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Abstract: A sensitive simultaneous electroanalysis of phytohormones indole-3-acetic acid (IAA)
and salicylic acid (SA) based on a novel copper nanoparticles-chitosan film-carbon nanoparticles-
multiwalled carbon nanotubes (CuNPs-CSF-CNPs-MWCNTs) composite was reported. CNPs were
prepared by hydrothermal reaction of chitosan. Then the CuNPs-CSF-CNPs-MWCNTs composite
was facilely prepared by one-step co-electrodeposition of CuNPs and CNPs fixed chitosan residues
on modified electrode. Scanning electron microscope (SEM), transmission electron microscopy (TEM),
selected area electron diffraction (SAED), energy dispersive spectroscopy (EDS), X-ray diffraction
(XRD), Fourier transform infrared spectroscopy (FT-IR), cyclic voltammetry (CV), electrochemical
impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) were used to characterize the
properties of the composite. Under optimal conditions, the composite modified electrode had a good
linear relationship with IAA in the range of 0.01–50 µM, and a good linear relationship with SA in
the range of 4–30 µM. The detection limits were 0.0086 µM and 0.7 µM (S/N = 3), respectively. In
addition, the sensor could also be used for the simultaneous detection of IAA and SA in real leaf
samples with satisfactory recovery.

Keywords: carbon nanoparticles; copper nanoparticles; chitosan film; multiwalled carbon nanotubes;
electroanalysis of indole-3-acetic acid and salicylic acid

1. Introduction

Phytohormones are small molecular substances synthesized by plants themselves.
Indole acetic acid (IAA) and its derivatives are important plant growth hormones. They are
involved in the regulation of various biological processes such as plant cell elongation and
reproduction, leaf and flower withering, and plant vascular tissue decomposition. They
have different important functions in various stages of plant growth and development. Sali-
cylic acid (SA), another phytohormone, is involved in the regulation of many physiological
processes, such as flowering, heat production, senescence, and autophagy, and also plays
an important role in abiotic stresses such as low temperature, high temperature, and salt [1].
The content of IAA and SA in plants fluctuates, and the concentration of IAA is about
40–160 ng/g [2,3]. The concentration of SA is about 100~200 ng/g [4], which can complete
normal growth and development. External factors (salt, water, temperature, etc.) can lead
to abnormal levels of IAA and SA in plants, which can be regulated by applying exogenous
phytohormones to improve plant growth. Therefore, it is necessary to establish a method for
the determination of IAA and SA with high selectivity and sensitivity. The current detection
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methods include liquid chromatography-mass spectrometry [5,6], molecular imprinting
method [7,8], capillary electrophoresis [9], fluorescence spectroscopy [10] and electrochem-
ical method [11]. Among them, electrochemical method is favored for its advantages of
simple operation, high sensitivity, and fast analysis compared with other methods.

Chitosan (CS) [12] is a green material with biological activity, low toxicity, biocom-
patibility, and biodegradability. It is an amino polysaccharide derived from chitin. When
pH < pKa (pKa = 6.3), most of the amino groups are protonated, making chitosan a
water-soluble cationic polyelectrolyte. When pH > pKa, the amino group of chitosan is de-
protonated and becomes insoluble in water. According to this characteristic, chitosan films
can be formed by electrodeposition [13,14]. In recent years, CS derivatives, CS composite
films [15], and CS-based nanoparticles [16] have also been widely studied. Among them,
CS-based nanoparticles are the research focus in recent years. Compared with CS, CS-based
nanoparticles have the advantages of volume effect, surface effect, quantum size effect, and
dielectric confinement effect of nanomaterials, which have attracted wide attention due to
their large specific surface area [17]. CS-based nanoparticles are widely used in food and
agriculture [18]. At present, no one uses CS-based nanoparticles fixed chitosan residues to
prepare polymer film by electrochemical method for electroanalysis application.

Multiwalled carbon nanotubes (MWCNTs) have been widely used in sensors due
to their large surface area, good conductivity, and chemical stability. The solubility of
MWCNTs in an aqueous solution is not good [19], considering the dispersion of MWCNTs,
other materials are used to composite with them [20,21]. In recent years, electrochemical
sensors based on carbon nanotube composites (carboxymethyl cellulose-montmorillonite-
single-walled carbon nanotubes [1], MWCNTs-carbon black composites [22], MWCNTs-
CS [23]) for detection of IAA and SA. Herein, we combine carbon nanoparticles with
MWCNTs, which can not only improve the dispersion of materials, but also improve their
electronic transmission capacity. In addition, compared with other metal materials, such as
copper nanoparticles (CuNPs) [24] are cheap, which are conducive to large quantities of
actual detection, and can make the material on the electrode surface not easy to fall off.

