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Abstract: Vibration-based energy harvesters consisting of a laminated piezoelectric cantilever have
recently attracted attention for their potential applications. Current studies have mostly focused on the
harvesting capacity of piezoelectric harvesters under various conditions, and have given less attention
to the electromechanical characteristics that are, in fact, crucial to a deeper understanding of the
intrinsic mechanism of piezoelectric harvesting. In addition, the current related models have mostly
been suitable for harvesting systems with very specific parameters and have not been applicable
if the parameters were vague or unknown. Drawing on the available background information,
in this study, we conduct research on a vibration-based cantilever beam of composite-laminated
piezoelectric patches through an experimental study of its characteristics as well as a modeling
study of energy harvesting. In the experimental study, we set out to investigate the harvesting
capacity of the system, as well as the electromechanical (voltage/current-strain and power-strain
relationships) characteristics of the cantilever harvester. In addition, we summarize some pivotal
rules with regard to several design variables, which provide configuration design suggestions for
maximizing energy conversion of this type of harvesting system. In the modeling study, we propose
a coupled electromechanical model with a set of updated parameters by using an optimization
program. The preceding experimental data are used to verify the superiority of the model for
accurately predicting the amount of harvested energy, while effectively imitating the characteristics
of a cantilever harvesters. The model also has merit since it is suitable for diversified harvesters
with vague or even unknown parameters, which cannot be dealt with by using traditional modeling
methods. Overall, the experimental study provides information on a comprehensive way to enhance
the harvesting capacity of piezoelectric cantilever transducers, and the modeling study provides a
wide scope of applications for cantilever harvesters even if precise information is lacking.

Keywords: vibration-based harvesting; composite-laminated piezoelectric patch; cantilever harvester;
electromechanical model; optimized parameters

1. Introduction

In recent years, vibration-based energy harvesting has attracted attention for its po-
tential use in self-energized, autonomous, and wireless monitoring systems [1,2]. The
harvesters are usually classified as piezoelectric [3] electrostatic [4,5], electromagnetic [6,7],
magnetostrictive [8,9], electroactive polymer [10], etc. Among the transducers, piezoelectric
energy harvesters have received significant attention due to their high energy density,
simple fabrication, and their compatibility with MEMS technology [11].

One of most popular harvesters is the piezoelectric cantilever beam harvester using
laminated patches that usually consist of one or two piezoelectric layers (unimorph or
bimorph) with some other substructures [1,3]. For example, Liu et al. [12] fabricated a
MEMS-based piezoelectric laminated cantilever for energy harvesting application inte-
grated with silicon proof mass material, which could realize a quite low resonant frequency.
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Montanini et al. [13] designed a cantilever-type piezoelectric generator by gluing a PZT
patch onto an FRP cantilever beam, and investigated its effect on vibration frequency, vi-
bration amplitude, resistance load, etc. Aramaki et al. [14] fabricated a 2-DOF system using
a piezoelectric MEMS vibrational energy harvester with 1-DOF and an Al cantilever, which
reached a higher level of output power by 3.4 µW. Usharani et al. [15] presented an energy
harvester associated with a piezoelectric-patched cantilever beam that had a step section.
It could achieve higher power in a broadband operating frequency. Morimoto et al. [16]
fabricated a piezoelectric energy harvester composed of PZT films transferred onto stainless
steel cantilevers for improved energy conversion efficiency and toughness.

In addition to the fabrication research on possible applications of such harvesters,
researchers have proposed various corresponding mathematical models. Initially, SDOF
electromagnetic models [17,18] were presented based on the assumption of a cantilever
beam mass-spring-damper system. These modelsprovided simple expressions and were
very convenient to use; however, the models were inaccurate because they lacked important
aspects of a physical system such as strain distribution and dynamic model shape, as well
as their influence on electrical response [19]. As an alternative approach, approximated
distributed parameter models [20–22] were developed by using Hamilton’s principle and
the Rayleigh–Ritz method on the assumption of the Euler–Bernoulli beam theory, which
were more accurate approximations as compared with SDOF models. The models mainly
considered one single vibration mode and oversimplified the backward coupling in the
mechanical domain, and some incorrect modeling attempts easily resulted in inexact
solutions [23]. Additionally, Erturk and Inman [19,24] proposed an advanced distributed
model to solve its closed-form analytical solution. Its effectiveness was experimentally
tested for predicting vibration responses and voltage output. Previous models have targeted
energy prediction for harvesters with explicit configurations, and have not been applicable
for harvesters with ambiguous or complicated configurations.

Fabrication and modeling studies in the related literature have both basically focused
on harvesters’ energy conversion capacities by means of experimental observation and
prediction of approximate harvested energy amounts by means of appropriate modeling.
For example, most current models have been deemed to be valid through the predictive
accuracy of the gross energy amount (such as peak or average electric output). In fact, mod-
els should be further tested through electromechanical characteristics that are more pivotal
to have a deeper understanding of the piezoelectric harvesting mechanism. Unfortunately,
so far, there has not been sufficient model validations. Thus, further detailed model valida-
tions are urgently needed. In addition, the current models are mainly applicable for regular
or simple piezoelectric-laminated cantilever harvesters (such as unimorph or bimorph)
with explicit configurations. However, most harvesting products are encapsulated and com-
plicated (such as MFC and PPA introduced in Section 2), with configurations that are not
that simple and explicit. Thus, it is also indispensable to present a model that can versatilely
fit for piezoelectric-laminated cantilever harvesters with diversified configurations.

On the basis of the abovementioned background, in this paper, we conduct a series
of studies on energy harvesting by using two popular composite-laminated piezoelectric
cantilever patches (MFC and PPA) in terms of experimental and modeling studies. In the
experimental study, the vibration-based energy harvesting system is set up by using the
two types of cantilever patches. Their mechanical and electric output are recorded under
different conditions through tuning frequency in exciter, changing resistance in the circuit,
and replacing mass weight at the free end of harvesters. On the basis of the experimental
results, some crucial parameter settings are summarized for the configuration design of har-
vesters that maximize energy conversion. Additionally, a full investigation is also executed
with regard to the harvesting characteristic relationships including voltage/current-strain
and power-strain relationships, which provides a detailed information about the intrinsic
electromechanical mechanism. Based on the preceding experimental study, we propose a
coupled electromechanical model with set of updated parameters by using an optimiza-
tion program. The model is verified to be superior through test data, and it is accurate
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for predicting harvested energy and effective for imitating the characteristic behaviors of
the piezoelectric cantilever harvesters. Furthermore, the model can be applied for piezo-
electric cantilever harvesters with diversified configurations (even vague or unknown
configurations) that cannot be easily dealt with by using traditional modeling methods.

