
Citation: Cambuim, L.; Barros, E.

FPGA-Based Pedestrian Detection for

Collision Prediction System. Sensors

2022, 22, 4421. https://doi.org/

10.3390/s22124421

Academic Editors: Iván García Daza

and Javier Alonso Ruiz

Received: 5 May 2022

Accepted: 9 June 2022

Published: 11 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

FPGA-Based Pedestrian Detection for Collision
Prediction System
Lucas Cambuim * and Edna Barros

Centro de Informática, Universidade Federal de Pernambuco—UFPE, Recife 50740-560, Brazil; ensb@cin.ufpe.br
* Correspondence: lfsc@cin.ufpe.br

Abstract: Pedestrian detection (PD) systems capable of locating pedestrians over large distances
and locating them faster are needed in Pedestrian Collision Prediction (PCP) systems to increase the
decision-making distance. This paper proposes a performance-optimized FPGA implementation of a
HOG-SVM-based PD system with support for image pyramids and detection windows of different
sizes to locate near and far pedestrians. This work proposes a hardware architecture that can process
one pixel per clock cycle by exploring data and temporal parallelism using techniques such as pipeline
and spatial division of data between parallel processing units. The proposed architecture for the PD
module was validated in FPGA and integrated with the stereo semi-global matching (SGM) module,
also prototyped in FPGA. Processing two windows of different dimensions permitted a reduction in
miss rate of at least 6% compared to a uniquely sized window detector. The performances achieved
by the PD system and the PCP system in HD resolution were 100 and 66.2 frames per second (FPS),
respectively. The performance improvement achieved by the PCP system with the addition of our PD
module permitted an increase in decision-making distance of 3.3 m compared to a PCP system that
processes at 30 FPS.

Keywords: pedestrian detection; high performance; distant pedestrian; image pyramid; multi-
window; histogram of oriented gradients; support vector machine; collision prediction efficiency

1. Introduction

Pedestrians, called vulnerable road users (VRUs), represent more than half of all the
global deaths in transit accidents [1]. As cars today get faster, the risk of fatal accidents
involving pedestrians increases even further [1]. Pedestrian collision prediction (PCP) sys-
tems are fundamental in reducing accidents because they allow earlier decision-making [2].

Pedestrian detection (PD) is a fundamental and critical component in PCP systems [3,4].
Since braking distance increases with larger vehicle speed [5], two aspects are essential
in these PD systems and should be applied in PCP systems to support higher speeds:
(1) coverage in large ranges of distances and (2) fast response. PD systems with such
characteristics permit PCP systems to predict a collision earlier [6].

One way to work around the deficiency of detecting distant pedestrians is to process
data with increasing resolutions [7]. Image sensors (cameras) are an attractive choice be-
cause they provide a large amount of environmental information in pixels. This technology
is constantly evolving [8,9] and, today, it is possible to have high-resolution cameras with
high sampling rates [10–12]. Higher resolution cameras facilitate the detection task and al-
low the system to detect distant pedestrians, as they will be encoded in a greater number of
pixels. For example, in [13] the authors claim that increasing the resolution from 480 × 320
to 1920 × 1080 pixels allows for increasing the detection distance by 77 m. In addition,
a higher frame rate improves obstacle tracking, reduces latency, and minimizes the false
detection rate [13].

Unfortunately, the existing detectors based on convolutional neural networks (CNN)
have a high computational cost that prevents us from obtaining efficient processing solu-
tions [14,15]. For example, in [14] the authors process images in resolution 416× 416 at 60

Sensors 2022, 22, 4421. https://doi.org/10.3390/s22124421 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22124421
https://doi.org/10.3390/s22124421
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5577-7368
https://orcid.org/0000-0001-6479-3052
https://doi.org/10.3390/s22124421
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124421?type=check_update&version=2

Sensors 2022, 22, 4421 2 of 27

FPS. On the other hand, solutions that combine a histogram of oriented gradients (HOG)
with shallow linear classifiers such as support vector machines (SVMs) can achieve high
processing rates [13] due to their relatively regular and straightforward processing.

Due to the excellent parallelism capabilities of the field-programmable gate array
(FPGA) platforms [16–18], some architectures for HOG-SVM-based detectors have been
proposed. The proposed detectors in [13,19] do not support the image pyramid, which
is one of the fundamental approaches to locating pedestrians nearer to the image. They
propose approximations to avoid using the arc-tangent and so as to not perform the linear
interpolation in the cell computation that reduces detection accuracy [20].

In [21] the authors propose a detection system with support for pyramids based on a
heterogeneous architecture that is heavily dependent on external memory performance.
The HOG and SVM steps are processed in FPGA, and the other steps are performed in
general-purpose processors (GPP), such as color conversion, gradient, and the image
pyramid. Only one HOG and SVM module is used to process all the pyramid levels
iteratively. Thus, it is impossible to continuously process all the frames without input
pixel interruption.

In [22] the authors propose a detection system with support for the image pyramid
entirely in FPGA that effectively processes only six scales per frame. The authors do not
perform parallelism to process the considerable overlapping along an image row. Con-
sequently, the authors used a double frequency strategy to increase the SVM module’s
processing throughput, which is non-scalable in terms of frequency and increases hard-
ware complexity.

In addition to the image pyramid, another approach to increasing the ability to lo-
cate pedestrians at different distances involves processing detection windows of different
dimensions. While the pyramid aims to encounter pedestrians larger than the detection
window dimension, the windows of various sizes permit locating pedestrians that appear
with smaller dimensions. Our previous work [6] demonstrated that the combination of
detectors and the image pyramid enabled finding pedestrians further and further away.
However, the processing rate of the GPU-based solution proved to be non-scalable in terms
of image resolution.

Thus, this work proposes an FPGA-based processing architecture of our detector [6] to
further enhance the PCP system processing performance. The proposed detector is similar
to the works [13,19,22], but does not approximate the cell calculation nor adopt a double
frequency strategy. In addition to the pyramid, the detector supports processing windows
of different sizes. The entire detection system is performed on FPGA hardware and without
external memories. The detection architecture supports streaming pixels that could come
straight from a hardware camera without the need for specific heterogeneous architectures.

The proposed architecture comprises several parallelism strategies at the frame level
and detection windows level to performance optimization. At the frame level, modules are
instantiated to process detection windows of equal and different dimensions parallel at
each pyramid level. At the detection windows level, the most significant contribution of
this work, a set of smaller SVM units is created to process a bunch of different overlapping
detection windows in parallel to ensure the completion of the current row before the
arrival of the next row. These strategies guarantee a processing throughput of one pixel
per cycle, achieving the same performance as the input camera without frame loss or pixel
input interruption.

In addition to the PD system architecture, another essential contribution to the perfor-
mance improvement of the PCP system is in the pedestrian distance estimation step that
depends on the results of the Semi-Global Matching (SGM) [23]. Since the SGM demands a
high computational cost, our high-performance FPGA-based SGM [24] was integrated into
the PCP system along with the proposed detector.

A heterogeneous platform based on a general-purpose processor (GPP) and FPGA im-
plements the proposed PCP system. The GPP processes the less computationally expensive
steps. The adopted platform is the Intel HARP version 2 (HARPv2) [25]. The impact of

Sensors 2022, 22, 4421 3 of 27

the proposed PD system is evaluated based on the pedestrian location, which is essential
information in the PCP system. The image pyramid strategy with windows of different
dimensions permitted a reduction of at least 6% in the miss rate compared to detectors
with a detection window of a single size. The PD system processing rate for HD images
(i.e., 1280 × 720) is approximately 100 FPS. The proposed detector can take advantage of
event-based sensing approaches and pixel-parallel CMOS image sensors to achieve even
higher processing rates and reduce power dissipation and hardware resources [11,12,26].

The impact of the proposed PD system on the collision prediction task is also evaluated.
Synthetic collision scenarios were created involving an occluded pedestrian crossing in
front of the moving car to carry out this assessment. The processing rate of the entire PCP
system for processing HD images is approximately 66.2 FPS. This rate allowed an increase
of 3.3 m in decision-making distance for a vehicle traveling at 60km/h compared to our
previous PCP system [6] which processes the collision prediction at 30 FPS.

In summary, the contributions of this work are pointed out as follows:

• A highly parallel architecture with performance optimization of the HOG-SVM-based
detector with support for detection windows of different dimensions and the image
pyramid.

• A strategy involving several SVM units to parallel processing of a massive amount of
detection windows.

• Performance optimization of the PCP system by the integration of the proposed
detector and the SGM module.

This paper is organized as follows: Section 2 describes the techniques used in each
step of the PD system. Section 3 describes the new proposed PD architecture. Section 4
describes the complete collision prediction system adopted, heterogeneous architecture,
and HW/SW communication strategy. Section 5 presents an evaluation of the precision
and performance of the proposed hardware architecture in pedestrian localization and
collision prediction. Finally, conclusions are drawn in Section 6.

2. Pedestrian Detection (PD) System

This section describes the techniques and algorithms of the pedestrian detection (PD)
system. It is essential to make it clear that this section is not the contribution of this work
but of our previous work [6]. It serves to support the description of our proposed hardware
architecture in Section 3.

The (PD) system steps are shown in Figure 1. The PD system aims to find pedestrians
and highlight them by bounding boxes which are the extreme points (x1, y1) and (x2, y2)
of a rectangle.

SVM-W

Image-P
Grayscale

Converter
HOG-P

SVM-P�

SVM-P�

Level 3 (L3)

Level 2 (L2)

Level 1 (L1)

(Original)

L1
L2

L3

L1L2L3

�

�

	

	��−��
�
��−��

 Weight� , Bias�

	��−��
�
��−��

Weight� , Bias�

Figure 1. The general architecture of the PD system. The terms W, H, image-P, HOG-P, and SVM-P
mean width, height, Image pyramid, HOG pyramid, and SVM pyramid.

The detector starts converting each pixel from the RGB to the grayscale color space by
weighted sum per channel. The image pyramid step (also called Image-P) produces several
re-scaled images of smaller dimensions than the original image. At level 1 of the pyramid
is the original image, while at the other levels, the images are re-scaled through resizing.
The scale factor Spyr defines the dimension ratio from one level to the next, and the number
of pyramid levels is determined by the depth Dpyr.

The HOG and SVM pyramid steps (they are called HOG-P and SVM-P) apply the
HOG and SVM techniques to each image generated by the image pyramid. Each SVM-Pk

Sensors 2022, 22, 4421 4 of 27

processes detection windows of a different size WSVM-Pk × HSVM-Pk . The set of SVM-Ps
makes up the SVM-W, and the amount of SVM-Ps is defined by QSVM-P.

The HOG and SVM processing steps are shown in Figure 2. HOG calculates features
image based on pixel gradients. The features are histogram bins calculated by the cell and
block steps. The SVM is responsible for performing the window scan on the HOG features
and determining if each window (it is called detection window) contains a pedestrian or
not. Briefly, in each detection window, the SVM applies the dot product between the HOG
features vector and the SVM weights vector and checks if the result is above a threshold to
affirm that this window contains a pedestrian. As shown in Figure 2, a detection window
is formed by several HOG blocks. Different SVM-Ps have different weights and biases
obtained in the supervised learning phase.

