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Abstract: In the internet of vehicles (IoVs), vehicle users should provide location information contin-
uously when they want to acquire continuous location-based services (LBS), which may disclose the
vehicle trajectory privacy. To solve the vehicle trajectory privacy leakage problem in the continuous
LBS, we propose a vehicle trajectory privacy preservation method based on caching and dummy
locations, abbreviated as TPPCD, in IoVs. In the proposed method, when a vehicle user wants to
acquire a continuous LBS, the dummy locations-based location privacy preservation method under
road constraint is used. Moreover, the cache is deployed at the roadside unit (RSU) to reduce the
information interaction between vehicle users covered by the RSU and the LBS server. Two cache
update mechanisms, the active cache update mechanism based on data popularity and the passive
cache update mechanism based on dummy locations, are designed to protect location privacy and
improve the cache hit rate. The performance analysis and simulation results show that the proposed
vehicle trajectory privacy preservation method can resist the long-term statistical attack (LSA) and
location correlation attack (LCA) from inferring the vehicle trajectory at the LBS server and protect
vehicle trajectory privacy effectively. In addition, the proposed cache update mechanisms achieve a
high cache hit rate.

Keywords: internet of vehicles (IoVs); continuous location-based service (LBS); trajectory privacy
preservation; caching; dummy location

1. Introduction

The vehicular ad-hoc network (VANET) has become an important part of future
intelligent transport systems. It will be widely applied in traffic management [1], road
safety [2], information dissemination to drivers [3], etc. As more and more vehicles con-
nect to the internet of things, the conventional VANET is developing into the internet of
vehicles (IoVs).

Moreover, many mobile devices and applications (apps) use location-based services
(LBS) applications [4]. As a user acquires the LBS, the location should be provided so that
the location’s privacy is disclosed. In the IoVs, a vehicle user may act as the provider of
location services. When participating in a task of swarm intelligence, a vehicle user will
expose the location privacy. Hence, location privacy preservation in the LBS is an important
problem to be solved [5].

In IoVs, vehicle users only need to provide the location information once to obtain
a single LBS, such as “to inquire about a gas station nearby”. As vehicle users want to
acquire continuous LBS, such as “to inquire real-time traffic feedback based on the current
location”, they should provide the location information continuously.
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However, many location privacy preservation methods only protect the privacy of
a single location, and the privacy of the user’s trajectory may be disclosed if they use
the continuous LBS. When the vehicle user utilizes LBS consecutively, and the spatial
anonymity technology is adopted for the location privacy preservation, the user’s locations
will be replaced by a series of anonymous areas. However, combined with the background
knowledge or related technologies, the attacker can obtain the user’s trajectory information
with high probability. Therefore, it is of great significance to protect the user’s trajectory
privacy in the continuous LBS.

To protect the trajectory privacy of vehicle users as well as guarantee the quality
of LBS, some trajectory privacy preservation methods, namely the dummy locations-
based trajectory privacy preservation methods [6–13], trajectory anonymity-based privacy
preservation methods [14–16], obfuscation-based privacy preservation methods [17–22],
caching-based trajectory privacy preservation methods [23–29], and mixed zone-based
privacy preservation method [30–32], have been proposed. However, there are still some
problems with these methods. First, for the trajectory privacy preservation methods
based on dummy locations [6–13], it is difficult to resist the long-term statistical attack
(LSA) and/or the location correlation attack (LCA) in the continuous LBS. The problem of
trajectory privacy preservation is prominent. Second, some trajectory privacy preservation
methods based on caching mechanisms [23–28] rely on users’ collaborative caching without
a reliable third party. However, due to the high mobility of vehicles, the validity of the cache
cannot be guaranteed. If a vehicle user can obtain complete information by collaborating
with other vehicles, the communication overhead and the risk of privacy exposure increase.
Hence, an active cache deployment scheme was proposed to achieve a high cache hit
rate [29]. However, in the proposed scheme, the complexity of the cache mechanism is high,
and the issue of trajectory privacy preservation is not taken into consideration. Therefore, to
deal with these issues, we investigate the problem of vehicle trajectory privacy preservation
in IoVs in this work.

In this paper, we propose a vehicle trajectory privacy preservation method based on
caching and dummy locations. The basic idea of our proposed method is to utilize the
roadside units (RSUs) in the architecture of the IoV system to cache the hotspot data pushed
and requested data sent by the LBS server. When a vehicle user requests the continuous
LBS, combining the privacy preservation method based on dummy locations with the
cache mechanism at the RSUs is used to protect the vehicle trajectory privacy. In addition,
we address the cache update mechanisms based on dummy locations and timeliness to
guarantee a high cache hit rate.

The main contributions of this paper are as follows.

1. The problem of vehicle trajectory privacy preservation in IoVs is studied. And a
vehicle trajectory privacy preservation method based on caching and dummy loca-
tions is proposed. When a vehicle user requests the continuous LBS, the location
privacy preservation method based on dummy locations is used to protect the vehicle
location. And the caching deployed at the RSU with active and passive cache update
mechanisms is utilized to protect the vehicle trajectory. Compared with the exiting
dummy location-based methods [9,10], our proposed method deploys the caching
at RSU so that both the RSU and LBS server cannot obtain all the data since a single
RSU can only cover a part of the area. Moreover, the proposed method still applies
dummy locations to protect trajectory privacy within a single RSU region. Hence, our
proposed method can preserve trajectory privacy under LSA and LCA.

2. Compared with the caching-based trajectory privacy preservation methods relying on
users’ collaborative caching [27,28], this paper addresses the cache update mechanisms
based on data popularity and dummy locations to protect location privacy, as well
as improving the cache hit rate. In the initialized and periodic cache update phases,
RSUs cache the hotspot data pushed by the LBS server. In the service-providing phase,
RSUs cache the requested data sent by the LBS server. However, for the collaborative
caching mechanism in [27,28], the validity of the cache cannot be guaranteed due to
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the high mobility of vehicles; the communication among users increases the risk of
privacy exposure.