2. Energy Harvesting Experiment

For this study, we used two popular commercialized products, i.e., macro fiber com-
posite (MFC) and piezo protection advantage (PPA), as the cantilever beam harvesters and
conducted an experiment to investigate their vibration-based harvesting properties. Herein,
we briefly introduce the products below.

2.1. Harvester Samples

(1) MFC patch

One composite piezoelectric patch, i.e., macro fiber composite (MFC), is a product
developed by the NASA Langley Center. It is a layered, planar transducer that employs
unidirectional piezoceramic fibers embedded in a thermosetting polymer matrix. The
matrix is externally laminated with two polyamide films that are printed interdigited
electrodes. The schematic diagram for the construction of the P1 type MFC is shown in
Figure 1a, where its capacitance is 1.83 nF, tensile modulus is 30.33 GPa, block force is
162 N, and free strain is 1500.
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Figure 1. Schematic diagram for the construction of the piezoelectric laminated products. (a) MFC
patch; (b) PPA patch.

(2) PPA patch

The other composite piezoelectric patch, i.e., piezo protection advantage (PPA), is
one of the piezoelectric unimorph patches produced by the Mide’s company. It is also
a laminated transducer but employs a whole layer of piezoceramic in the middle. In
addition to the PZT layer, it also has four layers including polyester, copper, steel, and
polyamide films. A schematic diagram of its construction is also shown in Figure 1b, where
its capacitance is 100 nF, tensile modulus is 30.33 GPa, block force is 0.2 N, and free deflect
is 0.8 mm.

2.2. Experimental Procedure

As previously mentioned, piezoelectric laminated patches are commonly utilized for
cantilever harvesters. Therefore, we used MFC and PPA patches to construct a cantilever
harvester with an electric system, which is described below.

As shown in Figure 2, the test system apparatus included the following: a vibration
exciter (Bruel & Kjaer Type 4832), a variable resistor (Fumi ZX21 resistance box), data
acquisition (QuantumX MX840B module), a signal generator (Bruel & Kjaer Type 2732),
and a power amplifier (AWG2005). The vibration exciter was used to vibrate the cantilever
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MFC/PPA patch; one end of the patch was clamped and connected to the exciter by a
harness (see Figure 3). The variable resistor was used to assemble a circuit for carrying
an electric current. Data acquisition was adopted to realize multifunctional measuring
missions, which simultaneously measured and recorded the voltage (V), current (I), and
strain (S) data from the MFC/PPA. Note that the strain was recorded through a strain gauge
pasted at the fixed-center end of the sample. Based on the data collected, the electric power
P was calculated by following the electric power relation P = V·I. In Figure 2, MFCs are
shown as the testing sample and compensator in the system. In the same way, they were
replaced by PPAs when we were about to measure PPA.
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2.3. Experimental Investigation

By using the setup, series of preliminary tests were carried out to measure the me-
chanical and electric responses from MFC and PPA under harmonic excitations. Excitation
frequency from the exciter was tuned from 1 to 150 Hz with a 5 Hz interval, and the
resistance load was changed from 0 to 90 kOhm with a 5 kOhm interval. In the experiment,
PPA was also added by a mass weight that could lower the structural dominant frequency.
The 4 mass weights chosen were 0 g, 12.5 g, 18.75 g, and 25 g.

2.3.1. Resonant Frequency Determination

It is important to know the natural frequency of a harvester because it dramatically
affects the harvesting capability. Thus, a set of sweep frequency tests was executed to
determine the natural frequencies of the MFC and PPA structures. Prior to the test, the
resistance was maintained at a constant value of 20 kOhm.
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First, we increased the excitation frequency slowly from 1 to 150 Hz, and then recorded
the strain response. Next, we decomposed the strain data into frequency domain by using
Fourier transform, and finally, obtained the single-sided amplitude spectrum sets, as shown
in Figure 4.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 27 
 

 

PPA was also added by a mass weight that could lower the structural dominant fre-
quency. The 4 mass weights chosen were 0 g, 12.5 g, 18.75 g, and 25 g. 

2.3.1. Resonant Frequency Determination 
It is important to know the natural frequency of a harvester because it dramatically 

affects the harvesting capability. Thus, a set of sweep frequency tests was executed to de-
termine the natural frequencies of the MFC and PPA structures. Prior to the test, the re-
sistance was maintained at a constant value of 20 kOhm. 

First, we increased the excitation frequency slowly from 1 to 150 Hz, and then rec-
orded the strain response. Next, we decomposed the strain data into frequency domain 
by using Fourier transform, and finally, obtained the single-sided amplitude spectrum 
sets, as shown in Figure 4. 

(a) (b) 

  
(c) (d) 

 
(e) 

Figure 4. Amplitude spectrum of frequency sweep for the strain response of PPA and MFC. (a) 
Amplitude spectrum for MFC with 0 g mass; (b) Amplitude spectrum for PPA with 0 g mass; (c) 
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spectrum for PPA with 12.5 g mass; (d) Amplitude spectrum for PPA with 18.75 g mass; (e) Amplitude
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In Figure 4a, the strain amplitude spectrum for MFC without mass approaches a
dramatic peak of 64.85 Hz where resonance is aroused. This indicates that 64.85 Hz is
the value of its structural dominant frequency. Similarly, PPA was tested using the four
different mass weights. When the PPA cantilever is set without mass, its natural frequency
is 123.2 Hz (see Figure 4b). When the mass weight is 12.5 g, the natural frequency changes
to a lower value of 31.2 Hz, and the strain amplitude increases drastically to a higher value
of 22.59 Hz−1. Next, the same pattern is repeated with mass weights up to 18.75 g and 25 g,
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the natural frequencies are further decreased to 25.79 Hz and 21.94 Hz, respectively, while
the strain amplitude is further magnified to 34.42 Hz−1 and 70.06 Hz−1.

On the one hand, we found that the maximization of strain and electric power could
be aroused, while excitation frequency sweeps are close to the structure’s natural frequency.
On the other hand, the natural frequency could be changed, while the tip end had a
different weight mass. This indicates there should be an effective way to adopt a suitable
structure to accommodate the environment, and thereupon, more energy conversion would
be excavated.