Gradient Cell Block

Cell 1 Cell 2

G
ra

y
 P

ix
el

s
Im

ag
e

Pixel
Block 2

Block 1

G
ra

d
ie

n
ts

Im
ag

e

C
el

l
Im

ag
e

Window

Confidence

B
lo

ck
Im

ag
e

Detection Windows

1 and 2

Bounding Box

HOG

Windows

Overlapping

�

�

�

�

Pixels Input

Flow

Scan

Flow

Pedestrian

Check

SVM

F
re

q
u

en
cy

Histogram

Scan

Flow

Confidence

��, ��

��, ��

Cell 5

Figure 2. HOG and SVM overview. The SVM scans the block image using detection windows and
determines whether or not each window contains a pedestrian. Colors help to differentiate cells,
blocks, and detection windows.

Experimentally, it was possible to observe that the HOG-SVM based detectors can only
detect pedestrians whose image dimensions fit close to the limits of the detection window
dimension. The image pyramid is one of the approaches to adjusting the dimension of
larger pedestrians. Pedestrians that are much smaller than the detection window are not
detectable due to the property of the HOG and SVM combination that cannot capture
pedestrians in high pose variability. Although the samples of various sizes are added
in the learning phase, the SVM classifier does not converge to a model that captures all
these variabilities.

On the other hand, smaller detection windows permit to detection of smaller pedestri-
ans that are usually farther away from the vehicle because these pedestrians fit better on
these windows. The image pyramid helps increase detection capability, but the increase in
the pyramid depth above a limit provokes the detector to introduce too many false posi-
tives, besides not being able to find larger pedestrians. This is because smaller detection
windows contain less edge information needed to classify pedestrians.

The solution proposed in [6] is to have specialized classifiers in a certain range of
distances. In the example of Figure 1, the classifiers in SVM-P1 have a window dimension
greater than in SVM-P2. Thus, SVM-P2 can find pedestrians in a distance range more
distant than SVM-P1.

Another aspect of this system is the data processing flow at each step. The execution
can follow any flow at the software level once the data is in memory. However, on hardware
systems, the execution follows the left-to-right and top-to-bottom streaming flow similar to
pixel scanning of traditional hardware cameras.

The resize, HOG, and SVM steps are detailed in the following sections.

2.1. Resize

This step resizes the grayscale source image to a target dimension using the bilinear
interpolation technique [27]. This technique calculates the grayscale intensity Idst of each
pixel in the resized image by summing the weighted grayscale intensity of four closest

Sensors 2022, 22, 4421 5 of 27

pixels around a given calculated position (xsrc, ysrc) in the source image. This position is
calculated using the Equation (1).

xsrc = ((xdst + 0.5) · Spyr,x − 0.5)

ysrc = ((ydst + 0.5) · Spyr,y − 0.5)
(1)

The constants Spyr,x and Spyr,y are the ratios of input width by output width and input
height by output height. These constants equal Spyr, meaning that the reduction ratio in
the two dimensions is the same. The terms src and dst mean, respectively, source and
destination. From the position (xsrc, ysrc) the value of the four weights of neighboring
pixels is calculated: left-weight, right-weight, top-weight, and bottom-weight. They are
described, respectively, by Equation (2) as µl , µr, µt, and µb.

µr = (xsrc − bxsrcc)
µl = 1.0− µr

µb = (ysrc − bysrcc)
µt = 1.0− µb

(2)

Finally, the intensity Idst(xdst, ydst) of the target pixel located at (xdst, ydst) is obtained
from Equation (3).

Idst(xdst, ydst) = Isrc(bxsrcc, bysrcc) · µl · µt +

Isrc(bxsrcc+ 1, bysrcc) · µr · µt +

Isrc(bxsrcc, bysrcc+ 1) · µl · µb +

Isrc(bxsrcc+ 1, bysrcc+ 1) · µr · µb

(3)

The resized image is obtained by calculating all pixels within the new dimensions of
the rescaled image, using Equations (1)–(3).

2.2. HOG

In this step, the necessary features are calculated for the classification. The HOG
method comprises three main steps: gradient, cell, and block.

2.2.1. Gradient

This step calculates the magnitude and the orientation angle of the gradient of each
pixel from the input image. By using Dalal’s formulation in [20], the 1-D spatial gradient
components dx and dy are firstly calculated according to Equation (4).

dx(x, y) = Igray(x + 1, y)− Igray(x− 1, y)

dy(x, y) = Igray(x, y + 1)− Igray(x, y− 1)
(4)

From the pair dx and dy, the magnitude m(x, y) and orientation θ(x, y) are computed
through Equation (5).

m(x, y) =
√

dx(x, y)2 + dy(x, y)2

θ(x, y) = arctan
dy(x, y)
dx(x, y)

(5)

The gradient image is obtained by calculating the gradients of all the pixels using
Equations (4) and 5, as shown in Figure 2.

2.2.2. Cell

In this step, the entire image formed by gradient modules and orientations is divided
into grids of dimensions Wcell×Hcell pixels in which each rectangle is called cells, as shown
in Figure 2. In each cell, a histogram is calculated. The number of bins is defined by Qbins.

Sensors 2022, 22, 4421 6 of 27

These bins represent well-spaced angles in [0◦, 180◦]. Figure 3 demonstrates the cell and
block calculation.

Block

Increment:

(1) bin ����,� with ��,�

(2) bin ����,	 with ��,	

G
ra

d
ie

n
ts

Im
ag

e

F
re

q
u

en
cy

Bin

1 2 3 4 5
0°

36°

72°108°

144°

180°
Bin 1

Bin 2
Bin 3

Bin 4

Bin 5

Bin 1

Bin 2
Bin 3

Bin 4

Bin 5

216°

252°
288°

324°

�, �

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Normalize using L2-norm

Normalized block

Cell

�

Figure 3. Demonstration example of HOG cell and block calculation. The colors of each histogram are to
refer to its respective cell. The number below each bar is to indicate the bin index in the histogram. In this
example, Qbins is equal to 5.

The magnitudes and angle of each gradient within the boundaries of a given cell
define which bins will accumulate in this cell. The orientations are unsigned, meaning
that angles in [180◦, 360◦] are the same as [0◦, 180◦]. In mathematical terms, the unsigned
orientation angle θu of a given gradient of location (x, y) is given by:

θu(x, y) =
{

θ(x, y), if 0◦ ≤ θ(x, y) < 180◦

θ(x, y) + π, 180◦ ≤ θ(x, y) < 360◦
(6)

The values of the two neighboring bins are accumulated by weighted magnitude
values based on the difference between the angle θu and the main bin. To obtain these
weighted magnitude values, first the index bidx,1 is calculated through Equation (7) that
locates the main bin.

bidx,1(θu) = bθu ·
Qbins

π
c (7)

The calculation of the difference between the angle θu and the main bin, denoted by α,
is given by the following Equation:

α(θu) = (θu − bθu(bidx,1(θu))) ·
Qbins

π
, (8)

where bθu (i) is a function described by Equation (9) that defines the angle of a given bin
index i ∈ [0, Qbins − 1].

bθu(i) = i · π

Qbins
(9)

From α(θu), the portions of the gradient module that will go to the main bin (bm,1) and
the next neighboring bin (bm,2) are calculated through Equations (10) and (11), respectively.

bm,1(θu, m) = (1.0− α(θu)) ·m (10)

bm,2(θu, m) = α(θu) ·m (11)

It is important to highlight that the neighbor bin index bidx,2(θu) is calculated as:

bidx,2(θ) =

{
bidx,1(θu) + 1, if bidx,1(θu) < Qbins
0, otherwise

(12)

Sensors 2022, 22, 4421 7 of 27

The Equation (12) guarantees that if the main bin chosen is the last one in the histogram,
its neighbor bin will be the first.

2.2.3. Block

The cell histograms are grouped into blocks and normalized within the block to
increase immunity to lighting variations, as shown in Figures 2 and 3. The block dimension
is given by Wblock × Hblock pixels. The normalization step uses the Euclidean norm, called
L2-norm, defined as:

p =
v√

‖v‖2 + εL2
, (13)

where p = {p1, . . . , pq, . . . , ps} is the normalized block vector, v = {v1, . . . , vq, . . . , vs} is
the non-normalized one-dimensional vector formed by the concatenation of the cells bins
within the block, as shown in Figure 3, and εL2 = 0.01 is some small constant to avoid
zero division. Since blocks are made up of cells, the block’s dimension in pixels must be a
multiple of the cell dimension. Therefore, the block dimension can also be expressed as
cell units. All normalized vectors form the HOG features. For more details concerning the
HOG algorithm, refer to [20].

2.3. SVM

This step performs the scan using sliding window techniques on the HOG features im-
age. In each detection window, the existence, or lack thereof, of a pedestrian is checked. De-
tection windows of a given SVM-Ph have dimensions WSVM-Ph × HSVM-Ph pixels. The scan
stride parameter PSVM-Ph = (PSVM-Ph ,x, PSVM-Ph ,y) defines the jump between one detection
window and the next in the directions x and y, respectively. This parameter must be a
multiple of the HOG cell dimension.

In each detection window, the descriptors are formed by concatenating the HOG
features into a single one-dimensional vector. Then, the system verifies the existence
of a pedestrian through the SVM linear classifier that compares these descriptors with a
reference model produced by a supervised learning phase. Since it is a binary classifier, SVM
linear will return the result whether or not the window contains a pedestrian. Therefore, it is
crucial to guarantee that the HOG features composition order in the one-dimensional vector
in the test phase is the same as in the SVM training phase. Otherwise, the classification will
not work correctly.

In mathematical terms, a detection window is indicated by u = {u1, . . . , ur, . . . , ud},
where each ur is a HOG feature, that is, a bin. The classification of this window is performed
by the linear SVM function described by the following Equation:

f (u) = wT · u + b (14)

The parameters w and b are, respectively, the weight and bias of the linear SVM,
defined through the supervised learning phase. The result f (u) indicates a distance value
from the input u to the hyperplane separating the two classes. The higher this value,
the greater the certainty in informing that the detection window contains a pedestrian.
Figure 4 shows an example of using the linear SVM function over a detection window in
the block image.

The function g(u, σSVM) described by Equation (15) is used to define the class of
classifier response.

g(u, σSVM) =

{
1, if f (u) > σSVM
−1, otherwise

(15)

The constant σSVM defines the confidence score. For each detection window in which
the detector stated that it contains a pedestrian, its bounding box is returned.

