
channel of YOLOV3, and λ balances two parts of the loss unction.

We used this new loss function to train the YOLOV3 model again. Not only can the
overfitting problem be solved, but the distribution of the weights can also be adjusted.
The precision, recall, and loss value of the training and testing dataset during the sparsity
training is shown in the green curve of Figure 10.
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The green lines in Figure 10 represent the plots of the sparsity training. Compared
with the purple lines, which refer to the initial training, the precision and recall decreased
greatly at the beginning because L1 regularization was added. After the 50th epoch, the
metrics of the model began to increase again, and the loss value of the training dataset and
testing dataset also began to decrease.

Although the accuracy metrics of the model were constantly oscillating because L1
regularization was added to the loss function, most of the model’s trainable parameters
became close to 0. The distribution of trainable parameters before and after sparsity training
is shown in Figure 11.
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3.1.3. Layer Pruning and Channel Pruning

After the sparsity training, many trainable parameters were close to 0 so that a thresh-
old could be set to prune the whole network. More specifically, if the value of the trainable
parameters was lower than the threshold, it would be set to 0.

The results of pruning are shown in Table 2. The number of parameters of the YOLOV3
model decreased from around 61 million to 800,000. However, precision and recall suffered
heavy setbacks. The value of precision dropped from 0.79 to 0.39 and recall also dropped
from 0.72 to 0.6781.

Table 2. Metrics before and after sparsity training.

Metric Before Pruning After Pruning

Parameters 61,523,734 809,434
Precision 0.7988 0.3964

Recall 0.7200 0.6781

Although the YOLOV3 model was significantly compressed, the accuracy of the model
also decreased severely. The YOLOV3 model could barely recognize any object at this time.
To recover the loss of accuracy, we fine-tuned the model in the next stage.

3.1.4. Fine-Tuning

After layer pruning and channel pruning, the number of parameters of YOLOV3
decreased, which significantly reduced the amount of computation on the mobile device.
However, the accuracy of the YOLOV3 also became notably poor because a large number
of training parameters were zeroed. To improve the accuracy again, we fine-tuned the
pruned YOLOV3 model in this stage.

In the fine-tuning stage, we retrained the pruned model for 100 epochs. The grey
lines in Figure 12 show the trend in the metrics in this stage. The accuracy metrics such
as precision and recall increased smoothly, and the loss value decreased constantly. The
detection accuracy of the model recovered gradually.
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3.1.5. Summary of Compression

We used the slimming algorithm to compress the YOLOV3 model described in
Section 3.1. The number of parameters of the model dropped from 60 million to 1.3 million,
which reduced the size of the weight file from 236 MB to 3.1 MB. A smaller weight file
means less computation, which makes it possible for us to deploy the YOLOV3 model on a
low-memory mobile device.

3.2. Accelerating Compressed YOLOV3 Model Using NCS2

By employing the OpenVINO toolkit, we utilized NCS2 to optimize the YOLOV3
model and accelerate the inference speed. The OpenVINO toolkit is a comprehensive toolkit
for quickly developing applications and solutions [15]. The steps for using OpenVINO to
optimize and accelerate the model are shown in Figure 13.
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The Model Optimizer tool provided by the OpenVINO was firstly used to convert
the YOLOV3 model into an IR format, which is a special format supported by OpenVINO.
Because different deep learning frameworks such as Tensorflow and Caffe have their own
format for the weight file, converting these different weight files into the same IR format is
regarded as a good solution to solve the compatibility problem. After obtaining the model
in IR format, we used the Inference Engine tool to quickly build our application.

With the support of NCS2, the inference speed of the YOLOV3 model was greatly
improved in Raspberry Pi. The performance of Raspberry Pi 3B+ is shown in Table 3.
Because of a large amount of computation, the YOLOV3 model cannot be deployed on the
Raspberry 3B+ directly. However, with the acceleration of NCS2, Raspberry Pi 3B+ can run
the YOLOV3 model with an inference time of 0.5 s.

Table 3. Performance of YOLOV3 model and pruned-YOLOV3 model.

Model Parameters Size Inference Time Inference Time (NCS2)

YOLOV3 62,573,334 236 MB unknown 1 0.5 s
Compressed

YOLOV3 809,434 3.1 MB 3.43 s 0.3 s

1 The YOLOV3 model cannot be deployed on Raspberry Pi directly because of the large memory consumption.

The compressed YOLOV3 model can be deployed in Raspberry Pi 3B+ directly but the
inference time is more than 3 s. After being accelerated by NCS2, the inference time can be
shortened to 0.3 s.

3.3. Experiment

For verification, we conducted two experiments.

3.3.1. Experiments for the Tactile Display

Firstly, to verify the performance of the tactile display, we conducted 120 sets of
experiments on three male subjects aged 25, 24, and 20. The heights of the subjects were
185, 175, and 176 cm. All subjects were blindfolded with an opaque black cloth. Sixty sets of
experiments were conducted in the morning (9:00–11:00 a.m.), and 60 sets of experiments
were conducted in the afternoon (14:00–16:00 p.m.). Two kinds of tactile displays, as shown
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in Figure 6, were attached to the palm of the gloves while other control circuits for tactile
presentation were attached to the back of gloves, as shown in Figure 14.
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Figure 15 shows a subject wearing the whole assistive wearable device. The calculation
part of the real-time object detection, which contains the Raspberry Pi 3B+, NCS2 and mobile
power supply, was put into a waist pack on a belt, while the web camera was attached
to the subject’s chest to obtain first sight vision. The real-time object detection sent the
positions of the nearest object to the tactile presentation device wirelessly. Based on the
detected positions, the Raspberry Pi Zero outputted the PWM signal, and controlled the
tactile actuators on the glove to present different tactile patterns. The relationships between
a detected object and a tactile pattern are shown in Tables 4 and 5.
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Table 4. Relationships between a detected object and a tactile pattern using tactile display 1.