3. The performance of the proposed vehicle trajectory privacy preservation method,
in terms of security, computation overhead, communication overhead, and storage
overhead at the RSUs, is analyzed. Furthermore, extensive simulations are conducted
to evaluate the performance of the proposed method. The results show that the
proposed method achieves a lower trajectory privacy disclosure probability and a
higher cache hit rate.

The rest of the paper is organized as follows. The related work on location privacy
preservation methods is overviewed in Section 2. In Section 3, some preliminaries and
the problem to be solved in this paper are described. In Section 4, a vehicle trajectory
privacy preservation method based on caching and dummy locations is presented in detail.
Performance analysis and simulation results are given in Section 5. Finally, we conclude
the paper in Section 6.

2. Related Work

The problem of location privacy preservation has been attracting wide attention from
both academia and industry, and this problem draws even more attention due to the booming
of LBSs. Up to now, many location privacy preservation methods have been proposed,
including K-anonymity-based method [33–36], obfuscation-based method [37–39], differential
privacy-based method [40,41], homomorphic encryption-based method [42–44] and dummy
location-based method [6–13,45]. In this work, we focus on the trajectory privacy preservation
method based on dummy locations in IoVs.

The trajectory privacy preservation for the continuous LBS is a hot research topic in
IoVs. Dummy location-based privacy preservation methods aim to spam the adversary
with fake locations. Accordingly, the user can easily obtain the corresponding answer
by filtering out unnecessary results upon receiving all query results from the LBS server.
In [46], Dummy-Q, where the query privacy is protected by generating dummy queries,
was proposed to preserve the query privacy in the continuous LBS. The privacy leakage
problem in the continuous LBS was studied. A frequency-aware dummy-based method
(FADBM) was proposed to ensure that dummy locations are generated around frequent
areas and the time accessibility [6]. Authors in [7] proposed a dummy filtering algorithm,
where the spatiotemporal correlation of time-sensitive side information is used to generate
dummy locations. A privacy preservation scheme based on radius constrained dummy
trajectory (RcDT) was proposed [8]. By constraining the generated circular range for the
location where a user sends an LBS query, the RcDT-based privacy preservation algorithm
was proposed to generate the dummy trajectory set with high similarity to the real trajectory
comprehensively. Additionally, if an attacker is aware of a specific user’s lifestyle, the
attacker can distinguish the user’s location from dummy locations. Several studies attempt
to develop dummy location-based techniques for defending against background knowledge
attacks by capturing the geographic features of users’ movement or considering both
geographic and semantic features [9,10]. Authors in [13] proposed an algorithm to protect
location privacy in the continuous LBS, where dummy locations are selected based on
the query and transition probabilities. However, as the path length increases, there is an
increasing probability that the location information can be inferred by the adversary.

Moreover, obfuscation is adopted to construct the anonymous candidate set for the
continuous LBS. The obfuscation is one of the principles used to achieve location privacy
by degrading the accuracy of the disclosed location. Most of the obfuscation mechanisms
depend on the concept of differential privacy, where privacy is protected by injecting
controlled random noise into sensitive data. Geo-indistinguishability presents a practical
mechanism for applying differential privacy in LBS [18]. Based on geo-indistinguishability,
Authors in [19] proposed an adaptive location preserving privacy mechanism which ad-
justs the amount of noise required to obfuscate the user’s location. The privacy budget
is consumed rapidly, which results in a finite number of LBS queries. Hence, the geo-
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indistinguishability does not address the potential correlation of the subsequent locations
reported within the continuous queries.

A mix zone is considered a promising pseudonym-changing algorithm where mutually
cooperative vehicles concurrently change their pseudonym in mix zones. Authors in [30]
introduced this concept into the context of LBSs; that is, the mix zone is defined as the
spatial region where applications cannot access any location information of users therein.
Each user changes the user’s pseudonym to a new and unused one when entering the mix
zone. Based on the time when the user enters and leaves the mix zone, an attacker can
infer the links between pseudonyms and users. To resist the timing attack, a time window
is applied to mix zones [31]. The effectiveness of the mix zone depends on many factors,
namely geometry, vehicle density, and geographic location in the road network. Moreover,
blocking the use of the LBS inside the mix zone may affect service usage negatively.

Recently, the generative adversarial network (GAN) was applied for trajectory privacy
preservation [47]. In [21], the authors envisioned the possibility of leveraging GAN to
generate mobility data. Based on [21], a concrete solution was presented in [22] to generate
mobility check-in and check-out data, but it cannot generate individual complete mobility
trajectories. In [11], a sequence of locations is generated via reinforcement learning and the
GAN framework. In [12], two network models were used to decouple spatial information
from temporal information in mobility data, which generate location image and timing
information separately. However, based on the characteristics of historical query data, the
attacker makes trajectory privacy preservation methods invalid using LSA and regional
statistical attack (RSA).

Generally, deploying the cache can reduce the information interaction between users
and the LBS server, as well as decrease the risk of location privacy leakage. Hence, the cache
hit rate is also one of the main performance metrics in the caching-based location privacy
protection method. In [23], a collaborative system named MobiCache was proposed to
protect users’ location privacy and improve the cache hit rate. A dummy selection algorithm
(DSA) was proposed to select dummy locations that have not been cached before to increase
the cache hit rate. An entropy-based privacy metric incorporating the effect of caching on
privacy was defined in [24]. According to the defined metric, two caching-aware DSAs
were developed to enhance location privacy by maximizing the privacy of the current query
and the dummies’ contribution to the cache. RuleCache, a multi-level location privacy
protection method proposed in [25], combines users’ mobility patterns and utilizes the
cache of distributed neighbors to protect location privacy. Moreover, a cloaking region
generating algorithm (CRGA) was proposed to protect users’ location privacy, where both
query probability and data timeliness are considered. In [26], an enhanced user privacy
preservation scheme based on caching and spatial anonymity was proposed, where the
multi-level caching mechanism is adopted to reduce the risk of privacy exposure. In [27], a
framework enhancing the privacy of LBS using an active caching mechanism was proposed.

