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Abstract: The train horn sound is an active audible warning signal used for warning commuters
and railway employees of the oncoming train(s), assuring a smooth operation and traffic safety,
especially at barrier-free crossings. This work studies deep learning-based approaches to develop a
system providing the early detection of train arrival based on the recognition of train horn sounds
from the traffic soundscape. A custom dataset of train horn sounds, car horn sounds, and traffic
noises is developed to conduct experiments and analysis. We propose a novel two-stream end-to-end
CNN model (i.e., THD-RawNet), which combines two approaches of feature extraction from raw
audio waveforms, for audio classification in train horn detection (THD). Besides a stream with a
sequential one-dimensional CNN (1D-CNN) as in existing sound classification works, we propose
to utilize multiple 1D-CNN branches to process raw waves in different temporal resolutions to
extract an image-like representation for the 2D-CNN classification part. Our experiment results and
comparative analysis have proved the effectiveness of the proposed two-stream network and the
method of combining features extracted in multiple temporal resolutions. The THD-RawNet obtained
better accuracies and robustness compared to those of baseline models trained on either raw audio
or handcrafted features, in which at the input size of one second the network yielded an accuracy
of 95.11% for testing data in normal traffic conditions and remained above a 93% accuracy for the
considerable noisy condition of-10 dB SNR. The proposed THD system can be integrated into the
smart railway crossing systems, private cars, and self-driving cars to improve railway transit safety.

Keywords: audio classification; convolutional neural networks; end-to-end models; raw waveforms;
railway audible warning signal; railway transit safety; train horn detection

1. Introduction

The railway is one of the most convenient and popular forms of public transportation
that can carry a lot of people, especially during rush hours. Traveling by railway system
significantly avoids traffic jams, so an accurate timetable can be achieved, which is a
crucial characteristic of railway transport. To assure the smooth operation and safety of
railway traffic, at the level crossings, train stations, and maintenance working zones, the
passengers, pedestrians, railway service employees, and other road users should be warned
of approaching train(s), so they can pay attention and cooperate appropriately. The warning
signals for train arrivals can come from two sources: the signals generated by the train
warning system (TWS), such as sirens, spoken warnings, and lights; and the train horns
from the approaching train(s). In reality, because of the unawareness of train warning
signals, which also means the unknowingness of oncoming trains, serious railway accidents
sometimes happen, especially at barrier-free level crossings and track maintenance areas.
Thus, the early detection and warning of train arrivals are essential for the safety and
security of railway operations.
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To date, different systems based on sensing techniques [1] have been applied for
train arrival detection (TAD). The traditional commercialized methods include the use
of treadle mechanisms, inductive sensors, and infrared beam sensors for axle-counting
and determining the direction information from the approaching train. More innovative
approaches have been also examined for TAD. For example, radar technology [2,3] is
used near level crossings for the ranging and determination of oncoming trains, or train
approach detection using the rail vibration measured by accelerometers [4]. Although
the aforementioned approaches are reliable, they are not flexible because they can be
only installed along with the rail structure, in which traditional methods further require
significant work for installation. This work examines the TAD based on the recognition of
train horn sounds from the surrounding soundscape, which is referred to as the train horn
detection (THD) system or the train-horn-based TAD (TH-TAD) system. We formulate the
THD as the three-class audio classification problem, where the three sound classes consist
of train horn sounds, car horn sounds, and noises.

Unlike the image-related problems (e.g., image/video classification, segmentation,
and object detection) where the visual input signals (i.e., images or videos) have local
correlations in two spatial dimensions and two-dimensional convolutional networks (2D-
CNN) are widely used to deal with the problem, the classification tasks in the audio domain
involve the processing of one-dimensional signals, i.e., the audio waveforms, so different
approaches have been proposed for audio classification.

In terms of deep learning-based approaches, sound classification studies come in two
major groups. The first group includes the works that utilize pre-computed time–frequency
representations (a.k.a. handcrafted features) of audio data as inputs and employ 2D-CNNs
for classification. One of the early works in this approach is proposed in [5], in which Mel-
scale spectrograms of the audio signal are extracted to feed into the 2D-CNN classifier for
environmental sound classification (ESC). Using the same single-feature input, the recent
works [6,7] further applied the attention mechanisms at the input layer [6,7] and/or at the
output of 2D convolutional layers [7] to improve classification performance. Some follow-
up studies apply the idea of the first direction to the use of other audio time-frequency
representations, such as Mel-frequency cepstral coefficients (MFCCs) [8] and Gammatone-
spectrogram [9], while other works [10,11] use different features in combination to train
the classifiers. Recognizing that audio’s time-frequency representations are similar to
single-channel images and audio classification can be regarded as the image classification
task, [12] examined the use of well-known image classification models, the AlexNet [13]
and GoogleNet [14], for ESC. [15] utilized more advanced techniques in the visual domain,
including ResNet-50 [16] architecture, Siamese-like networks, and the attention mechanism,
to achieve state-of-the-art performance in ESC. Although works in the first direction have
remarkable progress in sound classification, using fixed feature extraction procedures in
classification systems may result in extra processing time and the efficiency of features may
depend on specific problems.