Sensors 2022, 22, 4421 8 of 27

��

���

��
�� ��

��

�	

��

�

��

���

��	�����

��� ���

���
������

�	�

�	�

���

�	�

�	� �	�

�	�

�		

�	�

�	

���

��	�����

��� ���

���
������

�
�

�	�

�
�

���

�
�

�
� �
�

�
�

�
	

�
�

�

�
�

���

��	�����

��� ���

���
������

���

���

���

���

��� ���

���

��	

���

��

���

���

��	�����

��� ���

���
������

���

Block Image

��

Detection

Window

� � �� ⋅ �� �

 …

 ���� ⋅ ��� � �
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Normalized blocks

�	

��
�

��

�� ��

��

�� ���

���
��	

���

��

���

���
������

���
���

...

Calculate the

confidence

Block 1 Block 3

Block 4 Block 5

Block 2

Figure 4. Example of the SVM function used inside a detection window. Each feature u corresponds
to the frequency of its respective bin in the block histogram.

3. The Proposed PD System Hardware Architecture

This section describes the hardware architecture of the PD system, detailing the
modules that implement each step of the system described in Section 2. Figure 5 shows the
general hardware architecture of the proposed PD system. To facilitate the comprehension,
the module names have been carefully defined to match the step names in Figures 1 and 2.

A fully parallel processing strategy is required to support image pyramid and different
size detection windows strategy without frame loss. The Image-P, HOG-P, and SVM-P
modules instantiate, respectively, resize, HOG, and SVM modules to process each image
in parallel according to the Dpyr depth and pyramid scale Spyr parameters. The first
instantiates Dpyr− 1 Resizes (in level 0 there is no resize, but instead a Bypass module), and
the second and third instantiate Dpyr HOGs, and Dpyr SVMs modules. The scale parameter
Spyr defines the image resolution that each instantiated module will work with.

The system receives pixels in the RGB color space and returns the bounding boxes
(B.B.) along with their respective confidence. The signal Found Pedestrian has value 1 when
the detection window is classified as having a pedestrian (i.e., obey the Equation (15)), and
0 otherwise. The signal Ready informs when there is an output ready. The signal Frame
End informs that the processing of the whole image was concluded.

All modules follow the pixel scan flow of most hardware cameras, from left to right
and top to bottom. Furthermore, the PD system works in a slave mode, always waiting for
the external source to inform that it has a pixel available. The PD system supports one pixel
per clock cycle. Whenever the available signal is at logic level 1, an input pixel is available,
and the PD system readily reads the three channels of that pixel and processes them. This
slave approach is only possible because all modules can operate without interrupting the
input flow of pixels. This feature allows the PD system to easily integrate through digital
pins in hardware cameras that use a serial protocol [28].

In addition, the entire system operates as a continuous flow of processing. Whenever
any module has data ready in the input, it will process it and store the partial results. If any
response data can already be provided, the module will signal for the next module to
receive this data and process it.

All modules of this system operate with numbers in fixed-point representation. All
arithmetic operations come from integer operators adapted for fixed-point. For simplicity,
bits wide of the fractional part, defined by Ffrac, are equals for all modules. The bits wide
of the integer part depend on each module’s range of possible values. Without loss of
generalization, the details of the bits wide of the integer part are not presented.

Sensors 2022, 22, 4421 9 of 27

HW Pedestrian

Detector

S
V

M
-WImage-P

Gradient	

Gradient

Gradient�

SVM��

Cell�

Cell

SVM�
 SVM�	

SVM�� SVM�
 SVM�	

SVM�� SVM�
 SVM�	

Serializer

SVM−P�

SVM−P�

SVM-P�

Resize	

Resize

Bypass

Ready

Cell	

Block�

Block

Block	

HOG-P
HOG�

HOG

HOG	

Green Pixel

Red Pixel

Ready RGB pixel

Grayscale

Converter
Blue Pixel

Confidence

Found

Pedestrian

B.B.

Frame End
Ready

Gray pixel

Ready

Resized Pixel

Gradient

Ready

Cell Block

Ready

{Found pedestrian, Confidence, B.B., Frame End}

Figure 5. The general PD system hardware architecture. The terms Q and D is a simplification for
the terms QSVM-P and Dpyr respectively. The term B.B. means bounding box.

All modules process data in the pipeline with a minimum of operations per stage. Any
mathematical operation module (i.e., multiplication, division, square root) will always have
pipeline cycles quantity equal to the operated data width. Consequently, the modules have
more pipeline stages, but on the other hand, the PD system achieves higher processing
frequencies. After filling the pipeline stages with data, the system processes one detection
window per clock cycle with no frame loss.

Next, the hardware modules that implement each step in the proposed PD system
are detailed.

3.1. Grayscale Converter

An RGB pixel has three channels, in which the intensity of each channel has Sp bits
wide, which, in general, is equal to 8. Once a pixel is available, it is converted to grayscale by
three fixed-point multipliers that multiply each channel by a respective weighting constant.
Next, a two-level sum tree scheme is employed to sum the partial multiplication results.
Finally, the gray pixel of Sp = 8 bits wide is obtained by truncating the result from the tree
of sums.

3.2. Resize

The resize module will process the new image converted to grayscale. The module
has as parameters the resolutions of the input image and the output image defined from
the Spyr parameter and the respective level at the moment of the pyramid instance.

The processing follows the Equations (1)–(3). The first two Equations are responsible
for mapping positions between the resized image and the source image, and the third is
responsible for actually processing the bilinear interpolation.

Two critical aspects can be noted in these Equations. The first aspect is that if Spyr is
less than 2, the mappings from adjacent positions in the resized image will point to the
same position in the original image. In other words, it is necessary to process two adjacent
pixels in the resized image for the same pixel in the original image. If the two pixels
are not processed in parallel, some of them will be lost. The second aspect concerns the
operations that need to be performed to process Equations (1) and (2). These Equations
require arithmetic operations that demand many clock cycles, leading to the input pixels
lost when performing these operations.

The first aspect is solved by implementing a strategy of multiple interpolation units.
These units process Equation (3) at interleaved positions in the resized image, as shown in

Sensors 2022, 22, 4421 10 of 27

Figure 6. Units 0 and 2 process even columns, and units 1 and 3 process odd columns of
pixels in the resized image. Units 0 and 1 process even rows of pixels, and units 2 and 3
process odd rows of pixels. When there are pixels in the input image that need to be used
to calculate pixels at adjacent positions in the resized image, these four interpolation units
will process these adjacent pixels in parallel.

Figure 6. The resize architecture. The term Mult means Multiplier.

Each interpolation unit has a Mapping Checking module that verifies which input
pixels will participate in calculating the new resized pixels. Consider the calculation of a
given pixel q. When the input image pixel referring to the first calculation of q is available,
it is multiplied by the weights µl , µt and stored in a register, following Equation (3). When
the pixel in the next column is available, it is multiplied by µr, µt, added to the previous
result, and stored in FIFO (First-In-First-Out) memory. This memory stores a row of partial
results. When the pixel of the following line, which is part of the same q, is available (i.e.,
third pixel), it is multiplied by µl and µb, added to the result of the accumulation of the
previous line, and stored in a register. When the last pixel is available, it is multiplied
by µr and µb, added to the result of the register and made available in the output of the
interpolation unit.

The second aspect is solved by noting that the scale Spyr is constant throughout the
execution. Thus, the mappings are always the same from one image to another. Therefore,
a strategy in the resize module is implemented to calculate the mappings and weights and
store them in memory before the resize module starts processing the new image.

The resize does not store this mapping and weight data for the entire image, as it
would not be a scalable solution concerning image resolution. Instead, the Mapping
Calculator module defines a whole line of mappings xdst → xsrc following Equation (1),
split, and stores them in the FPGA memory of each interpolation unit. This is possible once
the mapping on the x axis does not vary.

The mapping ydst → ysrc is defined throughout the processing. The Mapping Calcu-
lator sets the next mapping whenever the row is processed. Once the units process rows
in interleaved positions, the next mapping is defined for two rows ahead. Consequently,
the interleaved approach guarantees enough time for the unit to get the next mapping
before the input pixels are available.

3.3. HOG

The HOG module includes three submodules following the steps detailed in Section 2.2:
Gradient, Cell, and Block.

3.3.1. Gradient

As the resized pixels are ready, this module first calculates the gradient components
dx(x, y) and dy(x, y) described by Equation (4). This calculation uses the sliding window
technique with a kernel of 3× 3. The kernels for dx and dy are defined by Equation (16).
The sliding window includes row buffers that keep track of three rows of the input image.

Sensors 2022, 22, 4421 11 of 27

It permits access to the target pixel’s neighborhood, which is necessary to calculate the
gradient kernel.

dx =
0 0 0
−1 0 1
0 0 0

dy =
0 −1 0
0 0 0
0 1 0

(16)

As the components dx(x, y) and dy(x, y) are available, the modules m(x, y) and orien-
tations θ(x, y) are calculated following Equation (5). The first component is calculated by
multiplying each component dx and dy by itself to generate d2

x and d2
y. Then the results are

summed to generate d2
x + d2

y. Finally, its square root is calculated.
The second component θ(x, y) applies the division operation to generate dy/dx and

then the arctan. The arctan module based on coordinate rotation digital computer (CORDIC)
demands many processing resources and limits the maximum frequency of operation [29].
Thus, an arctan module based on a look-up table is implemented. This module stores the
arctan function mappings in FPGA memory and is fully pipelined and parameterizable in
terms of fixed-point precision and extremes of the arctan. In addition, the module includes
pipeline delay stages to align module and orientation results temporally.

3.3.2. Cell

As the gradient module and orientation are available, the cell module calculates the
cell histograms. The processing architecture is shown in Figure 7. Firstly, the next step
performs cropping of the original image, removing some rows and columns to the right and
below to ensure that the cropped image is a multiple of the cell dimension. This cropping
checks if the input pixel is within the cropped image boundaries in hardware. If yes, then
the pixel will be outputted. The next step converts signed to unsigned orientations (θu),
as defined by Equation (6), performing the sum of the constant π for the angles (θ) between
[180◦,360◦].

����� � 1 �
������� >,Cell

Ready

Update FIFO

Update

Ready

 �����/�

��� → ����

Mapping

Signal

Converting

Image

Cropping

!"�, $%

&"�, $%
Truncate

�����/�1.0

Accumulator
)���* + ,

!-

./0

Delay Pipeline Stages

Update

Update

Ready

.1,2

.1,3

.1,2 or .1,3

..
.

Cells Line

FIFO

Cell Histogram

Cell

Controller

Ready Ready

ReadyReady

6"!-)

1.0 + 6"!-)

6"!-)

.�78,2 .�78,2

.�78,2

"!
-

 +
.

/
0

".
�7

8
,2

"!
-

)%%

Accumulator

0

Accumulator

1

..
.

Figure 7. The cell histogram architecture.

Following Equation (7), the unsigned orientation is multiplied by the constant Qbins/π.
The integer part of this result is extracted by the truncate module to get the main bin bidx,1.
This value is used in the bin→ angle mapping module to searches for the respective angle
bθu , as described by Equation (9). Instead of performing a multiplication, this mapping mod-
ule defines an indexable array of constant values, in which each position i ∈ [0, Qbins − 1]
is equal to i · (π/Qbins).