In this paper, using CS as the carbon source, carbon nanoparticles (CNPs) were
prepared by a hydrothermal method. Then the CNPs were ultrasonically mixed with
MWCNTs and drip-dry on the surface of a glassy carbon electrode (GCE) to obtain CNPs-
MWCNTs/GCE. It was then placed in CuSO4 solution and electrodeposited at −0.4 V to
obtain CuNPs. At the same time, due to the electrolysis of water at the same potential,
there is a relatively high pH region near the electrode, so that CNPs fixed chitosan residues
form a chitosan film (Scheme 1) by electro-deprotonation. Finally, a new CuNPs-CSF-CNPs-
MWCNTs composite was prepared for the simultaneous electroanalysis of IAA and SA.Sensors 2022, 22, x FOR PEER REVIEW 3 of 15 
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2. Experimental
2.1. Reagents and Apparatus

Chitosan (CS), CH3COOH, C2H5OH, CuSO4, NaH2PO4·2H2O, Na2HPO4·12H2O,
HCl, NaOH, and KCl were purchased from Sinopharm Chemical Reagent Co., Ltd., Shang-
hai, China, Multiwalled carbon nanotubes (MWCNTs) were purchased from Macleans
Biochemical Technology Co., Ltd. Indole-3-acetic acid (IAA) and salicylic acid (SA) were
purchased from Aladdin (Shanghai, China). All chemicals are analytical grade and can
be used directly without further purification. Phosphate buffer saline (PBS) of 0.1 M was
prepared by mixing 0.1 M NaH2PO4 and 0.1 M Na2HPO4, and the pH was adjusted by
HCl or NaOH. Deionized water was used in all experiments.

CHI660E electrochemical workstation with conventional three electrode system (Shang-
hai Chenhua Instrument Co., Ltd., Shanghai, China,) was used for all the electrochemical
experiments. Glassy carbon electrode (GCE, diameter of 3.0 mm), platinum wire (diameter
of 0.2 mm) and KCl saturated calomel electrode (SCE) were used as working electrode,
counter electrode, and reference electrode, respectively. Hydrothermal reaction kettle (Bei-
jing Kewei Yongxing Instrument Co., Ltd., Beijing, China) was used for the synthesis of
CNPs. FT-IR spectra was conducted on Fourier Transform Infrared Spectrometer (Bruker
Company, Ettlingen, Germany). SEM images and were collected from Zeiss sigma 300 field
emission scanning electron microscope equipped (Jena, Germany). TEM images, SAED
images and EDX spectrum were collected from Transmission Electron Microscope (Jeol,
Tokyo, Japan).

2.2. Procedures

Purification of MWCNTs [25] and pretreatment of GCE [26] were according to the
previous report.

Preparation of CNPs was according to previous reports [27]. Briefly, CS was dissolved
in a 1% CH3COOH solution with vigorous stirring, and the resulting solution was placed
in a reaction kettle, which was then heated in an oven at 160 ◦C for 11 h. After cooling
the samples to room temperature, the samples were taken out and dialyzed with a 3500D
dialysis bag for 24 h to obtain the CNPs dispersion.

Preparation of CuNPs-CSF-CNPs-MWCNTs composite modified electrode (Scheme 1).
A total of 5 mg/mL CNPs were mixed with 5 mg/mL MWCNTs by sonication to obtain
CNPs-MWCNTs composite dispersion. Then 6 µL CNPs-MWCNTs composite dispersion
was drip-dry on the bare GCE surface to obtain CNPs-MWCNTs/GCE. Finally, the CNPs-
MWCNTs/GCEs were placed in a solution of 0.04 M H2SO4 + 0.11 M CuSO4 at −0.4 V
for 10 s, so that CuNPs were deposited on the surface of the modified electrode, while
the CNPs were immobilized by deprotonation, in the modified electrode, on the surface
of the electrode A thin layer of CSF was electrodeposited to prepare CuNPs-CSF-CNPs-
MWCNTs/GCE. The CNPs/GCEs were placed in a −0.4 V H2SO4 solution for 10 s to
obtain CSF-CNPs/GCE. The CNPs/GCE were placed in a −0.4 V H2SO4 + CuSO4 solution
for 10 s to obtain CuNPs-CSF-CNPs/GCE.

Optimize experimental conditions. Simultaneous detection of IAA and SA at CuNPs-
CSF-CNPs-MWCNTs/GCE using linear stripping voltammetry (LSV) in 0.1 M PBS
(pH = 7.0). In order to make the detection effect better, the detection conditions were
optimized, including CuSO4 concentration, deposition potential, deposition time, CNPs
concentration, hydrothermal time, hydrothermal temperature, MWCNTs concentration,
PBS pH, and preconcentration time.