The second direction in the field of sound classification with deep learning is to di-
rectly use the audio raw wave to train one-dimensional CNN (1D-CNN) classifiers and
eliminate the processes of data pre-processing and fixed feature extraction from classifi-
cation systems. The advantage of this direction is that it allows for building models that
perform the internal transformation from original signals to useful discriminative features
that can maximize performances on specific tasks. [17] proposed 1D-CNN models for ESC
and examined the effects of different factors such as input sizes and layer initialization
using the Gammatone filterbank. [17]’s proposed approaches outperformed the baseline
models based on 2D handcrafted inputs, showing the potential of the second direction. [18]
introduced another 1D-CNN-based model, namely the SoundNet, to learn deep natural
sound representation from a large amount of unlabeled data, which brings about significant
performance improvements compared to the results on standard benchmarks for acoustic
scene classification. Instead of using fully 1D-CNN for representation transformation,
Envnet in [19] employed 1D-CNN and 2D-CNN together, in which the 1D-CNN part
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learned spectrogram-like inputs for the classification part formed by 2D-CNN. It is worth
mentioning that the existing works [17–19] based on raw wave inputs reported better or
comparable accuracies compared to those of 2D-CNNs with pre-computed spectrograms.

Inspired by the promising results of prior works based on raw wave inputs, our work
applies this direction to build an end-to-end classifier for the train horn detection task.
In addition, other techniques, such as regularization and audio data augmentation, are
utilized to alleviate the overfitting problem as well as to improve the model’s generality.
Data augmentation is a useful technique in training deep networks, especially in case
of data scarcity as this technique helps to increase the diversity of training data, thus,
efficiently preventing overfitting. It has been shown in existing works [9,20–22] that using
data augmentation can bring about significant performance improvements in sound classi-
fication. The augmentation of audio data can be conducted either on the raw waveform
or on the time-frequency representation, for instance [21] applied time-stretching, noise-
adding, and pitch-shifting to original wave signals, while [22,23] performed augmentation
transformations on the spectrograms.

The main contributions of this work can be summarized as follows. We introduce a
modern TAD system based on train horn detection using deep learning approaches. The
advantage of train-horn-based TAD is that it can be flexibly applied to mobile objects such
as road vehicles, track maintenance vehicles, and smart devices that require the active
detection and warning of train arrivals. Apart from collecting a custom experimental
dataset (i.e., THD dataset), we introduce a novel two-stream end-to-end CNN-based audio
classifier, namely THD-RawNet, for THD, in which raw audio waveforms are directly
employed to build the model rather than using pre-computed features such as the widely
used Mel-scale spectrogram, gammatone-based spectrograms, and Mel-frequency cepstral
coefficients (MFCCs). The novelty of the proposed method is as follows. The THD-RawNet
processes raw inputs in two directions simultaneously, then combines the outputs to
perform final predictions. First, we propose to transform audio raw waveforms into a
3D image-like representation using three sets of 1D convolutional (1D-Conv) layers with
different filter sizes, then utilize 2D-CNN to classify the 3D representation, which is partially
similar to the image classification problem. Second, high-level features of raw waves are
extracted using a series of 1D-Conv layers and pooling layers. The existing works only
considered a single temporal resolution of the audio signal in the feature extraction process
or only examined the combined use of raw input and precomputed features. Furthermore,
this work proposes to conduct data augmentation with raw waveforms from all channels
of stereo audio. In comparison with the performances of baseline models on the THD
dataset, THD-RawNet is much more performant. The proposed TH-TAD solution based
on THD-RawNet can be potentially applied to real-world applications, for instance, to
improve the safety function in road vehicles and for smart monitoring at level crossings.

2. Materials and Methods

For effective evaluation, we roughly assume that an audio signal from the traffic
soundscape can belong to one of three classes, including train horn sounds, car horns
generated by ordinary cars, and noises. The consideration of car horn and noise classes is
useful to evaluate how well the proposed system can distinguish train horn sounds from
similar vehicle warning sounds (i.e., car horns) and background noises in the downtown
street environment. Figure 1 shows the overall structure of the train-horn-based TAD
(TH-TAD) system that contains an audio recorder for continuously capturing audio data
from the surrounding soundscape and an audio classifier for predicting class probabilities
for every audio segment, from which the system can determine the status of train detection.
The detection of the train is confirmed if the input signal is hypothesized as the train horn
sound, which means that the audio classifier outputs the highest probability for the train
horn class. We aim to develop a complete end-to-end audio classifier, so the objective model
works directly with the audio raw wave rather than pre-computed features.
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Figure 1. The general structure of the TH-TAD system.