2.3.2. Harvesting Capability Comparison

As illustrated in Section 2.3.1, maximization of electric power (harvesting capability) is
stimulated when several excitation frequencies approach the dominant frequencies of MFC
and PPA cantilever patches, and, in this section, we compare their harvesting capabilities.

Figure 5 shows the results from MFC under excitation with its approximated dominant
frequency (60 Hz). Figure 6 shows the corresponding results from PPA under excitation
with its approximated dominant frequency (120 Hz). As displayed in Figure 5a, strain
response from the fixed-center end of the patch is measured as an amplitude of 1.96 ×10−3.
Under this stimulation, the voltage response is then obtained with 1.019 V amplitude, as
shown in Figure 5b. Likewise, the current response is obtained as 12.22 µA, as shown in
Figure 5c. Based on the voltage and current results, electric power can be calculated based
on a simple electric power equation, which is the most important variable associated with
vibrational-electric energy conversion. We found that the corresponding peak power was
13.54 µW, as shown in Figure 5d.
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Likewise, Figure 6 shows the results from PPA under it dominant frequency excitation
(120 Hz). As illustrated in Figure 6b–d, we found the responses’ amplitudes of strain, volt-
age, current, and power were 0.5442 ×10−3, 8.083 V, 0.8137 mA, and 6.98 mW, respectively.

It should be noted that the exciter is an open-loop system, and the strain data are not
at the same level from MFC (in Figure 5a) and PPA (in Figure 6a). For the sake of compara-
bility between these two patches, we standardized the electric responses under the unit of
strain amplitude (1× 10−3). For example, the strain amplitude from MFC is 1.96 ×10−3

in Figure 5a, and the corresponding voltage amplitude is 1.019 V in Figure 5b. Through
standardization, the comparable voltage is standardized to 0.52 V (1.019 V/1.96 V) ampli-
tude. At the same time, the comparable current/power is standardized to 6.23 µA/6.9 µW.
For PPA, the comparable voltage, current, and power are 14.85 V, 1.50 mA, and 12.83 mW,
respectively. By contrast, it is obvious that the harvesting capability of PPA is much more
superior as compared with that of MFC, where voltage/current collection from the PPA is
28/241 times larger than MFC, and amazingly, power collection is 1986 times larger than
that of MFC.

2.3.3. Harvesting Characteristic Investigation

In addition to the electric harvesting capacity, we further investigate their electrome-
chanical characteristics, which is pivotal to explore the energy conversion mechanism.
As shown in Figure 7a,c, it is quite clear that the voltage/current-strain curve is in the
rotational symmetric shape of ellipses suggesting their hysteretic nonlinear relationship. In
addition, the power-strain curve is axial symmetry and it is quite unique in that it looks
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like a butterfly shape, as shown in Figure 7b,d. We previously discussed that a larger
peak power indicated a stronger harvesting capability of a harvester. In fact, we found
the fullness of the butterfly shape also indicated the harvesting capability of the harvester.
For example, the power-strain butterfly in MFC, shown in Figure 7d, is much thinner than
that in PPA, as shown in Figure 7c, which demonstrates the same conclusion (as proven in
Section 2.3.2) that PPA has a much greater capability of energy harvesting than MFC.
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2.3.4. Rational Resistance Determination

Herein, we observe how the resistance load affects the harvested electric power, given
that the excitation frequency is set as its approximate resonant frequency. In Figure 8, for
comparison, all the generated powers of the cases are normalized within the unit range
(0–1). The normalized powers of the MFC are listed with different resistances from 0 to
90 kOhm, as shown in Figure 8a. We find the electric power of the MFC almost increases
linearly along with the resistant load. Unlike the MFC, the power of the PPA increases to
a peak power, and then decreases, with an increase in resistance load. Take PPA without
mass as example, the peak power is stimulated when resistance is changed to 10 kOhm.
This value of resistance can be deemed to be a rational setting in the circuit for this case.
Likewise, the rational resistances are all determined to be, respectively, 30 kOhm, 35 kOhm,
and 50 kOhm in the cases of 12.5 g, 18.5 g, and 25 g levels for cantilever PPA.
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2.3.5. Appropriate Excitation Amplitude Determination

We also observe how the excitation amplitude load affects the generated power.
Figure 9 displays the relationship of the generated peak/average power with the exci-
tation amplitude from the PPA harvester under two typical cases. In Figure 9a for the case
of 100 Hz frequency, 10 kOhm resistance without mass, the results demonstrate that a larger
excitation amplitude stimulates more electric power. In addition, the power increases more
dramatically when the harvester is excited under a larger amplitude of excitation. Likewise,
Figure 9b shows the results of another typical case that represent similar changes in the
generated electric power with the excitation amplitude.
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The above phenomena illustrate that a more intense vibrational environment would
arouse much more electric energy, which is preferable for harvesting more electric power
converted from mechanical energy. However, one concern is that the structure and its
harvester should stay safe with respect to their mechanical strength.

3. Coupled Electromechanical Modeling
3.1. Piezoelectric Basic Equation

When a poled piezoelectric material is mechanically strained, on the one hand, it
becomes electrically polarized and electric charge is generated on the material’s surface.
The phenomenon is known as the “direct piezoelectric effect” and is the basis on which
piezoelectric materials are utilized as a sensor or harvester. If electrodes are connected to
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the piezoelectric surfaces, on the other hand, the generated electric charge can be gathered
and used. This phenomenon is known as the “inverse piezoelectric effect”, and it is utilized
especially as an actuator in vibration control applications.

The above phenomena are usually described by using a set of constitutive equations.
On the assumption that the total strain in the transducer is the sum of mechanical strain
induced by the mechanical stress and the controllable actuation strain caused by the applied
electric voltage, their strain-charge form is given by:

Si = sE
ij·Tj + emi·Em (1)

Dm = emi·Ti + εT
ik·Ek (2)

where T is the stress vector; S is the strain vector; E is the vector of applied electric field;
D is the vector of electric displacement; s is the matrix of compliance coefficients; e is the
matrix of piezoelectric coupling coefficients; ε is the matrix of electric permittivity; and the
indexes i, j = 1, 2, . . . , 6 and m, k = 1, 2, 3 refer to different directions within the material
coordinate systems, as illustrated in Figure 10.
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Figure 10. Axis nomenclature for the piezoelectric constitutive equation.