Determination of IAA and SA in real leaf samples. CuNPs-CSF-CNPs-MWCNTs/GCE
was used to detect IAA and SA in rape leaves and broad tea leaves with standard addition
method. The leaf samples were dried, ground, and soaked in methanol for 48 h, and then
centrifuged to obtain a solution containing IAA and SA for detection and analysis [28].
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3. Results and Discussion
3.1. Characterization of CuNPs-CSF-CNPs-MWCNTs Composite

SEM was used to characterize CNPs-MWCNTs/GCE (Figure 1A) and CuNPs-CSF-
CNPs-MWCNTs/GCE (Figure 1B). CNPs-MWCNTs/GCE (as can be seen from Figure S1,
CNPs-MWCNTs were successfully prepared) were placed in CuSO4 + H2SO4 solution and
deposited at −0.4 V for 10 s to obtain CuNPs-CSF-CNPs-MWCNTs/GCE. Comparison
of Figure 1A and Figure 1B, it can be seen that a thin film is formed on the surface of
CuNPs-CSF-CNPs-MWCNTs, which was obtained due to the electrodeposition of CSF by
electropolymerization of CNPs fixed chitosan residues (Scheme 1).
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Figure 1. SEM images of CNPs-MWCNTs/GCE (A) and CuNPs-CSF-CNPs-MWCNTs/GCE (B),
respectively. Electrodeposition potential: −0.4 V. Electrodeposition time: 10 s.

Figure 2 shows the TEM images of CNPs (Figure 2A), CSF-CNPs (Figure 2B), CuNPs-
CSF-CNPs (Figure 2C) and CuNPs-CSF-CNPs-MWCNTs (Figure 2D). Figure 2A shows that
the average particle size of CNPs synthesized by CS hydrothermal reaction is 74 nm. In the
TEM images of CSF-CNPs (Figure 2B) and CuNPs-CSF-CNPs (Figure 2C), it can be seen
that a thin film is formed, indicating that CNPs can form CSF through electrodeposition
(Scheme 1), and the CuNPs are attached to the film surface. It can also be seen from
Figure 2D that some CNPs can form CSF by co-electrodeposition; at the same time, CuNPs
(Figure 2E,F) are attached to the surface of the composite, indicating that the CuNPs-CSF-
CNPs-MWCNTs composite is successfully prepared. The composite also proved to be
successfully prepared by FI-IR (Figure S2).
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Figure 2. TEM images of CNPs (A), CSF-CNPs (B), CuNPs-CSF-CNPs (C) and CuNPs-CSF-CNPs-
MWCNTs (D). HRTEM (E) and SAED image of CuNPs in CuNPs-CSF-CNPs-MWCNTs (F).
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As shown in Figure 3, the composite was characterized by XRD. Figure 3 shows
that CNPs, MWCNTs, CNPs-MWCNTs and CuNPs-CSF-CNPs-MWCNTs have a carbon
diffraction peaks (002) plane of carbon structure at about 2θ = 26◦. CuNPs and CuNPs-CSF-
CNPs-MWCNTs have a characteristic peak of Cu (111) at about 2θ = 43◦ [29]. The peak
corresponding to CuNPs-CSF-CNPs-MWCNTs at around 36◦ is Cu2O (111), because the
nanoparticle characterization process was carried out in the presence of normal atmosphere,
that is, in the presence of O2 [30]. At about 2θ = 42◦ The left and right peaks are characteristic
peaks of MWCNTs (110). This gives the idea that the surface of the CuNPs-CSF-CNPs-
MWCNTs composite contains CuNPs.
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Figure 3. XRD patterns of ITO, CuNPs, CNPs, MWCNTs, CNPs-MWCNTs and CuNPs-CSF-CNPs-
MWCNTs, respectively.

Figure 4 shows CV and EIS of six different modified electrodes in 5.0 mM [Fe(CN)6]3−/4−

+ 0.5 M KCl solution. The peak current of CV (Figure 4A) of the modified electrodes are in
the order of CuNPs-CSF-CNPs-MWCNTs/GCE > MWCNTs/GCE > CNPs-MWCNTs/GCE
> CuNPs/GCE > GCE > CNPs/GCE, and the order of EIS (Figure 4B and Table 1) of the
modified electrodes are CuNPs-CSF-CNPs-MWCNTs/GCE < MWCNTs/GCE < CNPs-
MWCNTs/GCE < CuNPs/GCE < GCE < CNPs/GCE, where the peak current of CNPs/GCE
is the smallest and the resistance was the largest, indicating the conductivity of CNPs is
poor. With the formation of MWCNTs, CuNPs and chitosan films, the charge transfer
resistance of the composites decreased (Table 1).
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Table 1. The values of EIS equivalent circuit elements for each electrode.