Moreover, three broadcasting content selection algorithms, two adaptive updating
methods, and one knowledge-based precaching method were addressed. In [28], a multi-
hop caching-aware cloaking algorithm was proposed to collect valuable information from
multi-hop peers using a collaborative caching mechanism. And a collaborative privacy-
preserving querying algorithm was addressed, which sends a fake query to confuse the
LBS server. A strategy combining cache scheme with K-anonymous was proposed in [48].
In [29], a blockchain-based privacy-aware content caching architecture was proposed,
where the blockchain technology is adopted to record the completed content transactions to
solve the problem of distrust between vehicles. However, in IoVs, if the cache is deployed
at the user and its neighbors, the validity of the cached data is difficult to guarantee due to
the high mobility of vehicles. In this paper, we consider the caching-based location privacy
protection method for the continuous LBS, where the cache is deployed at the network
edge nodes (i.e., RSUs) in IoVs.
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Therefore, according to the system architecture of IoVs, dummy locations and the
cache mechanism are used to solve the problem of trajectory privacy protection for the
continuous LBS in IoVs in this paper.

3. Preliminaries and Problem Formulation

In this section, some preliminaries, including the system model, the LBS query, the
service semantics, and the adversary model, are introduced. And the problem aimed to be
solved in this work is formulated.

3.1. System Model

The architecture of an IoV system, which includes a lot of intelligent vehicles, several
RSUs, a trusted authority (TA), and an LBS server, is illustrated in Figure 1. The vehicle-
equipped onboard unit (OBU) can acquire the perceived driving information of sensors,
calculate, process, and store the sensed data. Moreover, the dedicated short-range commu-
nication (DSRC) technology is adopted in the IoV system, which has two communication
modes, namely vehicle-to-vehicle (V2V) and vehicle-to-RSU (V2R).
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The system architecture shown in Figure 1 is an edge computing network consisting
of cloud, edge, and client layers.

Specifically, at the cloud layer, a wide range of infotainment and road-safety-related
applications, such as digital map construction and LBS, are supported. RSUs, also “edge
nodes” at the edge layer, are deployed at the roadside to speed up the data aggregation and
distribution. The edge layer considers how to share data between vehicles and application
servers. At the client layer, vehicles acquire data and communicate with their corresponding
RSUs and other vehicles.

3.2. LBS Query

Let (x, y) denote the user’s location information, where x and y represent longitude
and latitude, respectively.

For a moving vehicle, its trajectory Tr is a set of discrete locations, Tr = {uid, (x1, y1, t1),
(x2, y2, t2), . . . , (xn, yn, tn)}, where uid is a user’s identity, (xi, yi, ti) is the user’s location at
time ti, and t1 < t2 < . . . < tn.

An LBS query Lq is denoted as Lq = {uid, (xi, yi, ti), C, V}, where C denotes the user’s
querying content sent at location (xi, yi) at ti, V is the user’s privacy preservation level, and
V∈ [0,1). The larger the value of V, the more important the privacy is.
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3.3. Service Semantics

In each location, users may request transportation, entertainment, medical treatment,
and/or other services. Service requests sent by users are closely related to their locations,
and the probabilities of various services at different locations are different. To represent the
relationship between location and service, the service semantics is defined.

Let U be the number of services, ei,u be the request probability of service u at location

(xi, yi), i = 0, 1, . . . , k – 1, u = 1, 2, . . . , U, and
U
∑

u=1
ei,u = 1. That is, the service semantics is

represented by {ei,u|i = 0, 1, . . . , k – 1, u = 1, 2, . . . , U}.
In this work, the LBS server is responsible for the collection and establishment of

service semantics.

3.4. Adversary Model

The adversary’s goal is to obtain sensitive information about a vehicle user. There are
two types of adversary models, namely passive adversary and active adversary.

A passive adversary can monitor and eavesdrop on wireless channels or compromise
users to obtain other users’ sensitive information. An eavesdropping attack is performed
by the passive adversary to learn extra information about a user.

An active adversary can compromise the LBS server and obtain all the information the
server knows. In this work, it is assumed that the LBS server acts as an active adversary.
Hence, the adversary can obtain global information and monitor all the LBS queries
from users.

In addition, the adversary knows the location privacy preservation scheme adopted in
the system. Based on the known information, the adversary tries to infer and learn other
sensitive information. Meanwhile, RSUs in IoVs are regarded to be semi-trusted, which
means that they normally perform caching and forwarding functions.

According to the trajectory definition, the LBS server can analyze the service request
information to get the vehicle user’s locations at different times and arrange the trajectory of
the vehicle user according to the time stamps. An RSU may get the vehicle user’s locations
within its management area. Since the period of tracking a vehicle user is limited, an RSU
cannot obtain the complete trajectory of the vehicle user.

3.5. Problem Statement

As the attacker, the LBS server records and classifies historical service requests accord-
ing to uid, using the time stamp and locations in the LBS query to infer the user’s trajectory.

Let uid0 be the identity of the vehicle user monitored by the LBS server. The trajectory
of user uid0 can be inferred by sorting all service requests {Lq} of user uid0 in chronological
order, and Tr0 = {uid0, (x1, y1, t1), (x2, y2, t2), . . . , (xn, yn, tn)}.

For the continuous LBS, the LBS server can perform the LSA and/or LCA to obtain
the trajectories of vehicle users.

3.5.1. Long-Term Statistical Attack (LSA)

It is assumed that the map region is divided into several cells.
To protect vehicle location privacy, a location privacy preservation method based

on dummy locations, an enhanced-dummy location selection (E-DLS) algorithm [45], is
adopted. Once a vehicle user requests an LBS, k − 1 dummy locations will be generated.
Hence, Lq is transformed to Lq’, Lq’ = {uid, (x, y), (x1, y1), (x2, y2), . . . , (xk−1, yk−1), C, C1,
C2, . . . ,Ck-1, V}, where (x1, y1), (x2, y2), . . . , (xk−1, yk−1) are k − 1 dummy locations, and Ci
represents the user’s querying content sent to a dummy location (xi, yi), i = 1, 2, . . . , k – 1.