2.1. The Proposed THD-RawNet

The proposed end-to-end model, namely THD-RawNet, is illustrated in Figure 2.
Given an audio segment or recording of t seconds and sampled at the sampling rate SR,
the input of THD-RawNet has the shape of (1, t× SR, 1) corresponding to the channel-last
dimension ordering, where t × SR is the number of data points of the audio segment.
As illustrated in Figure 2, the THD-RawNet consists of two streams, the upper stream
utilizes both 1D and 2D convolutional layers while the bottom one is fully composed
of 1D convolutional layers. Unlike the bottom stream which focuses only on extracting
features along the time dimension, the upper stream converts the 1D wave signal into
an image-like representation and utilizes visual-based 2D-CNN to further process the
converted representation. The high-level features extracted by the two network streams
are combined and fed into the remaining fully connected layers for prediction. This
concept for the two-stream structure of THD-RawNet is inspired by an assumption that
applying two different feature processing approaches together can help to extract more
useful discriminative features, resulting in better performances. The details of each stream’s
structure are as follows.
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Figure 2. The general structure of the THD-RawNet in the TH-TAD system. SR is the sampling rate,
t is the input length (in seconds), F is the number of filters in a 1D-Conv layer, “Concat” stands for
concatenation operation, and FC denotes a fully connected layer.

To automatically transform raw data into an image-like representation formed by dif-
ferent channels of 2D feature maps, the first stream of THD-RawNet is designed with three
branches of 1D convolutional (1D-Conv) layers, in which the 1D-Conv layers in each branch
have a distinctive filter size to learn feature representation of a specific temporal resolution.
Specifically, three sets of 1D-Conv layers in three branches have large filter sizes (i.e., 128),
medium filter sizes (i.e., 32), and small filter sizes (i.e., 8), respectively. The 1D-Conv layer
with large filter sizes is useful to learn low-frequency features, while higher-frequency
features are extracted by the 1D-Conv layers with smaller filter sizes. Each 1D-Conv layer
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is followed by a 1D max-pooling layer which plays the role of dimensional reduction. Note
that the output at the 1D max-pooling layer has a shape of (1, T, F) where F denotes the
number of filters in the 1D-Conv layer, resulting in an output tensor of F channels, and T
is the number of elements in the time dimension. It is assumed that each channel of the
1D max-pooling layer’s output represents coefficients for a frequency band along the time
dimension. Thus, we reshape the (1, T, F) output to (F, T, 1) representation, which is simi-
lar to a time-frequency spectrogram or a single-channel image. Concatenating the outputs
of three branches along the channel dimension, we obtain an image-like representation of
shape (F, T, 3), which is fed into the 2D-CNN structure for further processing.

In our experiments, we set the number of 1D-Conv’s filters in each branch to 128, and
the corresponding 1D max-pooling layer to have the kernel size of 346 and stride of 173,
which is equivalent to a sliding window of approximately 16 ms with 50% overlapping
(i.e., 8 ms) at the sampling rate of 22.05 kHz. Thus, for the input segments of 1 s, we obtain
the image-like representation of shape (128, 22, 050/173, 3) or (128, 128, 3) corresponding
to (frequency, time, channel) format, where ∗ is the ceiling function. In the 2D-CNN part
of the first network stream, the first 2D-Conv layer is configured with 32 filters, a large
receptive field of (5, 5), and a stride of (1, 1) to take the general view of the input features.
The second 2D-Conv layer with 64 filters is responsible for learning patterns along the
frequency dimension (vertical dimension), and this layer has a receptive field of (3, 1) and
stride of (1, 1). Similarly, the third 2D-Conv layer of 128 filters, receptive field (3, 1), and
stride (1, 1) is used to learn patterns along the time dimension (horizontal dimension).
The last 2D-Conv layer has 256 filters with (3, 3) receptive fields to learn features in time
and frequency dimensions jointly. Note that all four 2D-Conv layers are followed by 2D
max-pooling layers with the stride of (1, 1) to reduce the dimensions of feature maps. The
last layer of the first stream is a fully connected layer of 128 neurons, whose input is the
flattened vector of the last 2D max-pooling layer’s output.