The constitutive Equation (2) describes the “direct piezoelectric effect” about how elec-
tric displacement is aroused in the stress field and electric field. Based on this, the collected
electric charge can be determined from the electric displacement when the piezoelectric
transducer is subject to a non-zero stress field, that is:

q =
x

[D1 D2 D3]

dA1
dA2
dA3

 (3)

where dA1, dA2, and dA3 indicate the differential electrode areas in y-z, x-y, and x-z planes,
respectively, as shown in Figure 10. Then, the aroused inner voltage Vp can be obtained via
Vp = q

Cp
, where Cp is the capacitance of the piezoelectric layer.

Combined with the piezoelectric basic equations, in this paper, we adopt a coupled
electromechanical model in order to effectively describe the complicated vibration-to-
electric behaviors of the laminated piezoelectric cantilever patch. Note that a piezoelectric
ceramic material is commonly adopted due to its high-power density and simple structure,
however, it demonstrates worse tenacious, flexible, and fatigue performance. Therefore,
substructures such as some polymer and metallic materials are usually laminated with
piezoelectric ceramic for improving those defects. On the basis of this, we present a suitable
model for laminated piezoelectric structures.

3.2. Coupled Electromechanical Model
3.2.1. Coupled Mechanical Equations

In terms of the mechanical problem, the configuration is connected to a resistor with
resistance load R, as shown in Figure 11. Suppose the harvester is a laminated cantilever
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patch consisting of N piezoelectric layers and K substructure layers. In view of Euler–
Bernoulli beam assumptions, the partial differential equation of the cantilever beam with a
tip mass under an excitation at fixed end (displacement yb) can be expressed by:

∂2M(x, t)
∂x2 + csΛ

∂5y(x, t)
∂x4∂t

+ ca
∂y(x, t)

∂t
+ m

∂2y(x, t)
∂t2 = −[m + mδ(x− l)]

∂2yb(x, t)
∂t2 (4)

where cs/ca is the damping coefficient of strain rate/viscous air, Λ is the inertia moment
of the cross section, m is the mass per unit length l, m is the tip mass, δ is the Dirac delta
function, yb is the y-direction displacement at base position, y(x, t) is the relative deflection
to its base at position x and time t, and M is the internal bending moment, i.e.,:

M(x, t) = −b·
(

K

∑
pi=1

∫ hpi

hpi−1

Tpi
1 ydy +

N

∑
sj=1

∫ hsj

hsj−1

Tsj
1 ydy

)
(5)

where b and h are the width and the thickness of the laminated beam, respectively; hpi is
the thickness of the pi-th piezoceramic layer and there are altogether K piezoceramic layers;
hsi is the thicknesses of the sj-th substructure layers and there are altogether N substructure
layers; the axial stress components in the sj-th substructure at the 1-direction are presented
by Tsj

1 , and the pi-th piezoceramic layer at the 1-direction is presented by Tpi
1 .
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Figure 11. Schematic diagram of the universal composite-laminated piezoelectric cantilever harvester.

The piezoceramic part abides by constitutive equations (see Equations (1) and (2))
and the substructure parts abide by Hooke’s law in substructures. Then, the axial strain at
1-direction from neutral axis of the composite beam S1 is proportional to the curvature of
the beam at x position, that is:

S1(x, y, t) = −y
∂2y(x, t)

∂x2 (6)

The electric field component E3 should be expressed in terms of the respective voltage
term in each piezoelectric layer, as shown in Figure 11. It should be noted that different
(series or parallel) connections of the piezoelectric layers differ from each other resulting
in different mechanical equations. Herein, if the piezoelectric layers are assumed to be
identical, the voltage generated from the piezoceramic layers is Vp. In the series connection,
the voltage across the electrodes of each layer should be divided by K, which is equal
to Vp(t)/K. For the case of parallel connection, the voltage is equal to Vp(t). Then, the
instantaneous electric field E3 in series connection can be equally distracted, that is:

E3 = Vp(t)/
K

∑
pi=1

hpi (7)
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Likewise, for the configuration with parallel connection, the electric fields in each
layer are:

E3 = Vp(t)/

(
1
K
·

K

∑
pi=1

hpi

)
(8)

where hpi is the assumed center-to-center interdigitated electode spacing of the pi-th
piezoelectric layer.

Combined with the relationships from bending moment, curvature to the axial strain
in the beam in Equation (6), Equation (5) can be replaced by:

M(x, t) = −EI
∂2y(x, t)

∂x2 + ς·Vp(t)[H(x)− H(x− l)] (9)

where EI is the bending stiffness of the composite cross section of the laminated beam,
H(x) is the Heaviside function, and ς is a coupling coefficient.

On the assumption of the overall stiffness equal to a sum of that from every layer, the
bending stiffness term EI is usually divided into two parts (one refers to the piezoelectric
layers, and the other refers to the substructural layers). It is given by:

EI =
K

∑
pi=1

cE
11 Ipi +

N

∑
sj=1

Esj Isj (10)

where Esj is the Young modulus of sj-th substructure layer, Isj are the relative substructural
inertia moments of the cross section, and cE

11 is the elastic stiffness component at constant
electric field.

In Equation (9), the coupling coefficient ς can be expressed by:

ς = e31b·ϑ
(
hpi, hsi

)
(11)

where the coupling geometric coefficient ϑ is dependent on the dimensional and combi-
natorial relationship of each substructure and piezoelectric layers (hpi and hsi). It is also
dependent on the circuit connection method.

Based on the above, the coupled mechanical Equation (4) can be substituted with:

EI
∂4y(x, t)

∂x4 + cs I
∂5y(x, t)

∂x4∂t
+ ca

∂y(x, t)
∂t

+ m
∂2y(x, t)

∂t2 − ςvp(t)
[

dδ(x)
dx
− dδ(x− l)

dx

]
= −[m + mδ(x− l)]

∂2yb(x, t)
∂t2 (12)

Equation (4) is a partial differential equation and its analytical solution is difficult, and
even impossible, to solve. Herein, we employ the mode superposition method to solve it
effectively. The model expression is as follows:

y(x, t) =
∞

∑
k=1

ϕk(x)·qk(t) (13)

where qk(t) is the modal mechanical response, and ϕk(x) is the mass normalized eigenfunc-
tion of the k-th vibration mode whose expression is:

ϕk(x) = Ck

[
cos h

βkx
L
− cos

βkx
L
−

sin βk − sin hβk + βk
m

mL (cos βk − cos hβk)

cos βk + cos hβk − βk
m

mL (sin βk − sin hβk)
·
(

sin h
βkx
L
− sin βk

)]
(14)

where Ck is a modal amplitude constant that can be evaluated by normalizing the eigen-
functions according to the orthogonality conditions, and βk is the eigenvalues for k mode
that can also be evaluated by the short circuit conditions [22].
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By adopting the mode superposition method, Equation (12) is replaced by the mechan-
ical equation of motion in modal coordinates, that is:

d2qk(t)
dt2 + 2ξkωk

dqk(t)
dt

+ ω2
k qk(t)− λkvp(t) = fk(t) (15)

where ωk is the undamped natural frequency of the kth vibration mode, ξk is the modal
mechanical damping ratio derived from the proportional damping assumption. The modal
electromechanical coupling term λk = ς

dϕk(x)
dx

∣∣∣
x=L

and modal mechanical forcing func-
tion is:

fk(t) = −m
d2yb(t)

dt2

∫ L

0
ϕk(x)dx−mϕk(l)

d2yb(t)
dt2 (16)

3.2.2. Coupled Electric Equations

In the case of a laminated cantilever, the mechanical strain can be assumed to be the
axial strain in the case of curvature. Then, the tensorial expression of the piezoelectric
constitutive (Equations (1) and (2)) can be simplified to scalar equations as:

T1 = cE
11S1 − e31E3 (17)

D3 = e31S1 + εs
33E3 (18)

where cE
11 is the elastic stiffness of the piezoelectric layer at constant electric field, e31 is the

piezoelectric constant, and εs
33 is the permittivity component at constant strain with the

plane-stress assumption. Note the subscripts 1, 2, and 3 represent longitudinal, lateral, and
vertical direction of the cantilever beam, respectively, as shown in Figure 11.

The axial strain components of piezoelectric derived from Equation (17) and substruc-
ture layers in the laminated patch is proportional to its curvature at the position x. Based
on this, the stimulated electric field E3 can be solved.

Because the circuit admittance across the electrodes is 1/R, the electric response is
obtained based on Gauss’s law in Equation (3) as:

Vp(t)
R

=
d
dt

(∫
A

D3dA3

)
(19)

where D3 is the 3-directional electric displacement in the piezoelectric layer and A3 is the
electrode area in the x-z plane.

Due to the average strain in the piezoelectric layer subjected by the bending, substitute
Equation (20) into Equation (21), and then yield:

− e31hpcb
∫ L

0

∂3y(x, t)
∂x2∂t

dx = Cp
dVp(t)

dt
+

Vp(t)
R

(20)

where Cp is capacitance equal to blεS
33

hp
in the electric circuit, and hpc is the equivalent distance

between the neutral axis and the center of piezoceramic layer.
Based on Kirchhoff law, the current source Ip can be derived as:

Ip(t) = Cp
dVp(t)

dt
+

Vp(t)
R

(21)

It is easy to observe that Equations (20) and (21) have the same terms on the right side.
Thus, current Ip can be deduced directly by the agreement with the left term between them.

In fact, the measured electric results in the experiment are received from the electric
circuit through data acquisition, not the generated ones (Ip and Vp) directly from the
harvester. It is easy to understand the voltage across the resistance should be the same as
the generated one, i.e., V(t) = Vp(t), because they have a parallel relationship. Therefore,
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the measured current I(t) from the experiment can be calculated based on Ohm’s Law
shown below as:

I(t) = Vp(t)/R (22)

Next, substitute the modal expansion to Equation (20), and then achieve:

∞

∑
k=1

θk
dqk(t)

dt
= Cp·

dVp(t)
dt

+
Vp(t)

R
(23)

where the modal coupling term θk = −e31hpcb
∫ l

0
dϕk(x)

dt dx.

3.2.3. Coupled Electromechanical Equations

The mechanical equation (Equation (15)), and electric circuit equation (Equation (23)),
present coupled mechanical and electric relations of the variables modal mechanical
response qk(t) and voltage response V(t) or Vp(t). Based on them, the variables qk(t)
and V(t)/Vp(t) can be theoretically calculated. Moreover, the electric circuit equations
(Equations (21) and (23)), are combined to calculate the results of source current Ip(t) and
measured current I(t), successively.

3.3. Coupled Equations’ Solutions

To derive a steady-state solution from the coupled electromechanical equations, we
employ frequency response functions (FRFs) to solve their mechanical and electrical results.
On the assumption that the 3rd directional displacement (yb) in Equation (4) is harmonic,
its modal forcing function can be expressed as fk(t) = Fkeωtj. Derived from Equation (16),
amplitude Fk can be then calculated as:

Fk = ω2
[

mY0

∫ L

0
ϕk(x)dx + mϕk(l)

]
(24)

where Y0 represents the deformation amplitude at the 3rd direction from the base, ω
represents the excitation frequency, and j represents the imaginary part numeric values.

In this paper, model mechanical qk(t) = Qkeωtj and voltage response V(t) = V0eωtj

are deemed to be single frequency harmonic whose amplitudes Qk and V0 are complex
valued based on the hypothesis of linear system. Therefore, the solution of the model
(Equations (20) and (23)) can be replaced as an equation set:

λkV0 +
(

ω2
k −ω2 + 2ξkωkω·j

)
Qk = Fk (25)

(
1
R
+

1
2

Cpω·j
)

V0 −ω
∞

∑
k=1

θkQk·j = 0 (26)

As soon as Qk and V0 are determined based on the above, the mechanical and electric
solutions are obtained. The presentational electric expressions are listed below as:

V(t) = eωtj·
∑∞

k=1
ωθk Fk ·j

ω2
k−ω2+2ξkωkω·j

1
R + 1

2 Cpω·j + ∑∞
k=1

ωθk Fk ·j
ω2

k−ω2+2ξkωkω·j

(27)

I(t) = eωtj·
∑∞

k=1
ωθk Fk ·j

ω2
k−ω2+2ξkωkω·j

1 + 1
2 CpωR·j + ∑∞

k=1
ωθk Fk ·j

ω2
k−ω2+2ξkωkω·j R

(28)
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The complex voltage amplitude V0 can be substituted into Equation (27) to achieve
the steady mechanical response expression as follows:

η(t) =

Fr − λk

∑∞
k=1

ωθk Fk ·j
ω2

k−ω2+2ξkωkω·j
1
R + 1

2 Cpω·j + ∑∞
k=1

ωθk Fk ·j
ω2

k−ω2+2ξkωkω·j

× eωtj

ω2
k −ω2 + 2ξkωkω·j

(29)