For simplicity, we assume that a vehicle user launches multiple LBS requests in cell O,
where m cells have the same probability as cell O and can be selected as dummy locations.
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As the vehicle user sends an LBS query in cell O, the probability of becoming a dummy
location in m cells is

pm =
Ck−2

m−1

Ck−1
m

=
k− 1

m
. (1)

At interval Tij (Tij = ti − tj denotes the time interval between ti and tj), it is assumed
that the vehicle user launches f LBS requests in cell O. In these service requests, kf locations
are included, where f locations are the actual locations of the vehicle user. Let nu denote
the number of users’ actual locations, and nu = f. The remaining k(f − 1) locations are
dummy locations.

For m cells with the same request probability as cell O, the number of dummy locations
to be selected is

nd = f pm =
f (k− 1)

m
. (2)

It is assumed that as the vehicle user launches an LBS request in cell O, there are
enough cells to be selected as dummy locations. That is, m > k− 1. Hence, we have pm < 1
and nd < nu.

If the user’s actual locations are relatively concentrated, the dummy locations are
relatively decentralized because of the randomness and can be ignored by the attacker.
Hence, the user’s actual locations cannot be protected by these dummy locations efficiently.
In the location privacy preservation method based on dummy locations with the E-DLS
algorithm, the LBS server can obtain privacy contents by analyzing historical data. This
kind of attack is called LSA [49].

Figure 2 (left) is the vehicle user’s historical service query locations, Figure 2 (right) is
the vehicle user’s historical service query locations with the E-DLS algorithm, and k = 10.
From Figure 2, one finds that although using the location privacy preservation method
based on dummy locations, the vehicle location is exposed, and the trajectory cannot be
effectively protected under the LSA. This is because the user’s actual locations appear more
frequently than dummy locations.
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3.5.2. Location Correlation Attack (LCA)

To protect vehicle location privacy, a location privacy preservation method based on
spatial K-anonymity is adopted. Once a vehicle user requests an LBS, Lq is transformed
to Lq”, Lq” = (uid, {(x0, y0), d, C, V}), where (x0, y0) is the center of the anonymous region
containing k users, and d is the diameter of the anonymous region. Obviously, the larger
the value of d, the more uncertain the attacker about the user’s location is, and the better
the privacy protection effect is.

As shown in Figure 3, if the attacker connects the centers of multiple anonymous
regions, the user’s trajectory is likely to be exposed. This kind of attack is called LCA [50].
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Let the anonymous region, including the LBS query sent by user uid0 at interval ti be a
circle with diameter di, and center (xi, yi), i = 1, 2, . . . , n. Hence, under the LCA, the LBS
server can obtain the predicted trajectory of user u0, Tr0 = {uid0, (x1, y1, d1, t1), (x2, y2, d2, t2),
. . . , (xn, yn, dn, tn)}.

If the LBS server acts as an active attacker, it can perform a location-related attack,
such as LSA and/or LCA, to obtain the user’s trajectory. Although the location privacy
preservation method based on dummy locations or location privacy preservation method
based on K-anonymity is adopted, the trajectory privacy cannot be protected effectively.
Furthermore, the attacker can infer the user’s other privacy information through the
trajectory. Therefore, the problem of trajectory privacy protection should be solved urgently.

4. Proposed Trajectory Privacy Preservation Method Based on Caching and
Dummy Locations

In this section, a vehicle trajectory privacy preservation method based on caching
and dummy locations, abbreviated as TPPCD, is presented. TPPCD consists of a dummy
locations generation algorithm, a cache initialization mechanism, a cache updating scheme,
and an LBS query-response mechanism. Since the RSU can obtain the location of the vehicle
user within its coverage by physical signal-based means, we assume that the vehicle user’s
location is transparent to the RSU. Moreover, it is assumed that an RSU is semi-trusted.

4.1. Parameter Setting

Before sending the LBS query, the vehicle user should set the corresponding privacy
protection level V according to the privacy protection requirement.

In the proposed method, due to the caching mechanism, the RSU will not forward
the received LBS query to the LBS server if the cached data are hit. When the cached data
are missed, the transformed LBS query is sent to the LBS server using dummy locations.
Hence, the success rate of vehicle location privacy protection is:

V ≥ γ + (1− γ)

(
1− 1

k

)
, (3)

where γ denotes the threshold of the cache hit rate. The right side of the inequality in (3)
represents the success rate of vehicle location privacy protection if the caching locations at
the RSU are randomly selected. However, to improve the cache hit rate, the hotspot data
are usually selected to be cached at the RSU. Hence, the success rate of vehicle location
privacy protection of the proposed method is higher than the value of the right side of the
inequality in (3).

Considering the worst-case scenario, to guarantee the vehicle location privacy, the
privacy parameter k is determined by the vehicle location privacy protection level V, and
the threshold of the cache hit rate. In the proposed method, privacy parameter k denotes
one LBS query sent by a vehicle user containing k − 1 dummy locations. That is,

k =

⌈
1− γ

1−V

⌉
, (4)

where d·e denotes the upper integer operation.
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4.2. Cache Initialization Mechanism

The LBS server divides the region covered by an RSU into I×J cells. celli,j denotes
the cell of row i and column j, i = 1, 2, . . . , I, and j = 1, 2, . . . , J. The location of celli,j can
be denoted as ri,j, and ri,j = (xi,j, yi,j), which is a location randomly selected within celli,j.
Let the service request probability of celli,j be qi,j, the service semantics of service u at celli,j
be e(i,j),u. The service request probability qi,j means the probability that the user initiates
a request in celli,j among all cells of the region covered by an RSU. And e(i,j),u means the
probability that the user initiates service type u among all requested service types in celli,j.