Then, as part of the α calculation, θu − bθu(bidx,1(θu))) is calculated and the result
is multiplied with Qbins/π. From α, it is obtained 1.0 − α which is the weight of the

Sensors 2022, 22, 4421 12 of 27

neighboring bin. Then, the value of the proportional gradient modules for the two bins,
bm,1 and bm,2, are calculated through two multiplications.

From the value of the gradient index bidx,1, the Cell Controller module defines which
accumulators will have their values accumulated simultaneously with the proportional
gradient modules. When a row of a given cell is processed, the Cell Controller stores the
accumulators’ temporary results. These values are summed with temporary values from
already processed previous rows of the respective cell. The FIFO memory stores temporary
results of all cells that were processed up to the previous row of the image. The sum results
are stored back in this FIFO. The result no longer needs to be held back in the FIFO by
processing the last row of a given cell. After finishing the processing of this row, the Cell
Controller module signals that the cell is ready and its histogram is available in the output.

3.3.3. Block

From the result of each cell, the block processing module performs the normalization
of each bin within a block through Equation (13). The architecture of this module is shown
in Figure 8. The first module performs the sliding window strategy to obtain the four cells
that make up a given block in each clock cycle. Then, this block is sent to the Bin Dispatcher
module that dispatches one bin at a time. Firstly, this module stores in FIFO all the blocks
that come. Then the Dispatch Controller reads a block from this FIFO and stores it in the
register. At each clock cycle, the first bin from the register is outputted, and the register
data is shifted to discard this first bin. When all bins have been dispatched, the Dispatch
Controller reads the next block from the FIFO.

Block

Numerator/Denominator

Denominator

Bin Dispatcher

Sliding

Block

Cell Histogram

Block

FIFO

Read

Ready

..
.

Complete block �

Register

Bins

Shift Right

Update

Dispatch

Controller

Denominator

Controller

Read

���
Accumulator√Register

Bin

FIFO

Divison

Controller

Ready

| � |� � ���
Accumulate or Reset with ���

Denominator ready

Ready

| � |� � ���

�	
 �	/ | � |� � ���

Bin �	
First bin

Figure 8. The block normalization architecture.

Each bin goes to the Denominator module, which calculates the denominator from
Equation (13). First, the power of 2 of each bin is calculated through the multiplication
module and then accumulated. When all bins in the block are accumulated, their square
root is calculated. This result composes the denominator. This value is sent to the Numera-
tor/Denominator module, which calculates the normalized bin. First, the denominator is
stored in a register, and the Division Controller module dispatches one bin at each clock
cycle to be divided by the denominator, and then the result is outputted.

It is important to note that the one-bin-at-a-time processing approach is only possible
if the number of cycles required to process a line of blocks is less than the number of
cycles waiting for the following line of blocks. Otherwise, some strategy to lock reading
or buffering would be necessary. This feature exists because, between one block row and
the next, there are Hcell rows of cells to be formed, and this is the free space that the block
module has to calculate all the blocks of the current row.

Sensors 2022, 22, 4421 13 of 27

3.4. SVM

As the blocks (that is, features) are available, the SVM module calculates the confidence
f (u) of each detection window following the Equation (14) and then checks if each window
contains pedestrians, following Equation (15).

Overlapping between windows is a challenging aspect of achieving streaming process-
ing. Since the stride in pixels between neighboring windows is smaller than the detection
window dimension, multiple windows will overlap, as shown in Figure 2. Consequently,
when a HOG feature is ready, it needs to be processed by several windows. To be more
precise, the maximum amount of different overlapping windows Owindows that is processed
from a given feature is given as:

Owindows =
WSVM-Ph

Wcell
·

HSVM-Ph

Hcell
(17)

Due to overlapping, whenever a HOG feature is ready, the SVM module will spend the
number of cycles defined by Equation (17) times the number of cycles to process a unique
window. It is not difficult to see that, without any parallelism, the input throughput of
features will be much higher than the throughput of processing all windows. This difference
in throughput certainly makes the streaming processing of the detection system unfeasible.

SVM units are proposed to process a subset of detection windows in parallel to deal
with this problem. These units are arranged in Nr rows and Nc columns. The detection
windows in the x direction are divided equally among the Nc SVM units. The units SVM
arranged in rows calculate detection windows of the following rows. The start detection
windows line y0 of an SVM unit that is located on line r in the SVM units matrix is y0 = r.

An example of this distribution of detection windows by SVM units is shown in
Figure 9. In this example, there are two SVM units in the directions x (i.e., Nc = 2) and y
(i.e., Nr = 2), and the detection window dimension is 2 × 2 blocks. As can be seen, the unit
U0,0 processes detection windows A0,0 and A0,1, the unit U0,1 processes detection windows
A0,2, A0,3, and A0,4, the unit U1,0 processes detection windows A1,0 and A1,1, and the unit
U1,1 processes detection windows A1,2, A1,3, and A1,4. As can be noted, when the number
of windows cannot be equal for each SVM unit of a given line, the SVM units of the last
column have more windows.

B
lo

ck
Im

ag
e

Detection Window

��,�

Block input flow

��,� ��,� ��,�

��,� ��,� ��,� ��,�

��,� ��,� ��,� ��,�

��,� ��,�

��,� ��,�

��,� ��,�

��,�

�

	

��,

��,

��,

Figure 9. SVM Units Distribution Example. In this example, Nc = 2, Nr = 2, and the detection
window dimension is 2 × 2 blocks. The terms Ur,c and Ay,x mean respectively SVM unit and
detection window.

Whenever any SVM unit ends all detection windows, it jumps to process a row that is
not yet processed by any other SVM unit. The next line to be processed is the sum of the
current line y of a given SVM unit and the Nr. In the example of Figure 9, it can be seen that
in addition to the windows A0,0 and A0,1, the SVM unit U0,0 processes the windows A2,0
and A2,1. If the new line exceeds the limits of the block image, then the position reverts to
the initial value r.

Sensors 2022, 22, 4421 14 of 27

The Nc parameter value has to be defined to guarantee the completion of the current
line set of blocks before the block’s arrival on the following line. This requirement ensures
uninterrupted processing flow. Since the SVM units are reused to process detection win-
dows of the following rows, the Nr parameter value only needs to equal the number of
block lines of the detection window.

The architecture that processes this processing logic is shown in Figure 10. Column
controllers temporarily store the HOG features (i.e., blocks) of detection windows in FIFO
memory for each c column. Whenever a feature is available in this FIFO, the column
controller sends it to all SVM units of a given column c. The controller also sends the
indices of detection windows that belong to this feature. Since the processing follows a
sequential and pipeline strategy within the SVM unit, the same feature is sent several times
in each clock cycle with the window index value different to cover all the windows that
need to be processed. When all indexes are sent, that feature is finished, and the column
controller fetches the next available feature in the FIFO.

Feature

Ready Feature
Row

Check

SVM

Weight

Memory �

SVM

Weight Index

Memory Multiplier

Confidence

Memory Add

Unit

Controller

Ready

Window
Window

Index

Row
FIFO

Memory

Confidence

Bias (b)

Register

Delay Pipeline

Stages

Feature

Ready

SVM Unit (U)
�, �

SVM Unit

�, �

SVM Unit
�, �

SVM Unit

�, �

Output

Controller

SVM Unit
�, �� � 	

SVM Unit

�, �� � 	

SVM Unit

�� � 	, �

SVM Unit

�� � 	, �

SVM Unit

 �� � 	, �� � 	

.
.
.

.
.
.

.
.
.

Column

Controller

Column

Controller
�� � 	

.
.
.

.
.
.

...

R
ea

d
y

D
et

ec
te

d

Window

Check

L
as

t
W

in
d

o
w

.
.
.

Column

Controller
�

...

C
o

n
fi

d
en

ce

(a)

(b)

SVM unit

Figure 10. The SVM architecture: (a) Units matrix and management (b) SVM unit.

The detection window processing through the SVM unit starts by accessing the SVM
weight index from the detection window index. The SVM weight value, obtained from
the weight index, is multiplied by the input feature. This value is added to the temporary
confidence value stored in an indexable memory and stored back in this memory. This
memory stores the temporary confidence values of all detection windows.

When the last feature of a given detection window is processed, the confidence f (u) is
ready. At this point, the weight index is zeroed to process a new window in another row.
Furthermore, the confidence value stored in memory returns to the initial value, which is
the bias b from Equation (14).

Sensors 2022, 22, 4421 15 of 27

Neighboring SVM units can finish some detection windows simultaneously or out of
order. Since the reading of results is done one at a time and in order, this concurrence of
SVM units can lead to the loss of results. To ensure that the SVM unit results are not lost,
they are stored in a small output FIFO as shown in Figure 10b.

The Row Check module checks if the input features belong to SVM units of their
respective row. For example, features from line 0 do not belong to SVM units of the line 1,
as shown in Figure 9. When it belongs, this module emits a signal to the Unit Controller to
update the confidence memory and index memory with the new temporary confidence
value and the next SVM weight index.

The Output Controller module in Figure 10a manages the outputs of all SVM units.
This module ensures that the reading and delivery of results from the SVM units are in
order. For example, if the following SVM unit (to be read) has results stored in the FIFO,
the output controller sets the switch so that data from that SVM unit are read and delivered
to the Check Window module. This module, in turn, checks whether or not the window
contains a pedestrian following Equation (15) and also checks whether it is the last window
in the image.

3.5. Serializer

The Serializer module manages the detection results of SVM modules from all SVM-
Ps modules in a single output. This module has a set of FIFO memories, one for each
SVM module, and writes its detection results from windows classified and the end-of-
frame information to this FIFO. The Window Check module from the SVM module signals
the processing of the last detection window of an image. A signal from an external
source is required for the Serializer module to start reading FIFO data of the current
frame. The Serializer reads these results one at a time from the FIFOs and outputs them.
The Serializer looks for the following FIFO when obtaining the end-of-frame information.
When finishing the processing of the last FIFO, the Serializer informs the ending of a frame
processing, goes back to the beginning, and waits for the external signal to read the FIFOs
with the next frame’s data.

4. Case Study: The PCP System Heterogeneous Architecture

The PD system was integrated into our PCP system [6]. Section 4.1 describes the steps
and strategies used in the PCP system, and Section 4.2 describes the hardware/software
integration strategy.

4.1. PCP System

Figure 11 shows the PCP system that has a stereo camera and inertial sensors attached
to the vehicle to capture stereo frame pairs and vehicle movement data such as speed
and yaw rate. The Stereo Rectification step performs radial and tangential distortions
corrections and horizontal alignment of each frame pair.

Figure 11. The PCP system general architecture.

The Stereo Matching step calculates disparity maps that permit us to estimate the
pedestrian’s distances. In this step, our FPGA-based module [24] that processes the Semi-
Global Matching (SGM) technique [30] in streaming and without frame loss is adopted. This
technique propagates throughout the image, matching cost information through four one-
dimensional paths producing more robust disparity maps for the urban context. Besides,

Sensors 2022, 22, 4421 16 of 27

this module supports the detection of mismatched disparities that are important to reduce
distance measurement errors.