Electrodes Rs/Ω Rct/Ω C/F W/J

GCE 183.2 137.5 3.881 × 10−7 0.000624

CuNPs/GCE 141.2 52.66 2.363 × 10−7 0.000230

CNPs/GCE 145.7 602.9 6.489 × 10−7 0.000544

MWCNTs/GCE 123.9 29.24 2.321 × 10−7 0.003243

CNPs-
MWCNTs/GCE 124.4 31.59 1.268 × 10−7 0.003287

CuNPs-CSF-CNPs-
MWCNTs/GCE 126.6 28.86 1.766 × 10−7 0.001516

3.2. Optimization of Experimental Conditions

In order to improve the detection performance, some experimental conditions that
may affect the detection effect were selected and optimized. Herein, effects of CuSO4
concentration (Figure 5A), deposition potential (Figure 5B), deposition time (Figure 5C),
concentration of CNPs (Figure 5D), hydrothermal time (Figure 5E), hydrothermal temper-
ature (Figure 5F), concentration of MWCNTs (Figure 5G) and the preconcentration time
(Figure 5H) were optimized at CuNPs-CSF-CNPs-MWCNTs/GCE in 0.1 M PBS (pH = 7)
containing 50 µM IAA and 50 µM SA. It was reported in the literature that when pH ≥ 5,
there is a composite oxidation peak for IAA oxidation. This is because when the solu-
tion pH > pKa (pKa = 4.8), IAA is oxidized, resulting in the second oxidation peak [31].
Since the sensitivity of the first oxidation peak is larger than that of the second oxidation
peak (Figure S4), the first oxidation peak was selected as the research object. As shown in
Figure 5A, with the increase of CuSO4 concentration, more CuNPs adsorb on the electrode
surface, the concentration is too low, resulting in too few CuNPs on the electrode surface;
the concentration is too high, resulting in too much CuNPs, and the electrode surface mate-
rial may easily fall off. Therefore, 0.11 M CuSO4 is chosen. Figure 5B shows the optimization
of deposition potential, as different deposition potential may affect the morphology and
size of the composite on the electrode surface [32], which in turn affects the response of
the modified electrode to IAA and SA. The result shows that the oxidation peak current of
IAA and SA increases with the decrease of deposition potential, and reaches the maximum
at −0.4 V. When the deposition potential decreases further, the oxidation peak current
decreases, so −0.4 V was selected as the optimal deposition potential. Figure 5C shows
the optimization of deposition time. With the increase of deposition time, the response of
composite to IAA and SA reaches the maximum at 10 s. This is because as the deposition
time increases, the thickness of the electrode surface material also increases, which in turn
affects the electron transport ability of the electrode, resulting in a decrease in the electro-
chemical signals of IAA and SA. Figure 5D is the optimization of CNPs concentration. As
the concentration of CNPs increased, the response of the composite to IAA and SA reachs
a maximum at 5 mg/mL. Because the concentration of CNPs will effect the thickness of
CSF. The optimal hydrothermal time of CNPs in Figure 5E was 11 h. With the increase
of reaction time, the number of CNPs also increases. However, with the increase of time,
some CNPs are over-carbonized due to continuous heating, resulting in the destruction of
their structures. Figure 5F is the optimization of hydrothermal temperature of CNPs, this is
due to the low temperature, which makes insufficient reaction and less CNPs production.
High temperature leads to excessive carbonization of CNPs and structural damage, so the
response to IAA and SA is poor. Figure 5G shows the optimization of the concentration
of MWCNTs, and the maximum response is 5 mg/mL. This may be that the higher the
concentration of MWCNTs, the larger the adsorption reaction interface, the greater the
electron transfer and the greater the response. However, with the accumulation of materials,
the excessive thickness of materials will affect the electron transfer rate and the stability
of materials loaded on the electrode surface. Therefore, 5 mg/mL MWCNTs are selected
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as the optimal conditions. Figure 5H shows optimization of preconcentration time, the
response is maximum at 90 s. This may be due to the adsorption of IAA and SA onto the
electrode surface with the increase of preconcentration time, reaching the maximum at 90 s.
As the preconcentration time continued to increase, the active sites on the electrode surface
gradually decreased, which affected the adsorption of IAA and SA, resulting in a decrease
in their peak current responses.
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Figure 5. Effects of CuSO4 concentration (A), deposition potential (B), deposition time (C), concentra-
tion of CNPs (D), hydrothermal time (E), hydrothermal temperature (F), concentration of MWCNTs
(G) and the preconcentration time (H) on LSV peak current of CuNPs-CSF-CNPS-MWCNTs/GCE
in 0.1 M PBS (pH = 7) containing 50 µM IAA and 50 µM SA. LSV (I) of GCE, CuNPs/GCE,
CNPs/GCE, MWCNTs/GCE, CNPs-MWCNTs/GCE, CSF-CNPs-MWCNTs/GCE and CuNPs-CSF-
CNPs-MWCNTs/GCE modified electrodes in 0.1 M PBS (pH = 7) containing 50 µM IAA and 50 µM
SA. Scan rate of 100 mV/s.