At the initialization phase, based on the collected historical service data, the LBS server
constructs the information matrix Q(r, q, e) consisting of the locations of cells, service
request probability q, and service semantics e. And then, the LBS sends the information
matrix Q(r, q, e) to the RSU.

Meanwhile, the LBS server actively pushes part of the hotspot data to the RSU. The
hotspot data are the request results of dγI JUe locations and service combinations with the
highest request probability in the coverage of the RSU.

The problem of hotspot data locations selection can be formulated as

max
D

∑ qi,je(i,j),u
s.t.D(r, q, e) ⊂ Q(r, q, e)
∀ri,j ∈ D, ri,j ∈ C, ri,j ∈ R
u ∈ {1, 2, 3, · · · , U}|D| = dγI JUe,

(5)

where R represents the location area accessible by the road. D is the set of hotspot locations
and service contents, D(r, q, e) is the corresponding information matrix. C is the set of all
locations of cells in the area covered by the RSU.

To solve the problem formulated in (5), the LBS server selects dγI JUe hotspot data in
a greedy manner.

According to Q(r, q, e), the LBS server calculates the probability of service request at
each location in R, qi,je(i,j),u, i = 1, 2, . . . , I, j = 1, 2, . . . , J, u = 1, 2, . . . , U, celli,j ∈ R. The
LBS server chooses dγI JUe hotspot data with the largest probability of service requests
through dγI JUe rounds.

In the lth round, l = 1, 2, . . . , dγI JUe, the LBS server selects the locations and service
to D from set {qi,je(i,j),u} which maximizes the sum of the probability of service requests in
D, and deletes it from set {qi,je(i,j),u}.

Hence, set D is constructed with the hotspot locations and service contents.
After receiving the information matrix and the hotspot data, the RSU caches the date

and constructs the cached information matrix E(r, q, t, e) based on Q(r, q, e) and the existing
time t(i,j),u of cached data. The information matrix of the locations without cached data is
P(r, q, e). The RSU broadcasts Q(r, q, e), R and γ to vehicle users in its coverage.

4.3. Dummy Locations Generation Algorithm

The vehicle user uses the dummy location selection algorithm under road restriction
(RR-DLS) [51] to generate dummy locations.

Suppose set G includes k locations, and G = {(x0, y0), (x1, y1), . . . , (xk−1, yk−1)} . The
anonymous entropy is defined as

H = −
k−1

∑
i=0

pi,u log2 pi,u, (6)

where
pi,u =

qiei ,u
k−1
∑

i=0
qiei,u

. (7)
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In this algorithm, entropy is used to represent the degree of anonymity. The effective
distance represents the minimum distance between the current location and other locations
in a location set. The dummy location selection algorithm aims to maximize the anonymous
entropy and the effective distance of the candidate location set consisting of the vehicle
user’s location and dummy locations, ensuring the uncertainty and dispersion of selected
dummy locations.

4.4. Cache and Information Matrix Update Mechanism

RSU needs to request the LBS server to realize the cache update. Hence, in this section,
we consider using dummy locations to protect the location privacy of vehicle users and
using the service results on dummy locations to realize the passive cache update. Since
there are different types of LBS services in IoVs, and the query data of different services
in different locations have different contributions to the cached data, dummy locations
should be selected according to the validity of the cached data and privacy protection in
corresponding locations, as well as protecting location privacy and improving the cache hit
rate. Meanwhile, since the information matrix is considered in the RR-DLS, it should be
updated to ensure its effectiveness.

The probability of different service types at different locations is different. The higher
the request probability of a specific service at a specific location, the higher probability of
being hit. Moreover, as content to be cached at an RSU keeps longer, the validity of cached
data goes weaker. Hence, the existing time, t(i,j),u, is used to measure the validity.

The vehicle user generates dummy locations using the RR-DLS to protect the location’s
privacy. G is the location and corresponding service set, and |G|= k . Since the service
query generated by the vehicle user contains multiple locations and service contents, there
will be some queries without cache. Assume that the number of RSU cache hits in the
location set is kc. If the service requested by the vehicle user’s service query is hit at RSU,
the corresponding t(i,j),u will be reset to 0.

When kc/k ≥ γ, the cached data will not be updated temporarily, and the RSU will
return the service query results at kc locations. When the returned service query results
contain the result required by the vehicle user, the vehicle user gets the service. Otherwise,
when the returned service query results do not contain the result required by the vehicle
user, the vehicle user sets the NoCache identifier in the service request Lq′, transforms the
service request Lq′′′ as Lq′′′ = {Lq′, NoCache}, and sends Lq′′′ to the RSU.

When kc/k < γ or NoCache identifier is set in the service query, the cached data and
the information will be updated. The RSU generates kc dummy locations to replace the
locations hit by the cache, constructs a service request Lq* and sends it to the LBS server.

The problem of kc dummy locations selection at the RSU can be formulated as

max
B

{
−∑ p(i,j),u log2 p(i,j),u + Hn

}
s.t.B(r, q, e) ⊂ P(r, q, e)
∀ri,j ∈ B, ri,j ∈ C, ri,j ∈ R
|B| = kc,

(8)

where
p(i,j),u =

qi,je(i,j),u
∑

ri,j∈B,u∈B
qi,je(i,j),u+ ∑

ri,j∈G ′ ,u∈G ′
qi,je(i,j),u

, (9)

Hn = − ∑
ri,j∈G ′ ,u∈G ′

p(i,j),u log2 p(i,j),u, (10)

where B is the set of kc dummy locations and corresponding services generated at the RSU,
B(r, q, e) is the information matrix corresponding to set B, and G ′ is the set of locations and
corresponding services missed by the cache in G.
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To solve the problem formulated in (8), the RSU selects kc locations whose service
request probabilities are closed to locations in G ′.

After receiving Lq*, the LBS server return the results to the RSU. Due to the caching
deployment at the RSU, the actual location of the vehicle user may not be included in the
service query Lq*, which confuses the LBS server.

To cache data effectively, it is preferential that the cached data are replaced by data not
requested for a long time. Hence, according to the cached information matrix E(r, q, t, e),
the RSU caches the results of Lq* and deletes the cached data whose existing times are
larger than TD, where TD denotes the lifetime of cached data.