As for the second stream of TH-RawNet, a chain of the stacked 1D-Conv layers and
1D max-pooling layers are utilized for feature extraction. There are four pairs of 1D-Conv
layers in this stream, in which the number of filters in the (i + 1)th pair double that of the
(i)th pair, the layers in (i + 1)th pair have smaller filter sizes compared to those of layers in
the (i)th layer, and the first three pairs of 1D-Conv layers are followed by a max-pooling
layer to reduce the size of output along the time dimension. Among eight 1D-Conv layers,
the first two layers with large filter sizes (i.e., 128 and 64) play the role of catching the global
view of the raw wave signal and extracting the local features, while the other layers are
responsible for getting a more in-depth view of the data to find more useful discriminative
features for the classification task. We downsample the output of the last 1D-Conv layer by
taking the maximum value over the time dimension, thus obtaining the input for the fully
connected layer of 128 neurons. We can see that both streams of THD-RawNet end with fully
connected layers. Therefore, we can simply concatenate the outputs of two streams to form
the combined feature vector that is fed into the other fully connected layers for classification.
The final layer has three neurons with the softmax activation function to generate three
class probabilities p(c) for an input, where c ∈ classes = {train_horn, car_horn, noise},
from which the system can determine the status of train horn detection based on the result
of decision rule (1). If the THD-RawNet outputs the highest probability on train horn class
(i.e., c∗ = train_horn) the train horn is detected. On the other hand, if c∗ 6= train_horn, the
audio segment is hypothesized as a car horn sound or noise, so no train horn is detected.

c∗ = arg max
c∈classes

p(c) (1)

2.2. Data Collection

There is no published data for TH-TAD, so we create a custom dataset of three sound
classes, including train horn sounds, car horn sounds, and noises. We utilize different
approaches to collect real-field recordings that are captured near railway systems and
other places of urban traffic. Firstly, we extract relevant recordings from online resources
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specialized in audio/video clips of train arrivals and traffic soundscape. By accessing the
YouTube video-sharing framework we find and extract a large number of videos about
train arrival recorded all over the world, which provides a diverse database of train horn
sounds, and railway noises. Secondly, we extract more data from the relevant published
dataset, the ESC-50 dataset [24], which provides car horn sounds and various types of
urban noises. Lastly, we record real audio clips of Taiwan’s railway and urban traffic.

The recordings from online sources and real-field recordings are split into non-overlapping
clips of 2 s, resulting in 5289 train horn samples, 5848 car horn samples, and 4302 noise
samples. We then combine the collected data with that of ESC-50, which contains 40 car
horn samples and 1960 noise samples, to form the complete dataset of 17,399 samples, as
shown in Table 1. Note that ESC-50 includes various sets of noises such as exterior/urban
noises, interior/domestic sounds, natural soundscapes, and human-non-speech sounds, so
ESC-50 complements our collected data to create a relatively diverse sizeable dataset. The
whole data are organized in three subsets (i.e., training set, validation set, and testing set)
following the rule that the original recordings in a subset are different from those of the
other subsets. In each subset, there is an approximately equal amount of audio samples for
each sound class. The detail of data separation is shown in Table 2.

Table 1. The summary of our data preparation.

Data Class
Data Sources Total (#Samples)

Our Collection ESC-50

Train Horn 5289 - 5289

Car Horn 5808 40 5848

Noise 4302 1960 6262

Total (#samples) 15,399 2000 17,399

Total duration 8.55 h 2.77 h 11.32 h

Clip length 2 s 5 s -

Table 2. Data separation for TH-TAD experiments.

Subset Train Horn Car Horn Noise Total

Train 3211 3624 3871 10,706

Validation 985 1225 1226 3336

Test 1093 1099 1165 3357

Total 5289 5848 6262 17,399

2.3. Waveform-Based Data Augmentation

It is not always easy to collect a larger amount of data with good variability to train
neural networks, and this work is not an exception. Thus, data augmentation (DA) is
used to artificially generate additional training data, thereby improving the system perfor-
mance, mitigating overfitting, and enhancing the system generality. Since the proposed
THD-RawNet works with raw input, we only conduct waveform augmentations with
four transformations, including background noise addition, time-cyclic, time-stretching,
and random-gain. Our TH-TAD data cover both mono and stereo samples, so we employ
different augmentation procedures for those two types of inputs, as presented in Figure 3.
A mono or single-channel sample is processed directly with one of four candidate transfor-
mations to generate the augmented sample, which is referred to as single-channel wave
augmentation (SCWA). For stereo samples, SCWA is separately performed on each channel
of the training sample, then the results are averaged to create the final augmented single-
channel sample. To assure temporal alignment and avoid abnormal combinations, two
channels of a stereo sound share the same transformation with random parameters. The size
and label of the augmented sample are the same as those of the original training sample.
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In the noise addition approach, we mix an original sample with a noise sample using
(2), which yields a noisy augmented signal a, where o is the original signal, n is the noise,
and w ∈ (0, 1) is a random weight. To perform time-cyclic augmentation, we randomly
shift an original signal by a random number of data points (i.e., by 30% to 70% of the signal
size), so the signal is separated into two parts, then the second part is placed in front of the
first part to create the augmented sample. In time-stretching, we change the speed of the
audio sample according to a random rate. Lastly, random-gain augmentation is used to
scale the amplitude of an original signal by a random ratio.

a = (1− w)·o + w·n (2)