The Distance Estimation step calculates each pedestrian’s footpoint’s lateral and
longitudinal distances from the bounding boxes and disparity map. Finally, the Non-
Maximum Suppression (NMS) step removes several neighboring detections from the
same pedestrian.

The Tracking step identifies and labels the footpoints that belong to the same pedes-
trian over several consecutive frames. This step uses an extended Kalman filter (EKF)
with vehicle motion compensation for tracking to model pedestrian motion. In addition,
the tracking also includes the Hungarian method for the global association and the gate
method to exclude unlikely associations.

The Geometric Filtering step removes detections that did not meet the pedestrian
locality and shape restrictions. Next, the Trajectory Prediction step estimates the future
trajectories of the pedestrians and vehicles in several discrete steps. Finally, the Collision
Analysis step identifies possible collision positions when pedestrians’ positions are at the
same time in the future touching the vehicle. The techniques and parameters used in each
of these steps are detailed in [6].

4.2. HW/SW Integration

Figure 12 shows the integration of the PD and SGM system in the PCP system. The Intel
HARP version 2 platform (HARPv2) [25] was adopted, which consists of an Intel Xeon
E5-2699 v4 CPU and a Programmable Acceleration Card (PAC) with Intel Arria 10 GX
FPGA. This platform has a framework called Open Programmable Acceleration Engine
(OPAE) that permits the software running in the processor to communicate with FPGAs
by allocating shared memory regions in the CPU. FPGAs have access to send or send
receive data.

Figure 12. The PCP System heterogeneous architecture. The arrow labeled with the number 1 means
the left and right rectified images. The arrow labeled with the number 2 means the disparity map
and detection results. Pre-FPGA stands for the steps prior to FPGA processing (i.e., rectification).
Post-FPGA stands for the steps after the FPGA processing (i.e., distance estimation, NMS, and so on).

Using OPAE, the SWWrite function writes each new pair of stereo frames in the
unidimensional shared array putting each pair of stereo pixels together. On the hardware
side, the HWRead module requests these pixels through the CCI protocol (CCI-P) [31] in
burst mode. Solutions to support hardware/software sharing of high-resolution images
are presented in our work [32].

Each data packet that arrives from the CCI-P is 512-bits wide and can hold more than
a pair of pixels. The packages are sorted and stored in a FIFO so that the Unpacker module
reads a pair of pixels at a time (RGB pixels of the left and right image). The left image
pixel is sent to the proposed PD module, and the pair is sent to the Matching Stereo (SGM)
module. Both modules run in parallel. As the results are provided from these modules,
they are packed into 512-bit data by the SGM Packer and PD Packer modules.

Sensors 2022, 22, 4421 17 of 27

As the memory write is performed one packet at a time, it is necessary that the
writing of the results of one module ends so that the results of the next module are written.
The HWWrite module does this management and sending of packets to memory. First, it
sends the disparity map data. When it finishes sending, it asks the PD module to send the
detection results stored in the Serializer module as described in Section 3.5.

To send or receive several frames, both the software and the hardware implement a
synchronization mechanism based on exchanging parameters and control variables. Every
time the software finishes writing all the data in memory, it modifies a control variable.
When the HWread module recognizes the data available, it requests the reading of these
data. Likewise, when the SGM and PD module finishes processing and writing all results
in memory, the HWWrite module modifies the respective control variables so that the CPU
knows that all results are ready and available for further processing. More communication
details can be found in our work [32].

5. Results

The proposed PD system hardware architecture has been implemented in SystemVer-
ilog language and validated through timing simulations using the ModelSim 10.5b and
Quartus 17.1 Standard for synthesis tools. The proposed HW-based PD system (HW PD
system) is evaluated in the case study: the PCP system. Section 5.1 evaluates the accuracy
of the pedestrian location component. Section 5.2 evaluates the processing performance of
the HW PD and PCP systems. Then, Section 5.3 evaluates the efficiency of the collision pre-
diction component. Finally, Section 5.4 evaluates the FPGA resource utilization of the HW
PD only and the complete system that includes the HW PD, HW SGM, and the HW/SW
communication interface.

5.1. Location Evaluation

The database, evaluation strategy, and system parameters are presented to evaluate
the pedestrian location. Then, results and analyses are conducted.

5.1.1. Database

The database [33] was adopted for pedestrian location evaluation that provides the
ground-truth bounding boxes and distances from the pedestrian to the vehicle in each
frame for both training and testing samples. This database consists of 68 samples containing
a sequence of stereo frames and the vehicle velocity and yaw rate. The image resolution is
1176 × 640 pixels, and the data capture rate is 16 FPS. The samples also contain scenarios
involving moving and stopped vehicles.

5.1.2. Evaluation Strategy

The location evaluation considers the lateral (X) and longitudinal (Z) position of
the pedestrian obtained from the Geometric Filtering step of the PCP system shown in
Figure 11. The strategy proposed in [34] is adopted in this work to compare system output
with ground truth. This strategy specifies a localization tolerance, i.e., the maximum
positional deviation that allows for counting a correct detection. The tolerance Z = 30%
and X = 10% from [34] is adopted, which means that, for example, at a 10 m distance,
localization errors of ±3 m and ±1 m in the longitudinal and lateral positions, respectively,
are accepted as correct.

The test base is divided concerning the distance between the pedestrian and the
vehicle. Group 1 is formed by the frames with distances between 7 and 25 m, while Group
2 contains frames between 7 and 50 m. There exist 2666 and 4305 frames for Groups 1 and
2, respectively.

5.1.3. Systems Configuration Details

To demonstrate improvements when detecting both near and distant pedestrians, first
the results from our previous work were reproduced [32]. Two detectors in high-level (HL)

Sensors 2022, 22, 4421 18 of 27

using OpenCV library functions were evaluated separately, one detector with windows of
64 × 128 (W64_H128_D3_HL) and another with windows of 48 × 96 (W48_H96_D3_HL).
Next, these two detectors were combined (W64_H128_W48_96_D3_HL) and evaluated.
The pyramid depth of all these detectors was set to 3 (i.e., Dpyr = 3).

Two SVM-Ps were defined to demonstrate similar results as in high-level. The mod-
ules SVM-P1 and SVM-P2 have detection windows of 64 × 128 and 48 × 96, respec-
tively. SVM-P1 and SVM-P2 are responsible for detecting closer and further pedestri-
ans, respectively. The accuracy of the proposed HW PD system with the two SVM-
Ps combined was evaluated (i.e., QSVM-P = 2). To demonstrate the importance of the
image pyramid, two detectors with different pyramid depths were evaluated, one de-
tector having one level (W64_H128_W48_96_D1_HW) and another having three levels
(W64_H128_W48_96_D3_HW). The fractional part of all the detectors is 8 bits wide (i.e.,
Ffrac = 8).

To train each SVM-P and the high-level detectors for a given database, positive and
negative patches are created from training samples following strategies similar to [6,34].
The ready-made function from the OpenCV library is used for SVM training. Data aug-
mentation is applied for each positive crop using horizontal mirroring, image rotation,
and contrast changing. A Bootstrapping algorithm also is applied to generate negative
patches. These data augmentation parameters have been carefully defined to enable de-
tector accuracy convergence during the training phase and are detailed in our previous
work [6].

The following parameters are common to all evaluated systems. The dimensions of
the HOG cell and block in pixels are, respectively, 8× 8 and 16× 16. The detection window
stride in both directions is 8 pixels. The number of bins of the HOG histogram is set to 8.
The pyramid scale parameter Spyr is 1.1.

The parameters of the SGM module [24] are the penalties P1 and P2, which define
how smooth the disparity data is, the valid disparity threshold σSGM which defines the
sensitivity to detect a mismatched disparity, and the disparity number Nd that defines
the distance range supported. The parameter P1, P2, Nd, σSGM are set, respectively, to 24,
120, 128, and 20. The EKF parameters are process noise σx, measurement noise σu and σd,
and the initial covariance P0. The parameters σx, σu, σd, and P0 were defined, respectively,
as 4.0, 6.15, 0.32, and 0.01. Details about all other PCP system parameters can be found
in [6].

5.1.4. Results and Analysis

The detectors are analyzed by miss rate versus false positive per image (FPPI) [35] as
shown in Figure 13. The miss rate is the ratio of the number of pedestrians that were not
detected by the total number of frames, and the FPPI is the ratio of the total number of false
positives by the total number of frames. It is considered a false positive when the detector
reports that there is a pedestrian when there is not.

It is essential to clarify that the miss rate (y-axis) and FPPI (x-axis) are detector results.
The detector parameter to obtain these two results is the detector confidence σSVM that
has values in the discrete interval of [2.0, 0.0] with steps of 0.2. For each confidence value,
the miss rate and FPPI are obtained. Each label near to the point are confidence values
in Figure 13. The higher confidence value indicates that the detector is more accurate in
affirming that a window contains pedestrians, but fewer pedestrians are detected and,
consequently, a high miss rate. On the other hand, higher FPPI is permitted with lower
confidence, so the miss rate decreases, since more false positives per image are accepted,
and therefore, true positives have a higher chance of being detected. It is desired to have
detectors with a low value of miss rate and a low value of FPPI. Typically, pedestrian
detection works adopt 1 FPPI (i.e., 100 FPPI) as a common reference point to compare
detector results.

As shown in Figure 13, the detector W64_H128_D3_HL achieved, in Group 1, a bet-
ter detection performance than the W48_H96_D3_HL, with a 14% miss rate against 38%.

Sensors 2022, 22, 4421 19 of 27

This result is due to the fact that, in this distance range, the pedestrian dimension fits
better in the detector with window of 64 × 128. In Group 2, the combined detector
W64_H128_W48_96_D3_HL achieved a better result with a missing rate of 12% in 1
FPPI. The combination made it possible to capture pedestrians better in these two ranges
of distances.

Figure 13. Quality results of some detectors when locating pedestrians, measured by FPPI and MR.
The database is split into distance groups. Group 1 and Group 2 refer to pedestrians between 7 and
25 and between 7 and 50 m, respectively. σSVM values are generated in the interval of [2.0, 0.0] with
steps of 0.2 to obtain these results. Each label near the point is the confidence value. The term D is
a simplification to Dpyr. HL means high-level, stating that the detection function used is from the
OpenCV library.

In evaluating the HW PD systems, it is possible to note that the detector with pyramid
level 3 resulted in better results than the detector of level 1 in both distance groups. For 1
FPPI, the detector W64_H128_W48_H96_D3_HW achieved a 13% miss rate in Group 1
against 21% from the detector W64_H128_W48_H96_D1_HW. In Group 2, the detector
W64_H128_W48_H96_D3_HW achieved an 18% miss rate against 23% from the detector
W64_H128_W48_H96_D1_HW. The improvement with the increase in the pyramid level
occurs because the greater the depth, the greater the ability to locate larger, and therefore
closer, pedestrians [24].