Finally, the RSU sends the corresponding query results of G to the vehicle user.
To update the information matrix, the RSU sends the number and type of services

provided by the RSU using cached data to the LBS server during a period of T.
The LBS server recalculates the service query probability and service query semantics

of each cell and updates the information matrix. Whenever the information matrix is
updated, the LBS server sends the information matrix Q(r, q, e) to the RSU.

The RSU updates the cached information matrix E(r, q, t, e) based on Q(r, q, e). As in
the initialization step, the RSU broadcasts the updated information matrix Q(r, q, e) to the
vehicle user.

4.5. LBS Query Response Mechanism

When a vehicle user requests an LBS, k − 1 dummy locations are generated using
RR-DLS. When the RSU receives the transformed LBS query sent by the vehicle user, it
returns the response of the LBS query if the querying contents are hit.

The RSU should construct a new LBS query based on the querying contents missed
by the cache and send it to the LBS server. The LBS server returns the response of the LBS
query. The result of the user’s query is obtained by interacting with the LBS server. Hence,
the vehicle user receives the results of the LBS query from the RSU.

4.6. Overall Procedure of TPPCD

Taking the example of a vehicle user sending requests, the procedure of the TPPCD is
composed of the initialization phase and the user’s query phase.

The procedure of TPPCD is summarized as follows.
Initialization Phase:

(1) The LBS server collects the number and types of services provided by the RSU using
cached data and counts the number of various types of service requests sent by
vehicle users in each cell. Hence, for each location, the LBS server can calculate the
corresponding historical query probability qi,j =

fi,j
F , where fi,j denotes the number

of queries in location cellij, F is the total number of service requests in the area under

the jurisdiction of RSU. The request probability of service u is e(i,j),u =
f(i,j),u

fi,j
, where

f(i,j),u is the number of queries of service u in location cellij, u = 1, 2, . . . , U. The LBS
server constructs the information matrix Q(r, q, e). Moreover, the LBS server selects
the hotspot data based on the results of problem (5). Finally, the LBS server sends the
information matrix Q(r, q, e) and the hotspot data to the RSU.

(2) The RSU broadcasts information such as Q(r, q, e), R and γ to vehicle users in its
jurisdiction and constructs a cached information matrix E(r, q, t, e) based on the
existing times of cached data. Meanwhile, the RSU begins to count the existence time
tq of the information matrix.

(3) The vehicle users store the information matrix according to the broadcast information.

User’s Query Phase:

(1) Using the privacy protection level V and the threshold of cache hit rate γ, the vehicle
user calculates the privacy parameter k according to Equation (4). As described in
Section 4.3, the vehicle user generates k – 1 dummy locations with the information
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matrix Q(r, q, e) and road information R, and RR-DLS. And a service query Lq′ is
constructed and sent to the RSU.

(2) After receiving Lq′, the RSU retrieves the cached data for service queries. The number
of queries hit by the cached data is kc. The existing times of hit data are reset to 0 s. If
kc/k ≥ γ, the service results are returned directly to the vehicle user. Otherwise, if
kc/k < γ, it goes to Step (4).

(3) The vehicle user filters the service results based on its location. If the user’s real query
result is obtained, it goes to Step (8). Otherwise, the vehicle user sets the NoCache
identifier, constructs the service query Lq′′′ and sends it to the RSU.

(4) The RSU selects kc locations and their corresponding services according to the result
of the problem (8). The RSU replaces the queries hit by the cached data in Lq′ with the
locations in set B obtained in problem (8) and the corresponding services to construct
the service query Lq∗. The RSU sends Lq∗ to the LBS server.

(5) Receiving Lq∗, the LBS server retrieves the database and returns the service results to
the RSU.

(6) The RSU caches the results of Lq* and deletes the cached data whose existing times
are larger than TD. Then, the RSU screens out the results required by the vehicle user
and adds the queries hit by the cached data in Step (2) to construct the user’s service
results and returns them to the vehicle user.

(7) The vehicle user filters the service result according to its location.
(8) If tq ≥ T , the RSU perform the information matrix update step as described in Step 1).
(9) The whole service for a vehicle user is finished.

5. Performance Evaluation and Discussion

In this section, the performance of TPPCD is analyzed in terms of security, the com-
putation overhead, the communication overhead, and the storage overhead. Moreover,
the performance of TPPCD is evaluated. In addition, we compare the performance of the
proposed method with some existing methods based on cache or dummy locations.

The data set used in simulations was collected from 182 users in the Microsoft Research
Asia Geolife project. The GPS trajectory is represented by a sequence of points with time
stamps, each containing latitude, longitude, and altitude information. The data set contains
17,621 trajectories, with a distance of 12,92951 km and a total duration of 50,176 h. It is
widely distributed in over 30 cities in China, even in some cities in the United States and
Europe, but most data were created in Beijing, China [52].

5.1. Security

Since encrypt-based technologies can be easily applied to the proposed TPPCD method,
eavesdropping attacks on wireless channels between vehicle users and other entities can be
ignored. We focus on LSA and LCA from the LBS server as an active adversary.

5.1.1. Long-Term Statistical Attack

When a vehicle user sends a service query to the RSU, the location set contains k − 1
dummy locations. Hence, the probability that the RSU identifies the actual location of a
vehicle user from the location set is 1/k.

If the RSU needs to update the cache, it selects dummy locations according to the
anonymous entropy and replaces the locations hit by the cached data. In this process, the
vehicle user does not interact with the LBS server, and the location set generated by the
RSU for the cache update does not necessarily contain the vehicle user’s actual location,
which confuses the LBS server. The probability that the LBS server identifies the actual
location of a vehicle user from the location set is still 1/k or even 0. The returned query
results are cached in the RSU, which further reduces the probability of the user’s location
leaked to the LBS server.