3. Results and Discussion
3.1. Experiment Setup

The experimental data were collected from different sources and contained various
sampling rates, so all audio samples were normalized with the sampling rate of 22.05 kHz,
which was performed using Librosa [25], a useful python library for audio signal pro-
cessing. Although almost all recordings in the experimental dataset are between 2 s and
5 s, we only examine the input length of 1s since using a shorter input can reduce the
computational complexity of the models, especially for the end-to-end models trained on
raw wave signals. Short input is also favorable for the practical TH-TAD application, which
requires a relatively quick response and continuous prediction. We process long samples to
train networks with a fixed input length of one second as follows. The audio sample is split
into non-overlapping segments of one second, and those segments share the same label as
the original sample. Performing this process on training data results in a larger number of
data samples and thus can be viewed as another sort of data augmentation. For the testing
phase, the classification prediction (i.e., p(c)X) for a long testing sample X is obtained by ag-
gregating the predictions of all one-second segments using the sum rule, which is presented
by (3), where p(c)i is the network’s prediction for the ith (i = 1, . . . , S) segment of sample
X. S is the total number of segments and c ∈ classes = {train_horn, car_horn, noise}. We
make the final decision based on the maximum p(c)X value, as presented in (4).

p(c)X =
1
S

S

∑
i=1

p(c)i (3)

c∗ = arg max
c∈classes

p(c)X (4)

The basic setup to train deep learning models in our experiments is as follows. The
categorical cross-entropy acts as the loss function. Models are trained using the Adam
optimizer [26] with an initial learning rate of 0.00001. We additionally utilize batch normal-
ization [27] for all layers to speed up the training process, and dropout regularization [28] is
applied to alleviate overfitting. We set the batch size to 16, and training data is shuffled after
every training epoch. To analyze the robustness of the proposed model and the baseline
models, we report their performances on noisy testing sets of different signal-to-noise (SNR)
levels consisting of +15 dB, +10 dB, +5 dB, 0 dB, −5 dB, −10 dB, and −15 dB. To create
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testing sets with the aforementioned SNRs, we conduct the artificial addition of noises to
the original testing set, in which weather sounds, including strong wind sounds and rain
sounds, are utilized as the noise sources. It is worth mentioning that the original testing
samples are collected in the real traffic soundscape, so they already contain background
noises at certain levels. Therefore, noisy testing sets generated by artificial noise addition
create more challenging evaluation conditions for the proposed models. The noise record-
ings used for training data augmentation are different from those for the creation of noisy
testing data. In addition, the SNRs in noisy testing sets are almost unseen by the models
because training data augmentation was performed randomly without specifying any SNR
ratios for noise addition.

3.2. Performance of Proposed THD-RawNet

Table 3 shows the performances of the proposed end-to-end THD-RawNet and several
baseline models on the THD dataset. To make a comparative analysis, apart from models
based on raw wave input (i.e., SoundNet [18] and EnvNet [9]), we also considered those
trained with precomputed time-frequency input (i.e., Mel-scale spectrogram), including 2D-
CNN [5,13,21], a recurrent neural network (RNN [29]), and a convolutional recurrent neural
network (CRNN [7]). From Table 3 we can see that the proposed THD-RawNet provides a
much better accuracy (95.11%) compared to those of baseline models trained with either raw
inputs or handcrafted features. For the case of raw wave inputs, variants of SoundNet [18],
the deep networks composed of five or eight stacked 1D-Conv layers, yielded the accuracies
of 90.17%, and 92.17%, which are 4.94% and 2.94% lower than the results of the proposed
THD-RawNet, respectively. Similarly, the EnvNet [9], which combines the use of 1D-CNN
and 2D-CNN, also produced a moderate accuracy (88.23%). For the approach based on
2D-CNN, RNN, and CRNN with Mel-scale spectrogram input, the accuracies are almost
the same across the five existing models we examined, in which one of the deepest models,
the AlexNet [13], yielded the highest accuracy (90.05%) among the five models, but this
figure is 5.06% lower than that of THD-RawNet. In terms of computational complexity, the
THD-RawNet requires more processing time for a single prediction with a 1-s audio signal,
at 5 ms, which is slightly larger than the time ranging from 1 ms to 3 ms of SoundNet [18],
EnvNet [9], CRNN [7], and three 2D-CNN models in [5,13,21]. However, the computational
time of the proposed THD-RawNet is much smaller than that of the RNN model [29]. More
importantly, the inference time of 5 ms per sample is fairly small and can meet the real-time
processing requirement in practical applications.

Table 3. Performance of the proposed THD-RawNet and baseline models on the THD dataset.