Figure 5I shows the LSV responses of different modified electrodes to 50 µM IAA and
50 µM SA, respectively. It can be seen from Figure 5I that the response of CuNPs-CSF-CNPs-
MWCNTs/GCE modified electrode to IAA and SA is greater than that of CuNPs/GCE,
CNPs/GCE, MWCNTs/GCE, CSF-CNPs-MWCNTs/GCE and CNPs-MWCNTs/GCE mod-
ified electrode. This exhits that CuNPs, CNPs, MWCNTs and CSF increase the electroac-
tive surface area of the composites (Figure S3), thereby enhancing its sensing perfor-
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mance. Therefore, the CuNPs-CSF-CNPs-MWCNTs modified electrode is selected for
subsequent experiments.

3.3. Kinetic Behavior of IAA and SA Detection

The kinetic behavior of IAA and SA detection at CuNPs-CSF-CNPs-MWCNTs/GCE
was examined, as shown in Figures 6 and 7. When the scanning rate varies from 20 mV/s
to 140 mV/s, the oxidation peak potential of IAA and SA shifts positively (Figure 6A), and
the peak current of IAA and SA increases with the increase of scanning rate. Figure 6B,C
shows that the oxidation peak current of IAA and SA has a good linear relationship with
the scanning rate. The linear regression equations are Ipa (IAA1) = 0.2424ν (mV/s) + 5.1711
(R2 = 0.9988), Ipa (IAA2) = 0.1174ν (mV/s) + 3.699 (R2 = 0.9832) and Ipa (SA) = 0.0549ν
(mV/s) + 3.336 (R2 = 0.9913), indicating that IAA and SA detection are typical adsorp-
tion controlled processes on modified electrode. According to the theoretical formula of
Bard, A.J. and Faulkner, L.R. [33] (2022): Ipa = n2F2νAΓ*/4RT = nFQν/4RT (R = 8.314,
F = 96,480, T = 298.15, ν = 100 mV/s), Q (IAA1) = 1.430 × 10−5 C, Q (IAA2) = 5.7 × 10−6 C,
Q (SA) = 3.796 × 10−6 C, Ipa (IAA1) = 29.36 µA, Ipa (IAA2) = 16.09 µA, Ipa (SA) = 8.85 µA,
The transfer electron number n for IAA1 and SA are both about 2. The transfer electron
number n for IAA2 is about 3.
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Figure 6. (A) LSV curves of CuNPs-CSF-CNPs-MWCNTs/GCE in PBS (pH = 7) containing 50 µM
IAA and 50 µM SA at different scan rates. (B) The linear correlation curve of peak current of IAA1

and IAA2 vs. the scan rates, respectively. (C) The linear correlation curve of peak current of SA vs.
the scan rates.
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Figure 7. (A) LSV curves of CuNPs-CSF-CNPs-MWCNTs/GCE in PBS containing 50 µM IAA and
50 µM SA at different pH values. Scan rate is 100 mV/s. (B) the linear correlation curve of Epa of
IAA1 and IAA2 vs. pH. (C) The linear correlation curve of Epa of SA vs. pH.

Figure 7A shows the LSV curves of CuNPs-CSF-CNPs-MWCNTs/GCE at different pH
values in PBS solution containing 50 µM IAA and 50 µM SA. It can be seen from Figure 7
that with the increase of pH, the peak current of IAA and SA first increases and then
decreases. When pH = 7, the maximum response current is obtained. As can be seen from
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Figure 7A, with the increase of pH, the peak current of the two phytohormones show a
negative shift, indicating the peak position of IAA and SA are closely related to pH, which
may be related to the transfer of H+ in the solution. Figure 7B,C shows that the oxidation
peak potential (Epa) of IAA1, IAA2 and SA decrease linearly with the increase of solu-
tion pH. The linear regression equations are Epa(V) = −0.0411pH + 0.9004 (R2 = 0.9967),
Epa(V) = −0.0462pH + 1.0435 (R2 = 0.9910) and Epa(V) = −0.052pH + 1.255 (R2 = 0.9929),
indicating that the redox process of IAA1, IAA2 and SA are accompanied with proton mi-
gration. According to Laviron’s (1974) [34] theoretical formula, dEp/dpH = −2.303mRT/nF,
where R = 8.314, F = 96,480, T = 298.15, According to the formula in pH, m is the number
of protons involved in the electrochemical reaction, and the m/n of IAA1, IAA2 and SA
is 0.695, 0.781 and 0.879, respectively. The m values of IAA1, IAA2 and SA are calculated
to be 1, 2, 2, respectively. The above results indicate that the electrochemical oxidation of
IAA1 involves two-electron and a proton processes, while the electrochemical oxidation
of IAA2 involves three-electron and two-proton processes. The electrochemical oxidation
process of SA is a two-electron and two-proton process. (Figure 8), which was consistent
with previous reports [1,35–37].
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Figure 8. Possible electrochemical oxidation reactions of IAA (A) and SA (B).