It is possible to note also a slight reduction in the quality of the proposed HW PD
system compared to the HL PD system. The main reasons for this reduction are that the
HL PD system processes floating-point data, its HOG approach has trilinear interpolation
techniques that consider the bin spatiality, and Gaussian weighting that reduces the edge
effect that impairs detection [20].

As can be seen, detectors tend to saturate the miss rate value. Detectors that saturate
in a lower miss rate are more attractive. As shown in Figure 13, increasing the depth of
the pyramid and increasing the number of windows of different dimensions allowed the
reduction of this miss rate. A strategy for defining the best distance range for each SVM-P
could be developed to improve the accuracy of the entire system. Other ways to improve
the miss rate that can be done from the proposed detector is to reduce scan stride and join
the HOG with other feature extractors. The first solution increases the image coverage and,

Sensors 2022, 22, 4421 20 of 27

consequently, the chance of finding more pedestrians. The second increases the number
of salient pedestrian features to improve classification ability [35]. Local binary patterns
(LBP) [36], stereo disparity features [34], and convolutional neural networks (CNN) [37]
are examples of feature extractors.

5.2. Processing Performance Evaluation

The processing performance of the proposed PD system and the PCP system using
the HARPv2 platform were estimated. The performance results are in terms of latency
and frames per second (FPS), estimated through an average of 1000 frames processed with
outliers removed due to operating system scheduling.

Figure 14 shows detector results at various image resolutions, pyramid depth (Dpyr),
and the number of SVM-P (QSVM-P). The time spent preparing the image in shared memory
and assembling the bounding boxes (SW Overhead) and the hardware detection processing
time (HW Detection) was estimated and presented in each vertical bar.

Figure 14. Processing performance of our HW PD system in the HARPv2 platform. The terms Det
and Overh mean detection and overhead, respectively.

A significant result noted in Figure 14 concerns the time to perform detection process-
ing in hardware, which remains approximately constant in all tested configurations for a
given resolution. If the pyramid depth and the number of SVM-Ps are further increased,
the system will not reduce the processing performance. It is possible because all the resizes,
HOGs, and SVMs modules are processed parallel and without frame loss.

Table 1 shows PCP system results at various image resolutions. Since the performance
is constant concerning Dpyr and QSVM-P, these parameters were set to 3 and 2, respectively.
An important result is that the PD processing response latency and SGM are approximately
similar to the PD module. The reason is that the two modules run in parallel and deliver
the results almost simultaneously. Furthermore, the processing time of the two modules is
quite short compared to the latency of the entire PCP system (Whole System). The biggest
time bottleneck is in the communication functions between hardware and software. Any
improvement in these functions or even reducing the number of data transmitted will
result in the PCP system processing performance gains.

Sensors 2022, 22, 4421 21 of 27

Table 1. Processing performance of the PCP System na plataforma HARPv2. The operating frequency
of the detection and stereo matching modules in all configurations was 150 MHz.

Resolution Performance

Resolution Whole System 1 GPP Steps 2 Overh. 3 FPGA Steps 4

1176 × 640 74.1 (13.5 ms) 0.1 ms 9.8 ms 3.8 ms

1280 × 720 66.2 (15.1 ms) 0.1 ms 10.3 ms 5.4 ms

1920 × 1080 28.2 (35.4 ms) 0.2 ms 24.6 ms 11.1 ms
1 Processing performance of the whole heterogeneous PCP system measured by FPS (latency in milliseconds).
2 Processing time of all GPP-based steps as described in Figure 12 measured in milliseconds. 3 Overhead in
milliseconds to arrange image data in the shared memory and mount the GPP memory results to post-processing.
4 Processing time of the SGM and PD modules measured in milliseconds.

5.3. Collision Prediction Evaluation

The effectiveness of the PCP system on the collision prediction was evaluated with
the improvement of the PD system processing performance in hardware. This evaluation
defines the database used, evaluation strategy, and the configuration of the systems being
assessed, and presents results and analyses.

5.3.1. Database

Since it was not possible to find a collision database, an evaluation database was built
from a kind of scenario defined on [38], as shown in Figure 15a. This scenario involves a
pedestrian moving perpendicularly towards the vehicle and occluded by a wall. The car
strikes the pedestrian at approximately 50% of the vehicle’s width without any braking
action. The database building strategy is similar to our work [6] using the Cars Learning to
Act (CARLA) simulator version 0.9.7 [39].

The parameters for the scenarios created are the vehicle velocity (Vcar) and the time-
to-collision (TTC). The TTC parameter (in seconds) is the quotient of the vehicle distance to
pedestrian (in meters) to its speed (in m/s) at the time of the appearance of crash risk [38].

Following [38], the values for (Vcar) are 20, 30, 40, 50, and 60 km/h, and the TTC values
are 0.6, 1.0, 1.4, 1.8, 2.2, 2.6, and 3.0. The sampling rate of the frames is 120 FPS, and the
resolution of the frames is 1280 × 720 pixels. The pedestrian position and movement
parameters were carefully adjusted to ensure that the collision time matches the TTC of
each scenario when the pedestrian becomes visible.

All the combinations between Vcar and TTC were performed, generating 35 scenarios
for a type of pedestrian. These combinations were repeated for two more different pedestri-
ans. In total, 35 · 3 = 105 test scenarios were created. The training base was created without
involving collisions. Four types of pedestrians different from the test base were introduced,
vehicles and pedestrians moving and stopped, and four CARLA environments. In total,
100 training scenarios were built. Each frame’s pedestrian bounding box, vehicle’s velocity,
and yaw rate were annotated. Some screenshots of the CARLA scenario are presented in
Figure 15b.

Figure 15. Evaluation scenario from [38]: (a) bird’s-eye view (b) Screenshots from the CARLA.

Sensors 2022, 22, 4421 22 of 27

5.3.2. Evaluation Strategy

The PCP system’s efficiency is assessed by checking the distance at which the system
predicted a collision for the first time from the moment the pedestrian appeared (the first
collision prediction). The safe distance supports a prediction assessment that ensures that
the vehicle will not collide with the pedestrian if the system predicts the collision above
that distance. This safe distance [40] is defined as:

distsafe(Vcar, ab, Tr) =
V2

car
2 · ab

+ Tr ·Vcar (meters), (18)

where ab is the maximum deceleration of the vehicle measured in m/s2, and Tr is the
driver’s reaction time to press the brake pedal measured in seconds. The average driver
reaction time is around 1.0 s, and average deceleration is around −4.5 m/s2 [38]. These
values were used for Tr and ab.

5.3.3. Systems Configuration Details

The HW PD system (W64_H128_W48_96_D3_HW) was evaluated within the PCP
system (now it is called PCP/HW-PD). In this same PCP system, the HL PD system
(W64_H128_W48_96_D3_HL) was also assessed (now it is called PCP/HL-PD). The YOLOv3-
based PD system was also evaluated (PCP/YOLOv3). HL-PD-based and YOLOv3- based PD
systems run on RTX 2070 GPU with 8GB of memory. The processing rates of the PCP/HW-
PD, PCP/HL-PD, and PCP/YOLOv3 systems in the synthetic database are 60 FPS, 30 FPS,
and 12 FPS, respectively. Since the database sampling rate is 120 FPS, capture intervals
were defined that correspond to the actual rates of each PCP system. The intervals for the
PCP/HW-PD, PCP/HL-PD, and PCP/YOLOv3 are 2, 4, and 10 frames, respectively.

The PCP system parameters are the same as defined in Section 5.1.3. The difference is
in the process noise parameter σx of the EKF filter. The optimization method adopted is
defined in [33] with test samples from the synthetic database used to find the best value of
σx for each PCP system. For PCP/HW-PD, PCP/HL-PD, and PCP/YOLOv3, the values are
20.1, 60.5, and 80.3, respectively.

The training strategy is the same as described in Section 5.1.3. The synthetic training
samples are used to train each SVM-P. For training YOLOv3, the author’s methods [41]
are followed that use full images with no negative sample added from bootstrapping.
The same full images used to train the proposed detector are employed to train the YOLOv3.
The Darknet neural network framework for training and testing [41] is used that per-
forms multi-scale training, lots of data augmentation, batch normalization, and all of the
standard stuff.

5.3.4. Results and Analysis

It can be noted in Figure 16 that the proposed HW-PD system can predict more
collisions at a safe distance than the other PDs. For example, 11 safe predictions were
counted with HW-PD system against 8 using the OpenCV (PCP/HL-PD) and 6 using
YOLOv3 (PCP/YOLOv3). The main reason for this is that once the processing time is
longer, estimating the correct pedestrian speed through the EKF will also take longer.

Although it is not always possible to guarantee safe distance, it is possible to note an
increase in decision-making distance with the HW PD system (PCP/HW-PD) at all speeds
and TTC configurations. To better evidence this distance gain, the average, at each velocity,
of the distance differences between the proposed system and two others (i.e., PCP/HL-PD
and PCP/YOLOv3) for all TTC values were calculated, as shown in Figure 17.

Sensors 2022, 22, 4421 23 of 27

3.
0

2.
6

2.
2

1.
8

1.
4

1.
0

0.
6

2

4

6

8

10

12

14

16

Di
st

an
ce

 to
 th

e
Pe

de
st

ria
n

(m
et

er
s)

VEL:20.0
Safe Distance
PCP/HL-PD
PCP/YOLOv3
PCP/HW-PD

3.
0

2.
6

2.
2

1.
8

1.
4

1.
0

0.
6

2

4

6

8

10

12

14

16

18

20

22

24

VEL:30.0
Safe Distance
PCP/HL-PD
PCP/YOLOv3
PCP/HW-PD

3.
0

2.
6

2.
2

1.
8

1.
4

1.
0

0.
6

TTC (seconds)

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

VEL:40.0
Safe Distance
PCP/HL-PD
PCP/YOLOv3
PCP/HW-PD

3.
0

2.
6

2.
2

1.
8

1.
4

1.
0

0.
6

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42

VEL:50.0

Safe Distance
PCP/HL-PD
PCP/YOLOv3
PCP/HW-PD

3.
0

2.
6

2.
2

1.
8

1.
4

1.
0

0.
6

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

VEL:60.0

Safe Distance
PCP/HL-PD
PCP/YOLOv3
PCP/HW-PD

Figure 16. First collision prediction since the pedestrian’s emergence. The comparison was made
involving our PCP system (PCP/HW-PD), PCP system with OpenCV-based detector (PCP/HL-PD)
and PCP system with YOLOv3-based detector (PCP/YOLOv3).

20 30 40 50 60
Vehicle Speed (km/h)

1

2

3

4

5

6

Av
er

ag
e

di
st

an
ce

 d
iff

er
en

ce
 (m

et
er

s)

PCP/HW-PD vs PCP/HL-PD
PCP/HW-PD vs PCP/YOLOv3

Figure 17. Average distance difference in meters for decision-making calculated from the results of
all TTCs for each speed.