Model Input/Features Inference Time
(ms/Sample) Accuracy (%)

THD-RawNet (this work) Raw wave 5 ms 95.11

SoundNet (5 Conv layers [18]) Raw wave 1 ms 90.17

SoundNet (8 Conv layers [18]) Raw wave 2 ms 92.17

EnvNet [9] Raw wave 2 ms 88.23

2D-CNN (K. J. Piczak [5]) Mel-scale spectrogram 3 ms 89.04

2D-CNN (J. Salamon et al. [21]) Mel-scale spectrogram 1 ms 89.90

2D-CNN (AlexNet [13]) Mel-scale spectrogram 3 ms 90.05

RNN (I. Lezhenin et al. [29]) Mel-scale spectrogram 8 ms 80.22

CRNN [7] Mel-scale spectrogram 2 ms 87.99

Figure 4 provides confusion matrices associated with predictions of THD-RawNet,
and two baseline models, the SoundNet (eight 1D-Conv layers) and the AlexNet, which
received the highest accuracies for raw input and spectrogram input, respectively. We
can see that the major misclassification rates in all three models are between noise class
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(NS) and train horn class (TH). Each model misclassified the equivalent number of noise
samples to train horn sounds (i.e., THD-RawNet (58), SoundNet (61), and AlexNet (48)).
However, the misclassification rates due to classifying train horn sounds into noise classes
are much different across the three models. Specifically, THD-RawNet incorrectly classified
62 train horn samples into noises, while the figures for SoundNet and AlexNet are 120 and
234 samples, which are approximately two times and four times larger than the figure for
THD-RawNet, respectively. Thus, THD-RawNet is more efficient at increasing the correct
predictions for train horn samples. For the car horn and noise classes, the three models
achieved almost the same performance.
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3.3. Effects of Multiple Temporal Resolution Approach and Two-Stream Architecture

In this experiment, we evaluated the effectiveness of the proposal to process raw data
simultaneously with multiple temporal resolutions in the first stream of THD-RawNet,
where 1D-CNNs transform raw waves into 2D feature maps to feed into the 2D-CNN
part. We examined the performance of the first stream configured with one, two, or three
1D-CNN branches, in which the 1D-Conv layer in each branch has 128 filters and can be
set with a large filter size (128), a medium filter size (32), and a small filter size (8). We do
not consider the configurations for 1D-Conv layers with filer sizes larger than 128 because
those configurations result in high computational costs. Table 4 provides the results of this
experiment. Considering the case that the first stream of THD-RawNet has a single branch
of 1D-CNN, we obtained the accuracies of 92.25%, 89.66%, and 87.85% for the cases of large
(128), medium (32), and small (8) filter sizes, respectively. We can see that the larger the
filter size the better accuracy we achieve, and it is assumed that the larger filter size allows
the 1D-Conv layer to observe longer dependencies in the raw inputs, from which the layer
can extract useful features for the classification task. The combined use of multiple 1D-CNN
branches to build the first stream of THD-RawNet also brings about better performances,
in which combining a branch with a large filter size with either a medium filter size branch
or a small filter size branch results in a significant accuracy improvement, to 92.85% and
92.40%, respectively. Similarly, a two-branch structure with a medium filter size branch and
a small filter size branch achieves 90.65% accuracy, which is 1% and 2.8% higher than the
results of two corresponding single-branch structures, respectively. Lastly, the proposed
three-branch structure, as illustrated in the upper stream of Figure 2, obtained the highest
accuracy (93.68%) among all examined structures for THD-RawNet’s first stream, further
showing that utilizing multiple temporal resolutions together can significantly improve the
classification accuracy in THD.
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Table 4. Performance of the first stream of THD-RawNet with different configurations.

Model #Branches 1D Filter Size in Each
Branch

Output of
1D-CNN part Accuracy (%)

1st Stream of
THD-RawNet 1 Large (128) (128, 128, 1) 92.25

1st Stream of
THD-RawNet 1 Medium (32) (128, 128, 1) 89.66

1st Stream of
THD-RawNet 1 Small (8) (128, 128, 1) 87.85

1st Stream of
THD-RawNet 2 Large (128), Medium (32) (128, 128, 2) 92.40

1st Stream of
THD-RawNet 2 Large (128), Small (8) (128, 128, 2) 92.85

1st Stream of
THD-RawNet 2 Medium (32), Small (8) (128, 128, 2) 90.65

1st Stream of
THD-RawNet 3 Large (128), Medium (32),

Small (8) (128, 128, 3) 93.68

Next, we analyzed the effectiveness of the proposed two-stream architecture of THD-
RawNet, in which we performed separate experiments on the first stream and second
stream of the network and compared the results with that of the two-stream structure. As
shown in Table 5, the first stream based on multiple 1D-CNN branches and 2D-CNN classi-
fication yielded an accuracy of 93.68%, while the second stream built with fully 1D-Conv
layers produced an accuracy of 92.52%. It is worth mentioning that both streams achieved
much better performances compared to those of baseline models [5,7,9,13,18,21,29], show-
ing the efficiency of our proposed architectures for two network streams of THD-RawNet.
By combining two streams to form the proposed THD-RawNet, we achieved a considerable
improvement in classification accuracy, to 95.11%, which is 1.43% and 2.59% higher than
the results of the first stream and the second stream, respectively. It is noted that combining
two network streams to form the THD-RawNet results in a small increase in computational
time. Specifically, the processing time of two-stream THD-RawNet for a 1-s audio segment
is 5 ms, which is higher than the figures for each stream of THD-RawNet by 1 ms and
3 ms, respectively.