3.4. Detection of IAA and SA

Figure S4 (Supplementary Material) shows the individual detection results of IAA
(Figure S4A,B) and SA (Figure S4C,D) at CuNPs-CSF-CNPs-MWCNTs/GCE under the
optimal experimental conditions. Figure S4A shows the LSV responses of different concen-
trations of modified electrodes to IAA. Figure S4B shows the linear relationship between
the peak current and the concentrations of IAA1 and IAA2. A good linear relationship
is found for IAA1 and IAA2 from 0.01 to 60 µM. The linear regression equations are
Ip(µA) = 1.1455c (µmol/L) + 1.4115 (R2 = 0.9968) and Ip (µA) = 0.5618c (µmol/L) + 0.9798
(R2 = 0.9901), respectively, and the detection limit was 0.0078 µM and 0.0091 (S/N = 3),
respectively. Figure S4C shows the LSV responses of the modified electrodes at differ-
ent concentrations to SA. Figure S4D is the linear relationship between peak current and
SA concentration. In the 2–45 µM range, there is a good linear relationship between
peak current and SA concentration: Ip(µA) = 2.012c (µmol/L) −2.476, (R2 = 0.9978) and
Ip(µA) = 0.9450c (µmol/L) +11.3310, (R2 = 0.9986). The detection limit was 0.24 µM
(S/N = 3). Figure 9A shows the LSV responses of modified electrodes with different concen-
trations (fixed 20 µM SA) to IAA. Figure 9B shows the linear relationship between peak
current and IAA concentration. A good linear relationship was found for IAA from 0.01 to
60 µM. The linear regression equation was Ip(µA) = 1.1324c(µmol/L) + 1.0042 (R2 = 0.9960),
and the detection limit was 0.0079 µM (S/N = 3). Figure 9C shows the LSV responses
of modified electrodes with different concentrations (fixed 20 µM IAA) to SA. Figure 9D
is a linear relationship between peak current and SA concentration. There is a good lin-
ear relationship between peak current and SA concentration in the range of 2–35 µM
(Ip(µA) = 1.0431c (µmol/L) −0.1571, R2 = 0.9986). The detection limit is 0.46 µM (S/N = 3).
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Figure 9. LSV curve of CuNPs-CSF-CNPs-MWCNTs/GCE in 0.1 M PBS (pH = 7.0) containing
different concentrations of IAA (0.01, 1, 2, 4, 6, 10, 15, 20, 30, 40, 50, 60 µM) (A) and SA (2, 4, 6, 10, 15,
20, 25, 30, 35 µM) (C), respectively. Linear correlation curve between peak current and concentrations
of IAA (B) and SA (D), respectively.

Figure 10 shows the simultaneous detection of IAA and SA at CuNPs-CSF-CNPs-
MWCNTs/GCE under the optimal experimental conditions. Figure 10A shows the LSV
responses of modified electrodes to IAA and SA at different concentrations. Figure 10B
shows the linear relationship of peak current to IAA and SA concentrations. The linear
relationship of IAA in the range of 0.01–50 µM is Ip(µA) = 1.0450c(µmol/L) + 0.8980
(R2 = 0.9957), and the detection limit (S/N = 3) was 0.0086 µM. The linear relationship of
SA in the range of 4–30 µM was Ip(µA) = 0.2366c(µmol/L) − 0.2492 (R2 = 0.9959), and the
detection limit was 0.7 µM (S/N = 3). As shown in Table 2. The detection limit is superior
to the simultaneous detection of IAA and SA at typical modified electrodes.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 15 
 

 

  

 
 

Figure 9. LSV curve of CuNPs-CSF-CNPs-MWCNTs/GCE in 0.1 M PBS (pH = 7.0) containing differ-
ent concentrations of IAA (0.01, 1, 2, 4, 6, 10, 15, 20, 30, 40, 50, 60 μM) (A) and SA (2, 4, 6, 10, 15, 20, 
25, 30, 35 μM) (C), respectively. Linear correlation curve between peak current and concentrations 
of IAA (B) and SA (D), respectively. 

Figure 10 shows the simultaneous detection of IAA and SA at CuNPs-CSF-CNPs-
MWCNTs/GCE under the optimal experimental conditions. Figure 10A shows the LSV 
responses of modified electrodes to IAA and SA at different concentrations. Figure 10B 
shows the linear relationship of peak current to IAA and SA concentrations. The linear 
relationship of IAA in the range of 0.01–50 μM is Ip(μA) = 1.0450c(μmol/L) + 0.8980 (R2 = 

0.9957), and the detection limit (S/N = 3) was 0.0086 μM. The linear relationship of SA in 
the range of 4–30 μM was Ip(μA) = 0.2366c(μmol/L) − 0.2492 (R2 = 0.9959), and the detection 
limit was 0.7 μM (S/N = 3). As shown in Table 2. The detection limit is superior to the 
simultaneous detection of IAA and SA at typical modified electrodes. 