Then, the transverse deformation response at point x can be achieved by substituting
Equation (29) into Equation (13) as:

y(x, t) =
∞

∑
k=1

Fr − λk

∑∞
k=1

ωθk Fk ·j
ω2

k−ω2+2ξkωkω·j
1
R + 1

2 Cpω·j + ∑∞
k=1

ωθk Fk ·j
ω2

k−ω2+2ξkωkω·j

× eωtj

ω2
k −ω2 + 2ξkωkω·j

+ yb(x, t) (30)

4. Coupled Electromechanical Modeling by Using Identified Parameters
4.1. Model Parameters

In the coupled electromechanical model, there are many parameters that must be
assigned accurate values, otherwise the model would demonstrate inaccurate, even invalid,
results. In fact, it is quite challenging, if not impossible, to determine accurate values for all
these parameters. This could be attributed to the following three reasons: One reason is
that some parameters are difficult to clearly defined, and thereby, they are often simplified
based on sets of certain assumptions. The simplification easily causes the model to provide
inaccurate results. The second reason is that most laminated harvesting products are
encapsulated, and the configuration, geometrical, mechanical, etc. information for every
layer is not very specific. The third reason is that the design of some laminated harvesters
is complicated, such as MFC, in which the “piezoelectric layer” is not made of a single
piezoelectric material but fibers that are embedded in a polymer matrix.

In view of the above, we propose one strategy to deal with the crucial issues. First,
we outline which parameters are not specifically defined and are difficult to assign in
the model.

(1) Parameter hpi represents the center-to-center interdigitated electrode spacing (as-
sumed as the thickness) of the pi-th piezoelectric layer. It is simplified on the assump-
tion that identical and electric fields at each layer are equally distracted, which may
cause the model’s result to be not accurate enough.

(2) Parameter hpc represents (equivalent) the distance from the neutral axis of the struc-
tural cross section to the center of the piezoelectric layer. Similar to hpi, it is simplified
on the assumptions that identical electric fields at each layer are equally distracted. In
addition, it could be even harder to assign when the harvester has multiple piezoelec-
tric layers, and how to propose its proper equivalent value is another issue.

(3) Parameter EI represents the equivalent bending stiffness of the composite cross
section for the constant electric field condition. In order to obtain its value, simplified
relations (referred in Equation (10)) are commonly proposed based on some inevitable
assumptions by ignoring non-uniformity field and coupling effect within layers.

(4) Parameter ϑ represents the coupling geometric coefficient that is comprehensively
dependent on the thickness of every layer in the harvester, and also dependents on
the circuit connection method. In general, it is a complicated coefficient that is not
direct and easy to obtain accurately.

It takes little effort to discover that the above parameters have comprehensively equiv-
alent definitions, and it is quite difficult to assign them accurate values. The simplification
of hypothetical principles also produces more difficulties resulting in inaccurate, or even
invalid, evaluations of them. Thus, determining effective values for the abovementioned
parameters is pivotal for determining the model’s validity. In this paper, we set out to
propose a method of parameter identification for those four parameters by using a genetic
algorithm (GA) procedure, which is introduced in the next subsections.
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4.2. Parameter Identification Procedure

Taking the example of a laminated harvester with a single piezoelectric layer, there are
four parameters to identify which are hpc, hp1, EI, and ϑ. We propose Equation (31) with
these four parameters (instead of electromechanical expressions (Equations (15), (21) and
(23)) to describe the mechanical-electric behavior in a cantilever harvester. It is given by:

[V, I]sim = f
(

S1, Θ̃
)

(31)

where Θ denotes the vectors of the identified parameters (hpc, hp1, EI, and ϑ) that represent
the intrinsic attributes of the harvesting systems. In order to determine the vector Θ, a
unified optimization strategy can be qualified through measuring the discrepancy between
model predictions and experimental data. The smaller the discrepancy, the closer the
identified parameters Θ̃ is to the intrinsic ones Θ. Herein, we employ a genetic algorithm
(GA) to carry out the said minimization due to its powerful computational capability of
multi-agent parallelized stochastic search.

A flow chart on the GA for parameter estimation is shown in Figure 12. First, ex-
perimental data were collected, which included the mechanical data (strain S1,exp) and
electric data (voltage Vexp and current Iexp). Secondly, we initialized a set of parameters Θ̃
and incorporated the strain data S1,exp into the model. Then, the simulated voltage Vsim
and current Isim were calculated. During the phase of the GA, the fitness function “Fit”
is defined as the discrepancy between the experimental data and simulated result from
the model. The lower the fitness function value, the better the individual chromosome.
Through appropriate iterative circulation, the optimal individual (identified parameters) is
eventually computed out. Note that the above variables with subscript “sim/exp” indicate
simulation/experimental data.
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4.3. Genetic Algorithm (GA) Detail

A GA involves several basic working parts including chromosome representation,
fitness function, genetic operators, and termination criteria.

(1) Chromosome representation

In GA terminology, chromosomes are simply the variations in the set of unknown
variables of the problem that the GA is going to solve. In this study, the model tackled has
four variables that are represented simply by Θ. Thus, the chromosome representation is
expressed as:

Θu =
{

hpc,u , hp1,u, EIu, ϑu
}

, u = 1, . . . , U (32)

where u denotes the u-th individual in a chromosome set, whose total number is U.
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(2) Fitness function

A fitness function measures the status of one chromosome achieving the preset objec-
tive. Each chromosome needs to be awarded an evaluation that indicates how close it came
to meeting the objective. Here, we define the fitness function (“Fit”) by using a combination
weight function including the root-mean-square error (RMSE) for each output (voltage
and current responses) that is designed between the simulated and experimental results,
which are:

RMSEV,u =

√
1

W

{
∑W

w=1

[
Vexp,w(S, Θ)−Vsim,w

(
S, Θ̃

)]2
}

√
1

W

[
∑W

w=1 Vexp,w(S, Θ)
]2

(33)

RMSEI,u =

√
1

W

{
∑W

w=1

[
Iexp,w(S, Θ)− Isim,w

(
S, Θ̃

)]2
}

√
1

W

[
∑W

w=1 Iexp,w(S, Θ)
]2

(34)

Fit = α·RMSEV,min + (1− α)·RMSEI,min (35)

where RMSEV,u/RMSEI,u denotes the voltage/current’s discrepancy between simulation
and experimental results at the u-th individual. Vexp,w and Vsim,w denote the voltage,
respectively, from experimental and simulation results (as subscribed with “exp” and
“sim”) at the w-th time point whose total number is W. The fitness function consists of
voltage and current discrepancies. A weight coefficient “α” is also employed for balancing
the importance among voltage and current predictions, and then yields the fitness function
in Equation (35).