Suppose a vehicle user uses the TPPCD method to initiate f LBS queries at cell O in
a period. The number of cells with the same service query probability of cell O is m. The
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probability of cell O being selected is pc, and the probability of a cell with the same request
probability being selected as a dummy location is pm. On the LBS server side, the number
of times the vehicle user’s actual location contained is nu, and the number of dummy
locations is nd. We have

nu ≤ (1− γ) f + pcγ f , (11)

nd ≤ (1− γ) f
k− 1

m
+ pmγ f . (12)

From (11) and (12), one finds that the ratio between nu and nd cannot be determined
as m and γ are large. That is, with the deployment of cache in the RSU, the probability of
the actual location of a vehicle user in the historical data of the LBS server is not necessarily
larger than that of the dummy locations.

From the above proofs, the trajectory of a vehicle user cannot be obtained effectively
through LSA using the TPPCD method.

To verify the privacy protection performance of our proposed algorithm, we do a
few simulations.

Figure 4 shows the trajectory data of vehicle users used in simulations, the east
longitude ranges from 116.295◦ to 116.345◦, and the north latitude ranges from 39.935◦ to
39.995◦. The area is 6000 m × 3500 m.
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Figure 4. The schematic diagram of vehicle user trajectory.

The above area is divided into 200 × 100 cells, and the service request probabilities
corresponding to the cells under different privacy preservation methods are counted and
calculated. The total number of service requests in the area is 2780.

Figure 5a shows the service request probability of vehicle users without a location
privacy preservation mechanism. It can be seen from Figure 5a that the service request
probability distribution is consistent with the trajectory of vehicle users.
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ceived by the LBS server is guaranteed. Hence, it is difficult to obtain the trajectory of a 
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proposed trajectory privacy preservation method.

Figure 5b shows the probability distribution of service requests with the location
privacy preservation method based on dummy locations. From Figure 5b, the location
privacy preservation method based on dummy locations is used. The service request
probability distribution is fuzzy, but the probability of service requests on dummy locations
is much smaller than on the actual location. Hence, the trajectory information of vehicle
users can still be distinguished according to the probability of service requests.

Figure 5c shows the probability distribution of service requests with TPPCD. From
Figure 5c, owing to the caching mechanism, the vehicle user reduces the number of service
requests sent to the LBS server directly. The number of service requests sent to the LBS
server is 569. Moreover, due to the dummy query introduced by the caching mechanism
and cache update, the service query is further blurred. The service request probability
distribution obtained by the LBS server cannot obtain the trajectory information related to
the vehicle user.

5.1.2. Location Correlation Attack

As shown in Figure 6, the theoretical premise of LCA is that there is a spatial-temporal
correlation between locations, and each anonymous area or location set should contain the
actual location of a vehicle user.
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In TPPCD, since the dummy locations set sent to the LBS server may not contain
the vehicle user’s actual location, the spatial-temporal correlation of location information
received by the LBS server is guaranteed. Hence, it is difficult to obtain the trajectory
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of a vehicle user through LCA. Next, we will prove these analyses through simulation
compared with the K-anonymity method [34] and dummy location-based method [45].

Figure 7 shows a part of the vehicle user trajectory in Figure 4. The east longitude
ranges from 116.298◦ to 116.312◦, the north latitude ranges from 39.983◦ to 39.993◦, the
area is 1100 m × 1200 m, four RSUs are set in the area, and each RSU covers a range of
500 m × 500 m. The time interval between two adjacent locations in the figure is 30 s. The
vehicle’s true trajectory is shown as the blue line, and the blue number denotes the location
sequence in the trajectory.
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Figure 7. The true trajectory of a vehicle user without location privacy preservation method.

Figure 8 shows the predicted trajectory of the vehicle user when the location privacy
preservation method based on K-anonymity is used, where k = 10. In Figure 8, the green
circle represents the anonymous area, and the green number denotes the location sequence
in the true trajectory corresponding to the anonymous area. Figure 9 shows the predicted
trajectory of the vehicle user when the location privacy preservation method based on
dummy locations is used, where k = 10. In Figure 9, the purple dot represents the dummy
location and the purple number dennotes the location sequence in the true trajectory
corresponding to the dummy locations set.
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From Figures 8 and 9, with the location privacy preservation method based on K-
anonymity or dummy locations, each location of the vehicle user is replaced by an anony-
mous area. However, the vehicle trajectory predicted by the LCA is close to the vehicle’s
true trajectory in Figure 7, which means that the vehicle trajectory information is not
protected effectively.

Figure 10 shows the predicted trajectory of the vehicle user when TPPCD is used,
where V = 0.95. The cache hit rate threshold γ is 0.5 and 0.75 in Figure 10a,b, respectively.
In Figure 10, the gray dot represents the dummy location in the query sent by the RSU, and
the gray number denotes the location sequence in the true trajectory corresponding to the
dummy locations set generated by TPPCD. From Figure 10, the cache introduced by TPPCD
reduces the information interaction between the vehicle user and the LBS server, and the
dummy query is introduced into the cache update mechanism. Hence, the trajectory of the
vehicle user predicted by LCA differs from the true trajectory, as shown in Figure 7. The
results show that the LBS server cannot obtain the vehicle user’s trajectory through LCA,
and the user’s trajectory information is protected effectively.
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To further illustrate the effectiveness of vehicle trajectory privacy preservation meth-
ods, the predicted location deviations for three location privacy preservation methods are
calculated. With the K-anonymity-based location privacy protection method, the estimated
location deviation is about 41.55 m. With a dummy locations-based location privacy protec-
tion method, the estimated location deviation is about 49.38 m. With TPPCD, the estimated
location deviation is about 134.92 m and 286.76 m for γ = 0.5 and γ = 0.75, respectively.
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Hence, the proposed vehicle trajectory privacy preservation method, TPPCD, can resist
LCA effectively.

5.2. Cache Hit Rate

In this simulation, four location privacy preservation methods, E-DLS in [45], CaDSA
in [24], RuleCache in [25], and PAPT in [29], are compared with TPPCD proposed in this
paper. The cache hit rate refers to the probability that the demand can be satisfied by
cached data at the RSU when the vehicle user requests the service and is defined as the
ratio of the number of services obtained by the user through the RSU to the total number of
requested services.