  

Figure 10. LSV (A) curve of CuNPs-CSF-CNPs-MWCNTs/GCE in 0.1 M PBS (pH = 7.0) containing 
different concentrations of IAA (0.01, 0.1, 5, 10, 20, 30, 40, 50 μM) and SA(4, 6, 10, 14, 18, 22, 26, 30 

0.4 0.6 0.8 1.0

0

60

120

180

i /
 μ

A

E / V vs.SCE

0.01 μM

60 μM

A

IAA

0 15 30 45 60

0

20

40

60

Δi
 / 

μA

c / μM

Ip=1.1324c+1.0042
R2=0.9960

B

IAA

0.4 0.6 0.8 1.0

0

40

80

120

i /
 μ

A

E / V vs.SCE

 2 μM

35 μM

C

SA

0 10 20 30 40
0

10

20

30

40

Δi
 / 

μA

c / μM

Ip=1.0431c−0.1571
R2=0.9986

D

SA

0.4 0.6 0.8 1.0

0

30

60

90

120

4 μM

30 μM

i /
 μ

A

E / V vs.SCE

0.01 μM

IAA

50 μM SA

A
0 10 20 30 40 50

0

10

20

30

40

50

Δi
 / 

μA

c / μM

Ip=1.0450c+0.8980
R2=0.9957

Ip=0.2366c−0.2492
R2=0.9959

IAA

SA

B

Figure 10. LSV (A) curve of CuNPs-CSF-CNPs-MWCNTs/GCE in 0.1 M PBS (pH = 7.0) containing
different concentrations of IAA (0.01, 0.1, 5, 10, 20, 30, 40, 50 µM) and SA (4, 6, 10, 14, 18, 22, 26, 30 µM).
Linear correlation curve between peak current and concentrations of IAA and SA (B), respectively.



Sensors 2022, 22, 4476 11 of 15

Table 2. Comparison of some typical modified electrodes for determination of IAA and SA.

Electrodes * Detection
Method

Detection
Substance

Linear
Range/µM

Detection
Limit/µM Ref.

GH/GCE LSV IAA
SA

0.6–10, 4–200
0.6–10, 4–200

1.42
2.8 [38]

CB-MWCNT-
Nafion/Fc/GCE DPV IAA

SA
25–1000
25–1000

1.99
3.3 [22]

MWCNTs-
CS/GCE DPV IAA

SA
0.67–48.82
0.67–48.82

0.1
0.1 [23]

CMC-MMT-
SWCNT/GCE LSV IAA

SA

0.005–0.3,
0.3–70

0.01–300

0.002
0.0063 [1]

AuNPs-
GH/GCE i-t IAA

SA

0.8–4, 4–128
0.8–8.4,
8.4–188

0.21
0.22 [39]

CT DPV IAA
SA

1–100
1–100

0.1
0.1 [40]

CCC/ITO DPV IAA
SA

10–100
10–100

3
2 [41]

PADs DPV IAA
SA

1–60
1–60

0.1
0.1 [42]

PPRONPs-
CDs-

MWCNTs/GCE
LSV IAA

SA
0.05–25
0.2–40

0.007
0.1 [43]

CuNPs-CSF-
CNPs-

MWCNTs/GCE
LSV IAA

SA
0.01–50

4–30
0.0086

0.7 This work

* GH: Graphene Hydrogel, CB: Carbon black, MWCNT: Multiwall carbon nanotubes, Fc: Ferrocene, CS: Chitosan,
CMC: Carboxymethyl cellulose, MMT: Montmorillonite, SWCNT: Single-walled carbon nanotube, AuNPs: Gold
nanoparticle, CT: Carbon tape, CCC: Conductive carbon cement. PADs: Paper-based electroanalytical devices.

In order to investigate the anti-interference ability of CuNPs-CSF-CNPs-MWCNTs/
GCE for IAA and SA detection, 0.1 M PBS (pH = 7.0) containing 50 µM IAA and 50 µM
SA was added, and small molecular substances (ascorbic acid, cysteine, citric acid, argi-
nine, glucose) and inorganic ions (Zn2+, K+) that may interfere with the experiment were
added. As shown in Figure 11, there was no obvious interference compared with the
peak current of IAA and SA, indicating that CuNPs-CSF-CNPs-MWCNTs/GCE has good
selectivity. Figure 11 also shows the reproducibility (Figure 11B) and stability (Figure 11C)
of CuNPs-CSF-CNPs-MWCNTs/GCE for IAA and SA detection. In Figure 11B, five pol-
ished electrodes were modified with the same composite and the corresponding currents
were recorded. The results show that the modified electrode has good reproducibility. In
Figure 11C, the modified electrodes were placed in a 4 ◦C refrigerator for 10 days and
tested in the same solution. The results show that the current responses of the modified
electrode to IAA and SA remain around 87.92% and 91.90%, respectively, indicating that
the modified electrode has good long-term stability.