(3) Termination strategy

The traditional GA empirically adopts a fixed number of generations, which either
lead to excessive computations or solutions with inadequate accuracy. To avoid this issue, a
set of termination rules is designed on the aspects of global accuracy and average accuracy.
The rules can comprehensively guarantee the best and the average individuals of every
generation resulting in sufficient accurate solutions with appropriate computation loading.
The rules are set as follows:

Rule 1: Define a minimum threshold e1,min. As soon as the finest fitness value meets
e1,min at the v-th iteration, automatically terminate the procedure and extract the best
solution, that is:

Fitv ≤ e1,min (36)

where e1,min is empirically set as 10% in the present study.
Rule 2: Define a calibrated threshold e2,min. As soon as the difference of the finest fit-

ness values between the kth iteration and (v + 1)-th iteration meets the e2,min, automatically
terminate the procedure and extract the best solution. It is given by:

|Fitv − Fitv+1| ≤ e2,min (37)

where e2,min is empirically set as 10% of the e1,min in the present study.
In general, Rule 1 is responsible for guaranteeing the accuracy of the final solution, as

well as Rule 2 is responsible for avoiding excessive and inefficient computation.
Other than the above, there are some other basic settings needed to complete the GA

procedure. Here, the population is set as 60 individuals with 20 binary genes, the roulette
wheel selection with elitism strategy is used, and the crossover/mutation operator is set as
0.85/0.01.
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5. Model Validation with Experimental Data

In this study, we introduce a coupled electromechanical model with a set of identified
parameters that are obtained by using GA procedure. In this section, we verify the validity
of the proposed method.

5.1. Comparison of Model and Experimental Data
5.1.1. Original Model (without Original Parameters)

Based on related simplified equations, the parameters are evaluated, referred to as the
original parameters in this study.

Then, taking PPA for example, the original parameters are deduced and evaluated
as follows:

(1) Parameter hp1 is the equivalent thickness of the piezoelectric layer and is equal to
50 µm. (2) Parameter hpc is the distance from the center of the piezoelectric layer to the
structural neutral axis. Then, the relation is deduced as hpc = |hs4 + hs3 − hs2 − hs1|/2 and

is equal to 150 µm. (3) Parameter EI is deduced based on Equation (10) as EI =
4
∑

sj=1
Es1 ·

Is1 + cE
11 · Ip and is equal to 107 N·cm2. (4) Parameter ϑ is dependent on the thickness of

every layer and the circuit connection method. It is deduced as ϑ = |hs4 + hs3 − hs2 − hs1|
and is equal to 10 mm. The valuations are listed in Table 1.

Table 1. Optimal settings of energy harvesters of MFC and PPA.

Structural Type
Harmonic
Frequency Optimal Resistance Normalized

Max/Mean Power

(Hz) (kOhm) (mW)

MFC 64.85 - 6.9 µW/2.76 µW
PPA with 0 g mass 123.20 10 12.83/5.31

PPA with 12.5 g mass 31.20 30 7.16/2.94
PPA with 18.75 g mass 25.79 35 3.69/1.70

PPA with 25 g mass 21.94 50 2.32/0.98

By using the model with original parameters, representative results (under the case
of 120 Hz excitation, 10 kOhm resistance, and 0 g tip mass) from the PPA harvester are
displayed in Figure 13. It is easy to observe that the input strain (see Figure 13a) is nearly
the same between the model simulation and experimental data in terms of the sinusoidal
amplitude (around 0.56×10−3) and frequency (exactly 120 Hz). After substituting the strain
data into the model, we observe the mechanical response (tip deformation of y direction),
which represents the exact same frequency as the experimental data and an amplitude
around 1.6 mm that is close to the experimental data, as illustrated in Figure 13b. Next,
the electric response (current and voltage) is slightly smaller, around 12%, as compared
with the experimental data, as shown in Figure 13b,c. For the comparison of characteristic
relationships, the strain-voltage characteristic loops are illustrated; the elliptical figures in
simulation are slightly rotated anticlockwise versus those from the experimental data, as
shown in Figure 13e. The strain-power characteristic loops are shown in Figure 13f; the
butterfly shapes in simulation are a vertically compressed version of those in experimental
mode. Meanwhile, the maximum power prediction from the model simulation is much
smaller, around 30%, as compared with that of the experimental data.

Next, taking MFC for example, we find that its piezoelectric layer is assembled of
piezoelectric fibers with polymer matrix and interdigited electrodes, and it is impossible to
obtain the parameters’ values by using conventional methods.
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5.1.2. Proposed Model (with Updated Parameters)

Using the GA procedure, we identified the parameter values which are listed in Table 2.
Then, we substituted the updated parameter values into the model again. The mechanical
responses (strain and deformation response) using the updated parameter values in the
model are basically the same as the experimental data, shown in Figure 13a,b. However,
the electric responses (current and voltage) have better agreement with the experiment
data, shown in Figure 14a,b. For The comparison of characteristic relationships showed
that the strain-voltage loops between simulation and experiment data were even more
identical. The strain-power characteristic loops, as shown in Figure 13d, are butterfly
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shaped in simulation and just slightly vertically compressed as compared with those in
the experimental results. The maximum power prediction from the model simulation is
slightly lower, around 13.9%, than that in the experimental data. Apparently, the prediction
is much more accurate when the model is employed with identified parameters using the
GA procedure.

Table 2. Original and optimized parameters of PPA and MFC for the electromechanical model.

Parameter Unit
PPA MFC

Original Optimized Original Optimized

hpc µm 50 49.63 - 23.32
hp µm 150 129.74 - 0.5458
EI N·cm2 107 106.2 - 1.558
ϑ mm 10 11.88 - 0. 8994
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According to an MFC harvester, the parameters in the model are not known because
of its complicated laminated structure. Given this, we use the GA procedure to determine
its potential vague parameters. Here, dataset of one random case (60 Hz excitation and
90 kOhm resistance) is utilized for the GA procedure, and its identified parameters are
obtained and listed in Table 1.