Table 5. Performances of the proposed THD-RawNet and its two streams.

Model Features Inference Time (ms/Sample) Accuracy (%)

THD-RawNet Raw wave 5 ms 95.11

1st Stream of THD-RawNet Raw wave 4 ms 93.68

2nd Stream of THD-RawNet Raw wave 2 ms 92.52

3.4. Robustness Evaluation

In this experiment, we evaluated the robustness of the proposed THD-RawNet and
made a comparison with that of the baseline models. We tested the pre-trained models with
testing sets of various noise levels, including −15 dB, −10 dB, −5 dB, 0 dB, +5 dB, +10 dB,
and +15 dB. From the statistic in Table 6, it is shown that the THD-RawNet has the best
performance. Across all noise levels, the THD-RawNet yielded much higher accuracies
compared to those of the baseline models trained with either raw wave or precomputed
features. At the moderate noisy conditions, i.e., the SNRs of +15 dB, +10 dB, and +5 dB,
the performances of all models reduced slightly to obtain almost comparable accuracies
as in the case of original testing data (or relatively clean testing set). For the noise level
of 0dB, the accuracy of THD-RawNet decreased by less than 1%, while the accuracies of
the baseline models started reducing more significantly, by 2% to 4%. In more challenging
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conditions, i.e., SNRs of −5 dB and −10 dB, a greater difference in performances of the
THD-RawNet and the baseline models was observed, in which the THD-RawNet still
attained high accuracies, at 93.74% (−5 dB) and 93.08 (−10 dB). By contrast, the baseline
models experienced huge performance degradation, by at least 3.81% (CRNN [7]) for−5 dB
testing data, and by approximately 4.5% (2D-CNN (K. J. Piczak [5]) to 11% (EnvNet [9])
for SNR of −10 dB. As for the noisiest condition (−15 dB), the accuracies of all the models
reduced dramatically, but the figure for the THD-RawNet remained above 82.90%, while
the accuracies of the baseline models were smaller than 77.86%.

Table 6. Results of proposed THD-RawNet and baseline models across various levels of noise.

Models Input/Features
Accuracy (%) on Each SNR

−15 dB −10 dB −5 dB 0 dB +5 dB +10 dB +15 dB Original
Data

THD-RawNet (this work) Raw wave 82.90 93.08 93.74 94.31 94.51 94.66 94.70 95.11

1st Stream of
THD-RawNet (this work) Raw wave 80.16 89.51 92.25 92.52 92.76 93.39 93.68 93.68

2nd Stream of
THD-RawNet (this work) Raw wave 79.56 88.35 91.45 91.71 92.01 92.04 92.37 92.52

SoundNet (five Conv
layers [18]) Raw wave 71.02 80.87 86.53 88.44 89.18 89.24 89.78 90.17

SoundNet (eight Conv
layers [18]) Raw wave 75.93 84.27 88.53 90.11 90.49 90.55 91.39 92.17

EnvNet [9] Raw wave 72.08 77.06 83.37 85.25 85.79 86.71 87.01 88.23

2D-CNN (K. J. Piczak [5]) Spectrogram 77.45 84.59 85.23 86.92 87.42 88.47 88.62 89.04

2D-CNN (J. Salamon
et al. [21]) Spectrogram 77.86 84.62 85.43 86.62 88.17 88.88 89.87 89.90

2D-CNN (AlexNet [13]) Spectrogram 77.21 83.26 85.79 86.38 87.60 88.44 89.06 90.05

RNN (I. Lezhenin
et al. [29]) Spectrogram 55.46 58.26 65.65 70.74 72.00 75.96 78.37 80.22

CRNN [7] Spectrogram 75.66 81.14 84.18 84.77 85.56 86.77 87.75 87.99

We also conducted the same experiments with each stream of the THD-RawNet and
inferred three observations. First, both network streams attained better robustness than
the existing models, especially for the cases of negative SNRs where the baseline models’
performances degraded significantly while each of the THD-RawNet’s streams still yielded
high accuracies. For example, at an SNR of −10 dB, the accuracies of the first stream and
second stream are 89.51% and 88.35%, respectively, whereas the figures for the baseline
models are 5% to 30% smaller. Second, considering the first stream with the recall that
this stream and EnvNet [9] apply and the similar idea of converting raw waves to time–
frequency-like features with 1D-CNN and classification with 2D-CNN, we can see that the
use of multiple 1D-CNN branches in the first stream of the THD-RawNet resulted in better
robustness. Specifically, the performance of EnvNet, the network with a single 1D-CNN
branch, degraded much more significantly than the first stream of THD-RawNet, the model
with three 1D-CNN branches. Third, in all levels of noise, by combining two network
streams the resulting THD-RawNet obtained better accuracies compared to those of each
stream and mitigated accuracy reduction when the noise level was increased. This further
proves the effectiveness of the proposed two-stream structure for the THD-RawNet.