It is possible to observe in Figure 17 that the techniques and processing rate of the
proposed system resulted in an increase in the distance for decision-making in comparison
with other systems. For example, compared with YOLOv3, our system can detect a collision
6 m in advance for a car speed of 60 km/h. This increase can mitigate the impact and
severity of the crash.

This difference increases almost linearly with the vehicle speed. This is due to the
response time of the proposed detection system, which is shorter than other systems. Since
several frames are needed for collision estimation, this time difference leads to an increased
gain in the distance with faster vehicles. This linear growth brings more safety to the
pedestrian, especially in cars at higher speeds. Efforts to reduce the response time of
the PCP system will increase the safety distance even further. Specifically, in the PCP
system proposed in this work, solving the communication bottlenecks due to the platform,
as mentioned in Section 5.2, means that this system will have a shorter response time.

5.4. FPGA Resources Evaluation

Table 2 presents FPGA synthesis data of the PD module on the Arria 10 platform
obtained for different values of image resolutions, SVM-Ps quantity, and pyramid depth
as presented. In addition, synthesis data were obtained from the whole hardware system
involving the PD, SGM, and communication modules as shown in Table 3.

Sensors 2022, 22, 4421 24 of 27

Table 2. Hardware resource of the PD system.

Image Module Module Hardware Resource

Resolution Description Parameters KALMs 3 KReg. 4 RAM 5

1280
×

720

Resize - 1.3 (0.3%) 3.3 0.21 (0.4%)
Gradient - 1.7 (0.4%) 2.4 0.12 (0.2%)

Cell - 1.0 (0.2%) 1.7 0.05 (0.1%)
Block - 1.7 (0.4%) 7.5 0.24 (0.4%)
SVM Nc

1 = 4 12.3 (2.9%) 24.5 2.42 (4.4%)

Whole 2 Dpyr = 1 QSVM-P = 1 16.9 (4.0%) 37.3 3.03 (5.5%)
Whole Dpyr = 2 QSVM-P = 1 34.8 (8.2%) 77.1 6.41 (11.7%)
Whole Dpyr = 3 QSVM-P = 1 52.5 (12.4%) 116.6 9.57 (17.3%)
Whole Dpyr = 3 QSVM-P = 2 79.7 (18.9%) 172.4 13.75 (24.9%)

1920
×

1080

Resize - 1.3 (0.3%) 3.3 0.41 (0.8%)
Gradient - 1.7 (0.4%) 2.4 0.12 (0.2%)

Cell - 1.0 (0.2%) 1.7 0.05 (0.1%)
Block - 1.7 (0.4%) 7.5 0.24 (0.4%)
SVM Nc

1 = 4 12.8 (3.0%) 24.8 2.73 (4.9%)
Whole Dpyr = 1 QSVM-P = 1 17.3 (4.0%) 37.5 3.26 (5.8%)
Whole Dpyr = 2 QSVM-P = 1 35.6 (8.4%) 78.1 6.85 (12.4%)
Whole Dpyr = 3 QSVM-P = 1 54.0 (12.7%) 118.7 10.45 (18.9%)
Whole Dpyr = 3 QSVM-P = 2 82.3 (19.4%) 176.2 14.78 (26.8%)

1 Amount of parallel processing columns of SVMs. 2 For the whole PD system, Nc = 4. 3 Amount of adaptive
logic modules (ALMs) in units of 103. 4 Amount of registers in units of 103. 5 Amount of RAM storage measured
in megabits.

Table 3. Resource usage of the whole HW system that involves PD, SGM, and HW/SW communication.

Image Module Module Hardware Resource

Resolution Description Parameters KALMs 2 KReg. 3 RAM 4

1280
×

720

Whole PD Dpyr = 3
QSVM-P = 2 79.7 (18.8%) 172.4 13.7 (24.9%)

SGM Nd
1 = 128 73.7 (17.4%) 96.2 5.5 (10.0%)

HW/SW Comm. 5 - 41.8 (9.8%) 55.1 0.9 (1.6%)

Whole System
Dpyr = 3

QSVM-P = 2
Nd = 128

169.7 (40.1%) 343.2 24.3 (44.2%)

1920
×

1080

Whole PD Dpyr = 3
QSVM-P = 2 82.3 (19.4%) 176.2 14.7 (26.7%)

SGM Nd = 128 79.1 (18.7%) 106.9 8.8 (16.0%)
HW/SW Comm. - 41.8 (9.8%) 55.1 0.9 (1.6%)

Whole System
Dpyr = 3

QSVM-P = 2
Nd = 128

185.1 (43.7%) 361.9 28.6 (52.0%)

1 Disparity Range. 2Amount of adaptive logic modules (ALMs) in units of 103. 3 Amount of registers in units of
103. 4 Amount of RAM storage measured in megabits. 5 Communication.

As may be observed in Table 2 the increase in the image resolution almost does not
impact the number of memory blocks, amount of LUTs, and registers. This feature is due
to the reusability of modules to process all image pixels. It is notable that the number of
processing resources did not double when increasing the amount of SVM-P. This result is
due to the reuse of the same image pyramid for both SVM-Ps.

Sensors 2022, 22, 4421 25 of 27

5.5. Existing PD Systems

Table 4 presents the results of some hardware-based existing PD systems concerning
hardware occupation, operational frequency, and the processing rate for some resolution
settings and pyramid depth. The processing speed is evaluated by millions of detection
windows per second (MWPS), which signifies the product of the number of detection
windows scanned in a frame and the FPS.

Table 4. Hardware occupation and the processing rate obtained from existing pedestrian
detection systems.

Work Device Configuration Hardware Resource Performance
KLUTs 2 KReg. 6 RAM 3 Ext.RAM 1 MHz FPS MWPS 4

[13]
(HOG + SVM) Zynq 7020 1920 × 1080,

1 level 11.5 12.2 nu
1 nu 150 60 1.9

[19]
(HOG + SVM) Cyclone IV 800 × 600,

1 level 16.0 7.2 0.3 nu 150 162 1.2

[42]
(Pyramid +

HOG + SVM)
Cyclone IV 1920 × 1080,

9 levels 47.2 25.1 4.2 nu 140 33 9.5

[43]
(HOG + SVM) Cyclone V 640 × 480,

1 level 8.4 ni
1 0.2 nu 84 273 1.3

[22]
(Pyramid +

HOG + SVM)
Virtex-5 1920 × 1080,

6 levels 38.5 43.0 7.1 nu 270 64 10.0

[14]
(YOLO) Virtex-7 416 × 416 155.0 ni 21.9 nu 200 60.1 -

Ours
(Pyramid +

Multi-Windows 5

+ HOG + SVM)

Arria-10 1920 × 1080,
6 levels 82.3 176.2 14.8 nu 150 52.1 10.0

1 The terms ni , nu, and Ext.RAM, respectively, signify not informed, not used, and external memory. 2 103

LUTs. 3 Amount of RAM storage measured in megabits. 4 Million of detection windows per second. 5 Detection
windows with different sizes. 6 Amount of registers in units of 103.

The result in terms of MWPS of the proposed PD system was measured in the prototyp-
ing platform, considering the platform communication overhead. Our system has a higher
MWPS than most of the works. Although [22] achieves better FPS results, the system works
at a higher frequency (270 Mhz) compared to our system (150 Mhz). Resource occupancy
comparison with [22] is not possible because of the FPGA platform difference. Furthermore,
it is impossible to perform a comparison in terms of accuracy due to the lack of database
compatibility. The INRIA database [20], used by most of these works, does not provide
stereo frames data nor information on vehicle movement and geometry that is needed by
our system.

6. Conclusions

This work proposed an FPGA-based implementation of the pedestrian detection (PD)
system based on HOG and SVM techniques, supporting image pyramid and detection
windows of different dimensions. It was demonstrated that with detection windows of
various sizes, the PD system’s miss rate was reduced by at least 6% compared to another
system processing detection windows of unique dimensions. Specific strategies for each
step are proposed to ensure the throughput of one pixel per clock cycle. For the most
critical SVM module, a novel approach was proposed to process many detection windows
through units using parallel and pipeline processing to process a different set of windows.
This approach provided a gain in processing performance compared with other works and
a constant performance independent of the pyramid depth and quantity of different-size
detection windows. The processing performance gain of the proposed PD system inside the

Sensors 2022, 22, 4421 26 of 27

PCP system managed to avoid more collisions compared to lower systems and ensured an
improvement in decision-making distance of a maximum of 3.3 m. Future works include
scalability improvements to the proposed PD system to process more windows of different
dimensions and more pyramid levels.

Author Contributions: Conceptualization, L.C. and E.B.; Funding acquisition, L.C. and E.B.; Investi-
gation, L.C. and E.B.; Resources, L.C. and E.B.; Software, L.C.; Supervision, E.B.; Validation, L.C. and
E.B.; Visualization, L.C. and E.B.; Writing—original draft, L.C. and E.B.; Writing—review & editing,
L.C. and E.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Coordination for the Improvement of Higher Education
Personnel (CAPES) grant number 88882.347593/2019-01 and by National Council for Scientific and
Technological Development (CNPq)—grant number 313573/2020-4.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We want to thank the Intel University Program for using the HARPv2 platform.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. WHO. Global Status Report on Road Safety; WHO: Geneva, Switzerland, 2018.
2. Haas, R.E.; Bhattacharjee, S.; Möller, D.P. Advanced Driver Assistance Systems. In Smart Technologies; Springer: Berlin/Heidelberg,

Germany, 2020; pp. 345–371.
3. Kooij, J.F.; Flohr, F.; Pool, E.A.; Gavrila, D.M. Context-based path prediction for targets with switching dynamics. Int. J. Comput.

Vis. 2019, 127, 239–262. [CrossRef]
4. Khalifa, A.B.; Alouani, I.; Mahjoub, M.A.; Amara, N.E.B. Pedestrian detection using a moving camera: A novel framework for

foreground detection. Cogn. Syst. Res. 2020, 60, 77–96. [CrossRef]
5. Li, Y.; Zheng, Y.; Morys, B.; Pan, S.; Wang, J.; Li, K. Threat Assessment Techniques in Intelligent Vehicles: A Comparative Survey.