Object Position Tactile Pattern

Right Side Actuators on Unit 1 shake in 10 Hz
Left Side Actuators on Unit 2 shake in 10 Hz

No Object Actuators on Unit 3 shake in 2 Hz

Table 5. Relationships between a detected object and a tactile pattern using tactile display 2.

Object Position Tactile Pattern

Right Side Actuators on Unit 1 shake in 2 Hz
Left Side Actuators on Unit 2 shake in 2 Hz

No Object Actuators on Unit 3 shake in 10 Hz

In the experiments, we set a 3 m journey and used one or two pedestrians as obstacles,
as shown in Figure 16. The pedestrians stood on the right or left of the blind subject, while
the subject judged the positions of the nearest pedestrians by wearing the tactile glove.
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To record the effectiveness of the tactile display, we recorded the subject’s judgment
(go left or go right) when facing the nearest pedestrian, as shown in Table 6. According
to the results, the tactile sensation produced by our tactile display was felt clearly in
most situations.

Table 6. Accuracy of identifying and judging the position of obstacles.

Position of Obstacle
Judgment

Left Right

entry 1 97% (Success) 3%
entry 2 4% 96% (Success)

3.3.2. Experiments for the Wearable Device

After verifying the performance of the tactile display, we conducted more experiments
to test the performance of the wearable device. In this experiment, we invited three people
as subjects and conducted 45 experiments in three situations.

In the first situation, only one pedestrian stood in front of the subject at a distance
of 1.5 m while in the second situation, two pedestrians stood in front of the subject. One
was 1.5 m away from the subject, and the other was 2.5 m away from the subject. In the
third situation, the subject and two pedestrians walked towards each other. The distance
between the two pedestrians was one meter, and the initial distance between the subject
and the nearer pedestrian was about two meters.
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In the experiments, the subject with our wearable device tried to navigate the journey
without any collisions. To prove the effectiveness of the wearable device, we recorded the
number of collisions during the whole journey, as shown in Table 7.

Table 7. Number of collisions in each situation.

Number of
Experiments

Collisions on
the Left

Collisions on
the Right

Total Number
of Collisions

Situation 1 45 0 0 0
Situation 2 45 2 1 3
Situation 3 45 4 4 8

4. Discussion

From the results shown in Table 7, the subject was able to successfully avoid collisions
many times in a simple environments such as Situation 1 and Situation 2 by using our
wearable device. Especially in Situation 1, the user successfully avoided all obstacles in
45 experiments. In Situation 2, the first subject avoided all collision successfully. The second
subject had one collision on the left and one collision on the right, while the third subject
only had one collision on the left.

However, when the situation became more complex such as in Situation 3, the number
of collisions became higher. The first and second subjects both had two collisions on the
right and one on the left. The third subject had two collisions on the left.

The reason was that the obstacle and the subject were moving towards each other,
and even if our wearable device detected the obstacle, the time available for the subject
to reflect was very limited. However, in the real world, blind people are usually noticed
by moving pedestrians in advance, and these moving pedestrians will proactively avoid
collision with the subject. This action can further reduce the number of collisions.

After the experiments, we interviewed three subjects and all of them confirmed that
the wearable device was lightweight. Because the real-time object detection system is
deployed on the mobile device, the device is compact and easy to wear. Two subjects said
it was easy to get confused in the initial period of using our wearable device, but they
also confirmed that they were able to use it proficiently after some practice. In terms of
performance, the wearable device had a good performance in simple environments such
as Situation 1 and Situation 2. However, in a complex environment like Situation 3, the
performance of the wearable device still needs to be improved.

With the development of current research, more object detection algorithms that have
better performance than YOLOV3 have been proposed, such as TridentNet, and NAS-
FPN [16,17]. They can detect obstacles faster and more accurately. Using other object
detection algorithms that have better performance than YOLOV3 can be regarded as a
means of improving the performance of the wearable assistive device.

5. Conclusions

In this study, we built a wearable device for blind pedestrians to improve their mobility
safety. This wearable device contains two parts: real-time object detection and information
presentation through tactile sensation. Because we care about the compactness of the
wearable device, all the programming and computation was deployed on a mobile device.

Regarding the real-time object detection device, running the complex YOLOV3 model
directly on the mobile device is very difficult because of the memory limitation. To solve
this problem, we compressed the YOLOV3 model by 95%, which resulted in faster inference
speed on a mobile device.

Regarding the tactile presentation device, we used SMA and vibration motors to
represent different tactile sensations. To drive these micro-vibration actuators, we also
designed a PCB driving board, while trying to keep the device’s compactness.

According to our experiments, the subjects were able to navigate the journey without
collision in most situations. In addition, the combination of the shape memory-alloy tactile
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actuators and the vibration motor on the tactile display can be regarded as a good way to
generate different tactile sensations and help blind people to avoid obstacles in the traffic.
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