In order to further understand the practical value of the sensor, IAA and SA in rape
leaves and tea leaves were detected by standard addition method with CuNPs-CSF-CNPs-
MWCNTs/GCE. According to Table 3, the recovery rate is stable at 91.1–109%, and the RSD
is 1.27–2.98%, indicating that the sensor can be applied to the detection of actual samples.
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In order to further understand the practical value of the sensor, IAA and SA in rape 
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4. Conclusions 
In this work, a novel CuNPs-CSF-CNPs-MWCNTs composite was prepared by one-

step co-electrodeposition method. CuNPs-CSF-CNPs-MWCNTs can significantly im-
prove the conductivity and electroactive surface area of the composites explained by CV 
and EIS, thereby improving the performance of the sensor. The sensor is used for simul-
taneous detection of IAA and SA with a wide linear range and low LOD. It also has an 
ideal recovery rate in the detection of actual samples, so it has potential application value 
in the detection of IAA and SA. In addition, the proposed co-electrodeposition method 
can be extended to facilitate the preparation of many other composites using other CNPs 
fixed residue as a monomer for wide applications. 
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Figure 11. (A) LSV anodic current responses of CuNPs-CSF-CNPs-MWCNTs/GCE in 0.1 M PBS
(pH = 7) containing 50 µM IAA and 50 µM SA in the presence of different interfering substances,
respectively. (B) LSV anodic current response of five CuNPs-CSF-CNPs-MWCNTs/GCE electrodes
in 0.1 M PBS (pH = 7) containing 50 µM IAA and 50 µM SA. (C) LSV anodic current responses of
CuNPs-CSF-CNPs-MWCNTs/GCE in 0.1 M PBS (pH = 7) containing 50 µM IAA and 50 µM SA from
1 day to 10 days. Scanning rate: 0.1 V/s.

Table 3. Determination of IAA and SA levels at the CuNPs-CSF-CNPs-MWCNTs/GCE in 0.1 M PBS
(pH 7.0) containing real samples.

Sample Analyte Join (µM) Detection
(µM)

Recovery
(%) RSD (%)

Rape leaves IAA
SA

10
5

9.20
5.45

92
109

2.43
2.98

Tea leaves IAA
SA

10
10

9.11
9.53

91.1
95.3

2.03
1.27

4. Conclusions

In this work, a novel CuNPs-CSF-CNPs-MWCNTs composite was prepared by one-
step co-electrodeposition method. CuNPs-CSF-CNPs-MWCNTs can significantly improve
the conductivity and electroactive surface area of the composites explained by CV and EIS,
thereby improving the performance of the sensor. The sensor is used for simultaneous
detection of IAA and SA with a wide linear range and low LOD. It also has an ideal recovery
rate in the detection of actual samples, so it has potential application value in the detection
of IAA and SA. In addition, the proposed co-electrodeposition method can be extended to
facilitate the preparation of many other composites using other CNPs fixed residue as a
monomer for wide applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22124476/s1, Figure S1: SEM images of MWCNTs/GCE (A) and
CNPs-MWCNTs/GCE (C). EDX spectrum of MWCNTs (B) and CNPs-MWCNTs (D). Figure S2: FT-
IR spectra of CuNPs, CS, CNPs, MWCNTs, CNPs-MWCNTs, and CuNPs-CSF-CNPs-MWCNTs,
respectively. Figure S3: CVs of bare GCE (A), MWCNTs/GCE (B), CNPs-MWCNT/GCE (C), CSF-
CNPs-MWCNT/GCE (D), and CuNPs-CSF-CNPs-MWCNTs/GCE (E) measured at different scan
rates in 5.0 mM [Fe(CN)6]3−/4− + 0.5 M KCl. (F) Linear relationship between peak current (Ip)
and square root of scan rate (ν1/2) for different modified electrodes (a–e: GCE, MWCNTs/GCE,
CNPs-MWCNT/GCE, CSF-CNPs-MWCNT/GCE, CuNPs-CSF-CNPs-MWCNTs/GCE). Figure S4:
LSV curve of CuNPs-CSF-CNPs-MWCNTs/GCE in 0.1 M PBS (pH = 7.0) containing different con-
centrations of IAA (A) and SA (C), respectively. Linear correlation curve between peak current and
concentrations of IAA1 (B), IAA2 (B), and SA (D), respectively. References [44–46] are cited in the
supplementary materials.
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