IEEE Intell. Transp. Syst. Mag. 2020, 13, 71–91. [CrossRef]
6. Cambuim, L.F.; Barros, E. Supporting Detection of Near and Far Pedestrians in a Collision Prediction System. In Proceedings of

the VISIGRAPP (4: VISAPP), Online , 8–10 February 2021; pp. 669–676.
7. Suleiman, A.; Sze, V. An energy-efficient hardware implementation of HOG-based object detection at 1080HD 60 fps with

multi-scale support. J. Signal Process. Syst. 2016, 84, 325–337. [CrossRef]
8. Li, Z.; Zhu, K.; Huang, X.; Zhao, J.; Xu, K. All Silicon Microdisplay Fabricated Utilizing 0.18 µm CMOS-IC With Monolithic

Integration. IEEE Photonics J. 2022, 14, 1–5. [CrossRef]
9. Xu, K. Silicon electro-optic micro-modulator fabricated in standard CMOS technology as components for all silicon monolithic

integrated optoelectronic systems. J. Micromech. Microeng. 2021, 31, 054001. [CrossRef]
10. Durini, D. High Performance Silicon Imaging: Fundamentals and Applications of Cmos and Ccd Sensors; Woodhead Publishing: Sawston,

UK, 2019.
11. Bhowmik, P.; Pantho, M.J.H.; Bobda, C. Harp: Hierarchical attention oriented region-based processing for high-performance

computation in vision sensor. Sensors 2021, 21, 1757. [CrossRef]
12. Bhowmik, P.; Pantho, M.J.H.; Bobda, C. Event-based re-configurable hierarchical processors for smart image sensors. In

Proceedings of the 2019 IEEE 30th International Conference on Application-specific Systems, Architectures and Processors
(ASAP), New York, NY, USA, 15–17 July 2019; IEEE: Piscataway, NJ, USA, 2019; Volume 2160, pp. 115–122.

13. Helali, A.; Ameur, H.; Górriz, J.; Ramírez, J.; Maaref, H. Hardware implementation of real-time pedestrian detection system.
Neural Comput. Appl. 2020, 32, 12859–12871. [CrossRef]

14. Nguyen, D.T.; Nguyen, T.N.; Kim, H.; Lee, H.J. A high-throughput and power-efficient FPGA implementation of YOLO CNN for
object detection. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1861–1873. [CrossRef]

15. Kyrkou, C. YOLOpeds: Efficient real-time single-shot pedestrian detection for smart camera applications. IET Comput. Vis. 2020,
14, 417–425. [CrossRef]

16. Bailey, D.G. Image Processing Using FPGAs. 2019. Available online: https://www.google.co.jp/books/edition/Image_
Processing_Using_FPGAs/XrucDwAAQBAJ?hl=en&gbpv=1&printsec=frontcover (accessed on 7 June 2022).

17. Jeong, H. Architectures for Computer Vision: From Algorithm to Chip with Verilog; John Wiley & Sons: Hoboken, NJ, USA, 2014.
18. Monmasson, E.; Cirstea, M.N. FPGA design methodology for industrial control systems—A review. IEEE Trans. Ind. Electron.

2007, 54, 1824–1842. [CrossRef]
19. Luo, J.H.; Lin, C.H. Pure FPGA implementation of an HOG based real-time pedestrian detection system. Sensors 2018, 18, 1174.

[CrossRef] [PubMed]

http://doi.org/10.1007/s11263-018-1104-4
http://dx.doi.org/10.1016/j.cogsys.2019.12.003
http://dx.doi.org/10.1109/MITS.2019.2907633
http://dx.doi.org/10.1007/s11265-015-1080-7
http://dx.doi.org/10.1109/JPHOT.2022.3160226
http://dx.doi.org/10.1088/1361-6439/abf333
http://dx.doi.org/10.3390/s21051757
http://dx.doi.org/10.1007/s00521-020-04731-y
http://dx.doi.org/10.1109/TVLSI.2019.2905242
http://dx.doi.org/10.1049/iet-cvi.2019.0897
https://www.google.co.jp/books/edition/Image_Processing_Using_FPGAs/XrucDwAAQBAJ?hl=en&gbpv=1&printsec=frontcover
https://www.google.co.jp/books/edition/Image_Processing_Using_FPGAs/XrucDwAAQBAJ?hl=en&gbpv=1&printsec=frontcover
http://dx.doi.org/10.1109/TIE.2007.898281
http://dx.doi.org/10.3390/s18041174
http://www.ncbi.nlm.nih.gov/pubmed/29649146

Sensors 2022, 22, 4421 27 of 27

20. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; IEEE: Piscataway, NJ,
USA, 2005; Volume 1, pp. 886–893.

21. Ma, X.; Najjar, W.A.; Roy-Chowdhury, A.K. Evaluation and acceleration of high-throughput fixed-point object detection on
FPGAs. IEEE Trans. Circuits Syst. Video Technol. 2014, 25, 1051–1062.

22. Hahnle, M.; Saxen, F.; Hisung, M.; Brunsmann, U.; Doll, K. FPGA-based real-time pedestrian detection on high-resolution images.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Portland, OR, USA, 23–28 June
2013; pp. 629–635.

23. Hirschmuller, H.; Scharstein, D. Evaluation of Stereo Matching Costs on Images with Radiometric Differences. IEEE Trans.
Pattern Anal. Mach. Intell. 2009, 31, 1582–1599. [CrossRef] [PubMed]

24. Cambuim, L.F.; Oliveira, L.A.; Barros, E.N.; Ferreira, A. An FPGA-based real-time occlusion robust stereo vision system using
semi-global matching. J. Real-Time Image Process. 2020, 17, 1447–1468. [CrossRef]

25. Gupta, P. Accelerating datacenter workloads. In Proceedings of the 26th International Conference on Field Programmable Logic
and Applications (FPL), Lausanne, Switzerland, 29 August–2 September 2016.

26. Sakakibara, M.; Ogawa, K.; Sakai, S.; Tochigi, Y.; Honda, K.; Kikuchi, H.; Wada, T.; Kamikubo, Y.; Miura, T.; Nakamizo, M.; et al.
A back-illuminated global-shutter CMOS image sensor with pixel-parallel 14b subthreshold ADC. In Proceedings of the 2018
IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 11–15 February 2018; IEEE: Piscataway, NJ,
USA, 2018; pp. 80–82.

27. Gribbon, K.T.; Bailey, D.G. A novel approach to real-time bilinear interpolation. In Proceedings of the DELTA 2004, Second IEEE
International Workshop on Electronic Design, Test and Applications, Perth, WA, Australia, 28–30 January 2004; IEEE: Piscataway,
NJ, USA, 2004; pp. 126–131.

28. Sarkar, S.; Bhairannawar, S.S.; KB, R. FPGACam: A FPGA based efficient camera interfacing architecture for real time video
processing. IET Circuits, Devices Syst. 2021, 15, 814–829. [CrossRef]

29. Mohamed, S.M.; Sayed, W.S.; Radwan, A.G.; Said, L.A. FPGA Implementation of Reconfigurable CORDIC Algorithm and a
Memristive Chaotic System With Transcendental Nonlinearities. IEEE Trans. Circuits Syst. Regul. Pap. 2022, 1–8. [CrossRef]

30. Hirschmuller, H. Stereo Processing by Semiglobal Matching and Mutual Information. IEEE Trans. Pattern Anal. Mach. Intell. 2008,
30, 328–341. [CrossRef]

31. Intel. Acceleration Stack for Intel Xeon CPU with FPGAs Core Cache Interface (CCI-P) Reference Manual. Available online:
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl-ias-ccip.pdf (accessed on
7 June 2022).

32. Cambuim, L.F.; Júnior, S.J.; Barros, E.N. A Strategy to Support Streaming Communication using the Intel HARPv2 Platform:
A Case Study in Stereo Vision Application. In Proceedings of the 2020 18th IEEE International New Circuits and Systems
Conference (NEWCAS), Montreal, QC, Canada, 16–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 250–253.

33. Schneider, N.; Gavrila, D.M. Pedestrian path prediction with recursive bayesian filters: A comparative study. In German Conference
on Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2013; pp. 174–183.

34. Keller, C.G.; Enzweiler, M.; Gavrila, D.M. A new benchmark for stereo-based pedestrian detection. In Proceedings of the 2011
IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 691–696.

35. Benenson, R.; Omran, M.; Hosang, J.; Schiele, B. Ten years of pedestrian detection, what have we learned? In European Conference
on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 613–627.

36. Yang, R.; Wang, Y.; Xu, Y.; Qiu, L.; Li, Q. Pedestrian Detection under Parallel Feature Fusion Based on Choquet Integral. Symmetry
2021, 13, 250. [CrossRef]

37. Kalake, L.; Dong, Y.; Wan, W.; Hou, L. Enhancing Detection Quality Rate with a Combined HOG and CNN for Real-Time Multiple
Object Tracking across Non-Overlapping Multiple Cameras. Sensors 2022, 22, 2123. [CrossRef]

38. Jurecki, R.S.; Stańczyk, T.L. Driver reaction time to lateral entering pedestrian in a simulated crash traffic situation. Transp. Res.
Part F: Traffic Psychol. Behav. 2014, 27, 22–36. [CrossRef]

39. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An Open Urban Driving Simulator. In Proceedings of the
1st Annual Conference on Robot Learning, Mountain View, CA, USA, 13–15 November 2017; pp. 1–16.

40. Cafiso, S.; Di Graziano, A.; Pappalardo, G. In-vehicle stereo vision system for identification of traffic conflicts between bus and
pedestrian. J. Traffic Transp. Eng. 2017, 4, 3–13. [CrossRef]

41. Redmon, J. Darknet: Open Source Neural Networks in C. 2013–2016. Available online: http://pjreddie.com/darknet/ (accessed
on 7 June 2022).

42. Dürre, J.; Paradzik, D.; Blume, H. A HOG-based real-time and multi-scale pedestrian detector demonstration system on FPGA.
In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA,
25–27 February 2018; pp. 163–172.

43. Maggiani, L.; Bourrasset, C.; Quinton, J.C.; Berry, F.; Sérot, J. Bio-inspired heterogeneous architecture for real-time pedestrian
detection applications. J. Real-Time Image Process. 2018, 14, 535–548. [CrossRef]

http://dx.doi.org/10.1109/TPAMI.2008.221
http://www.ncbi.nlm.nih.gov/pubmed/19574620
http://dx.doi.org/10.1007/s11554-019-00902-w
http://dx.doi.org/10.1049/cds2.12074
http://dx.doi.org/10.1109/TCSI.2022.3165469
http://dx.doi.org/10.1109/TPAMI.2007.1166
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/mnl-ias-ccip.pdf
http://dx.doi.org/10.3390/sym13020250
http://dx.doi.org/10.3390/s22062123
http://dx.doi.org/10.1016/j.trf.2014.08.006
http://dx.doi.org/10.1016/j.jtte.2016.05.007
http://pjreddie.com/darknet/
http://dx.doi.org/10.1007/s11554-016-0581-3

	Introduction
	Pedestrian Detection (PD) System
	Resize
	HOG
	Gradient
	Cell
	Block

	SVM

	The Proposed PD System Hardware Architecture
	Grayscale Converter
	Resize
	HOG
	Gradient
	Cell
	Block

	SVM
	Serializer

	Case Study: The PCP System Heterogeneous Architecture
	PCP System
	HW/SW Integration

	Results
	Location Evaluation
	Database
	Evaluation Strategy
	Systems Configuration Details
	Results and Analysis

	Processing Performance Evaluation
	Collision Prediction Evaluation
	Database
	Evaluation Strategy
	Systems Configuration Details
	Results and Analysis

	FPGA Resources Evaluation
	Existing PD Systems

	Conclusions
	References