Then, we can substitute the parameters into the model to predict the harvesting
behavior for other cases. Figure 15 illustrates one of the simulation results that are in a good
agreement with the experimental results, which proves the proposed method is efficient
and accurate.
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5.2. Error Analysis

“Fit” (from Equation (35)) is the error between the simulation and experiment results,
which represents the model’s accuracy for a certain case (under a certain frequency, re-
sistance, and mass weight). We found that the Fit values varied according to different
cases. In order to test the effectiveness of the proposed model, an error analysis should
be carried out. Four groups of cases in PPA, as previously mentioned in Section 2, were
classified according to four weight levels at the tip (0 g, 12.5 g, 18.75 g, and 25 g). Each
group consisted of cases with different excitation frequencies, while resistances were set as
the optimal resistance.

Figure 16 shows the “Fit” values vs. excitation frequency for the four groups. As
displayed in Figure 16a, we found the “Fit” value for the original model is lowest at 34%
when the excitation frequency approaches the resonant frequency (120 Hz). When the
excitation frequency is changed to a value that is farther away from the resonant frequency,
the error increases further until the ultimate error of 82%. In contrast, the “Fit” values
for the model with updated parameters are all reduced with a minimum of 14% and a
maximum of 49%. Figure 16b,d illustrate the results of the other three groups, in the same
manner. The “Fit” values for the model with updated parameters are all reduced from the
values of the original model, which proves the updated model with optimized parameters
is superior.

In general, electric power prediction is our most important goal. From this perspective,
the simulation error should also consider the proportion of harvested power in different
cases. As proven before, the harvested power is significantly dominant around the case of
excitation frequency at resonance, where the model is quite accurate. In contrast, negligible
harvesting energy might not matter if the model is not sufficiently accurate. In view
of this, the “Fit” value cannot indicate authentic effectiveness of one modeling method
for predicting generated power. It, in fact, should also consider the harvested energy
percentage of the whole power among the group cases, which is called the “energy ratio
(ER)”. It is given by:

ER(r) =
P(r)

∑N
r=1 P(r)

× 100% (38)

where P(r) indicates the harvested power from the r-th (ordinal number) case, and
N
∑

r=1
P(r)

indicates the gross power summed in each group where N is the max-ordinal number. ER
represents harvesting capacities when exaction frequencies are varied.
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No. 1 group; (b) Error analysis for No. 2 group; (c) Error analysis for No. 3 group; (d) Error analysis
for No. 4 group.

Then, another measurable indicator called the equivalent error (EE), within each group
of cases, is devised as:

EE =

{
N

∑
r=1

[ER(r)·Fit(r)]

}
× 100% (39)

where Fit(r) is from Equation (35), and ER(r) is from Equation (38).
Then, as shown in Table 3, it is as expected, the “EE” from the original method is also

reduced significantly when the proposed method is use. Regarding the No. 1 group of
examples, simulation accuracy by using the identified parameters is remarkably improved
by 56.36%. Regarding the No. 2 group, the “EE” is improved by 48.17%. The other
groups show that the simulation using the proposed method is more accurate. It is obvious
that the model with optimized parameters gains much better simulations for imitating
the characteristic loops of a cantilever harvester owing to its full consideration of the
electric energy.

Table 3. Equivalent error analysis of the models with original and optimized parameters.

Equivalent Error (EE) (%)

No. 1 Group No. 2 Group No. 3 Group No. 4 Group Average

Model with
original parameters 38.77 42.12 46.24 41.37 42.04

Model with
optimized
parameters

16.92 21.83 25.19 21.2 21.85

EE improved by 56.36 48.17 45.52 48.76 48.03
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5.3. Change Analysis of Responses with Vibration Frequency

The proposed model was validated as effective and sufficiently accurate, as described
in Section 5.2. Here, we combine the experimental results and the simulation results and
discuss the capacities of mechanical responses and electric responses. An example of the
PPA cantilever harvester with 0 g mass under 10 kOhm resistance is shown in Figure 16,
which illustrates the relationships of different responses’ amplitudes with different vibra-
tion frequencies.

In Figure 17a, the strain amplitude in the experimental results reaches a peak of
0.547 ×10−6 at 120 Hz vibration frequency, which closely approaches the dominant fre-
quency (123 Hz). Under the same conditions, the predicted strain amplitude by model
simulation is 0.556 ×10−6. As the vibration frequency changes farther away from the domi-
nant frequency, the strain amplitude decreases rapidly until the minimum (approaching
zero). In general, all the simulations for strain response are very close to the experimental
results, with an error of 5.6% on average.
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In Figure 17b, the deformation amplitude of the y-direction at the free tip of the
cantilever also reaches a peak (1.66 mm) at a vibration frequency of 120 Hz. It also decreases
rapidly towards zero when the vibration frequency changes farther from the dominant
frequency. The simulations for deformation also agree well with the experimental results,
with an error of 11.3% on average.
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In Figure 17c, the electric voltage amplitude demonstrates a similar pattern to the
vibration frequency as compared with mechanical responses. The simulation results are
basically similar to the experimental results, with an average error increased to 20%.

In Figure 17d, harvested power illustrates a significant peak of 6.787 mW at 120 Hz
vibration, and it decreases very sharply, approaching zero farther away from the dominate
frequency. The predictions for gross power by the model are basically in good agreement
with the test results within an error of 25%.

In general, mechanical responses and electric responses of cantilever harvesters all
represent a very similar pattern that a resonance phenomenon triggers more easily when
vibration frequency changes closer to the structural dominant frequency. On the contrary,
the responses decrease rapidly approaching zero when vibration frequency changes farther
from the dominant frequency. Regarding the simulation effect of the proposed model,
we found that the mechanical responses are predicted quite accurately, and the electric
responses are still predicted effectively, with an error that remains below 25%.

6. Conclusions

In this study, we investigated a vibration-based cantilever beam from two popular
piezoelectric laminated patches (MFC and PPA) in terms of an experimental study of its
characteristic behaviors and a modeling study of energy harvesting. In the experiment,
we investigated the harvesting capacity of the system as well as the electromechanical
behavior of the cantilever harvester. Furthermore, some pivotal rules with regard to several
design variables were summarized, which should be very useful for maximizing energy
conversion. On the basis of identified parameters, a coupled electromechanical model
for a laminated piezoelectric cantilever harvester was proposed with a set of optimized
parameters determined by an optimization program. The model was tested and found
to be superior for accurately estimating harvested energy amount, and describing the
characteristic behavior effectively. The model was also demonstrated to be more versatile
and applicable for diversified harvesters with vague or unknown parameters, which is an
impossible task for traditional modeling methods.

In summary, this study conducted a characteristic experiment and harvesting model-
ing. The combined results should support realizing more efficient conversion of vibration
energy to electrical energy, and should have great application potential in piezoelectric
cantilever harvesters.
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