3.5. THD-RawNet Performances with Different Input Sizes

Table 7 shows the performances of the proposed THD-RawNet for the other input
lengths rather than one second, including 0.25 s, 0.5 s, 0.75 s, and 2 s. Generally, the shorter
the input length the lower the accuracy yielded by the model is, and the processing time is
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smaller. Training the model with data of 2 s, we achieved an accuracy of 95.53%, which is
0.42% higher than that of the model trained on 1-s input. However, the processing time
per 2-s sample (10 ms) is double that for a 1-s sample (5 ms). For an input size of 0.75 s,
THD-RawNet produced almost a comparable accuracy (94.81%) in the case of 1-s data
(95.11%). When it comes to 0.5 s and 0.25 s inputs, the accuracy of THD-RawNet decreased
more significantly, but remained above 90%, at 93.71% and 92.11% for 0.5 s and 0.25 s
inputs, respectively. Although the inference times are much different between long input
sizes (i.e., 2 s) and short input sizes (i.e., 0.5 s and 0.25 s), inference times in all cases are
short enough and well acceptable for practical application. Among five cases of input
lengths, 0.75 s and 1 s could be most suitable for the THD task using the THD-RawNet.

Table 7. Performances of THD-RawNet with different input sizes.

Input Size (s) 0.25 s 0.5 s 0.75 s 1 s 2 s

Accuracy 92.11% 93.71% 94.81% 95.11% 95.53%

Inference time
(ms/sample) 1 ms 2 ms 4 ms 5 ms 10 ms

4. Conclusions

This work studied the end-to-end deep learning-based approach for train horn detec-
tion (THD), which is applied for train arrival detection (TAD) in rail transit safety. The task
was regarded as an audio classification problem of three sound classes consisting of train
horn sounds, car horn sounds, and background noises. We proposed a novel two-stream
end-to-end convolutional neural network, the THD-RawNet, to utilize as the audio classi-
fier of the THD system, in which the network worked directly with raw audio waveforms
rather than precomputed features such as a spectrogram and MFCCs. The THD-RawNet is
composed of two network streams to combine two approaches for processing raw audio
waveforms with 1D-Conv layers, one stream is a sequential 1D-CNN model with 1D-Conv
layers, 1D max-pooling layers, and fully connected layers, while in the other stream, we
propose to convert raw waves into an image-like representation using multiple branches of
1D-CNN considering different temporal resolutions.

Conducting experiments on the custom dataset, we found that the THD-RawNet out-
performed various baseline models trained with either raw waves or precomputed features
(i.e., Mel-spectrogram). THD-RawNet attained a good level of robustness as its accuracies
dropped modestly in experimental noisy conditions with SNRs ranging from −10 dB to
+15 dB. Our experiments also showed the effectiveness of the two-stream structure in the
THD-RawNet as well as of the multiple temporal resolution approach utilized in a stream
of the THD-RawNet. By considering different temporal resolutions in the conversion of
raw waveforms to time–frequency-like representation, we achieved a considerable im-
provement in classification accuracy. Equally important, the higher accuracy of two-stream
THD-RawNet compared to the performances of each network stream has shown the comple-
mentary relationship of features extracted from raw waveforms, respectively, by 1D-CNN
and 1D2D-CNN architectures. In addition, an investigation regarding the performance
of the THD-RawNet with respect to different input lengths was conducted, showing that
0.75 s or 1s are reasonable input sizes that can balance the accuracy and speed requirements
of practical applications. In comparison with baseline approaches, the proposed method
attained much better accuracies with a slight increase in computational time.

Although we have achieved promising preliminary results, limitations do exist, and
further efforts are required to enhance the applicability of the proposed methods. At
the current stage of our research, the experimental dataset may not perfectly reflect the
real traffic soundscape yet, and the determination of train horn direction has not been
investigated. In future work, we would further consider some vital aspects of the train
horn detection problem as follows. In terms of the experimental dataset, more data would
be collected with the consideration of training data diversity, covering more complex traffic
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scenarios and weather conditions. Especially, we will examine the scenario where several
sounds may be presented at the same time. Besides, techniques for noise removal and
sophisticated data augmentation would be applied to improve the robustness of the audio
classifier. The combination of raw waves and handcrafted features could be also taken into
consideration to examine the complementary relationship between those two feature sets.
Furthermore, we would examine the problem of direction determination for train horn
sounds, which is another essential aspect of the THD applications.
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