Figure 11 shows the cache hit rate of different location privacy preservation methods
based on the cache. The cache data lifetime TD = 3 h, the information matrix update period
T is also 3 h, and the interval of the service requests is 10 min. From Figure 11, since E-DLS
does not adopt cache, the cache hit rate is 0. PAPT is based on an active cache mechanism,
the LBS server pushes the service contents to the RSU for caching, and the cache hit rate
is about 0.9. Three other methods are based on passive cache mechanisms, where the
cache hit rate increases gradually over time. CaDSA deploys the cache at the vehicle user,
and the cache hit ratio is about 0.7. RuleCache establishes caches in the user’s local area,
neighbor users, and the LBS server, and the cache hit rate is about 0.9 after stabilization.
TPPCD deploys the cache on the RSU, and the cache hit rate is about 0.9. In the proposed
method, combined with the active cache mechanism, the LBS server sends the hotspot data
to the RSU in the cache initialization stage to reach the cache hit rate threshold. Moreover,
combined with the cache update mechanism based on dummy locations, the cache hit rate
keeps high. Compared with PAPT, TPPCD simplifies the active caching strategy, reduces
the complexity of the caching mechanism but still guarantees a high cache hit rate.
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5.3. Service Failure Rate

In the simulation, we use the frequency of the NoCache identifier is used to character-
ize the service failure rate.

Figure 12 shows the service failure rate of TPPCD, where V = 0.95, the total number of
service requests is 2780, and the frequency of the NoCache identifier is calculated every
200 times. From Figure 12, we observe that when γ = 0.5, the frequency of the NoCache
identifier fluctuates between 4% and 12%, with an average value of 8.54%. When γ = 0.75,
the frequency of the NoCache identifier fluctuates between 2% and 10%, with an average
value of 5.87%. The reason for this phenomenon is that as the cache hit rate threshold
increases, the number of hotspot data caches increases, the cache hit rate increases, and
the corresponding service failure rate decreases. When the vehicle user cannot obtain the
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desired result from the cached data at the RSU, the NoCache identifier will be set to the
service request, which results in increasing the communication overhead of the vehicle user
and the service delay.
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5.4. Overhead Analysis
5.4.1. Computation Overhead

If the coverage of an RSU is divided into I × J cells, the number of services is U and
the number of POIs returned by the LBS server is n.

In the procedure of an LBS query, since the vehicle user uses RR-DLS to select dummy
locations, the computation overhead at the vehicle user is O(k2 + IJU).

The computation overhead of the RSU is divided into two parts, dummy locations
selection and caching queries. Dummy locations are selected based on the validity of the
cache; the computation overhead is O(IJU). The query operation is to retrieve the cached
data. The worst case is to traverse all the cached data, and the computation overhead is
O(IJU). Therefore, the computation overhead at the RSU is O(IJU).

The LBS server needs to perform service retrieval for k−1 dummy locations and a real
location to obtain kn service results. Hence, the computation overhead at the LBS server
is O(kn).

5.4.2. Communication Overhead

In the procedure of an LBS query, a vehicle user only sends its actual location and
k−1 dummy locations with corresponding query contents to the RSU. The communication
overhead at the vehicle user is O(k).

For the RSU, there are two situations.
When kc/k ≥ γ, the RSU directly sends the service results hit by cached data to the

vehicle user. When the service request cache is hit, the communication overhead is the
largest and O(kn).

When kc/k < γ or the RSU receives the LBS query with the NoCache identifier, the
RSU generates dummy locations according to the cache update mechanism and then sends
a service request to the LBS server. The communication overhead is O(k). After the LBS
server returns the query results, the RSU integrates the results and returns them to the
vehicle user. The communication overhead is O(kn).

Therefore, the communication overhead of the RSU is O(k + kn).
The communication overhead of the LBS server is divided into two parts.
In the cache initialization stage, the hotspot data are sent to the RSU. The communica-

tion overhead is O(dγI JUen).
Receiving the service query, the LBS server returns the corresponding service results

to the RSU. The communication cost is O(kn).
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Therefore, the communication overhead at the LBS server is O(dγI JUen + kn).

5.4.3. Storage Overhead

Due to the cache deployment at the RSU, the additional storage overhead is O(IJUn).

6. Conclusions

In this paper, we studied the vehicle trajectory privacy-preserving problem for the
continuous LBS in IoVs. A trajectory privacy preservation method based on caching and
dummy locations, TPPCD, is proposed. In the proposed method, the vehicle user-generated
dummy locations protect the vehicle location when it acquires the continuous LBS. More-
over, the cache is deployed at the RSU to reduce the information interaction between vehicle
users covered by the corresponding RSU and the LBS server. In the proposed cache update
mechanisms, data popularity and dummy locations are considered to protect location
privacy and improve the cache hit rate. The RSU caches the hotspot data pushed by the
LBS server in the initialized and periodic cache update phase and the requested data sent
by the LBS server in the service-providing phase. The performance analysis and simulation
results show that the proposed vehicle trajectory privacy preservation method can resist
LSA and LCA and protect the vehicle trajectory privacy effectively, as well as guaranteeing
a high cache hit rate. However, the proposed method increases the computation overhead
and communication overhead at the RSUs and the LBS server.

This study considered the trajectory privacy protection for the continuous LBS, but did
not consider data utility for subsequent trajectory data research. Moreover, it is assumed
that an RSU is semi-trusted. Hence, in future research, we will concentrate on the following
aspects: (1) Considering the trade-off of trajectory privacy protection and data utility.
(2) Further consider the protection of RSU’s possible privacy leakage. (3) Continuous LBSs
entail more user queries and higher real-time requirements, resulting in a greater challenge
involving the cache hit ratio than that of snapshot LBS, which leads to more communication
overhead. Reducing communication overhead is also a research direction.
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