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Abstract: As one of the most critical elements in the hydrological cycle, real-time and accurate rainfall
measurement is of great significance to flood and drought disaster risk assessment and early warning.
Using commercial microwave links (CMLs) to conduct rainfall measure is a promising solution due to
the advantages of high spatial resolution, low implementation cost, near-surface measurement, and so
on. However, because of the temporal and spatial dynamics of rainfall and the atmospheric influence,
it is necessary to go through complicated signal processing steps from signal attenuation analysis of a
CML to rainfall map. This article first introduces the basic principle and the revolution of CML-based
rainfall measurement. Then, the article illustrates different steps of signal process in CML-based
rainfall measurement, reviewing the state of the art solutions in each step. In addition, uncertainties
and errors involved in each step of signal process as well as their impacts on the accuracy of rainfall
measurement are analyzed. Moreover, the article also discusses how machine learning technologies
facilitate CML-based rainfall measurement. Additionally, the applications of CML in monitoring
phenomena other than rain and the hydrological simulation are summarized. Finally, the challenges
and future directions are discussed.

Keywords: wireless cellular networks; microwave links; rainfall measurement; machine learning;
remote sensing

1. Introduction

Rainfall is one of the major driving forces in the hydrological cycle of the land area.
Natural disasters caused by rainfall, such as flash flood, debris flows, landslides, and
urban waterlogging, have been damaging people’s lives and property over the years [1].
On 20 July 2021, floods and secondary disasters caused by torrential rain had a negative
impact on 14.786 million people in Zhengzhou, China, with a direct economic loss of
120.06 billion yuan [2]. Therefore, developing rapid and accurate rainfall information
acquisition technologies is extremely urgent and important to achieve precise flood risk
assessment and enhance the public safety response capability. Meanwhile, rainfall is one
of the most critical climate factors to determine crop growth, and accurate precipitation
information can substantially improve crop yield [3]. In addition, rainfall information is
also an important reference index for reservoir operations, urban water supply, irrigation
planning, and other forms of water resource management [4]. However, due to the high
spatial and temporal dynamics of rainfall, it is still challenging to accurately monitor and
measure rainfall in real time [5,6].
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Rain gauges (RGs), weather radars, and satellite remote sensing are the three main
rainfall measurement methods at present. RG is a point measurement tool with limited
density, low spatial resolution, and relatively high construction and maintenance costs.
Radar observation of rainfall emits electromagnetic waves into the sky. These electromag-
netic waves are reflected by clouds and returned to a ground receiver. Rainfall information
is then estimated by comparing the original and returned electromagnetic waves [7]. This
method measures the water volume in the clouds, which could be quite different from the
rainfall amount on the ground. In addition, this method can be easily affected by ground
obstacles at a low elevation angle [8]. Satellite rainfall measurement, on the other hand, has
a global scale, but the resolution is relatively coarse in terms of small spatial and temporal
scales. Moreover, its accuracy is significantly affected by the density of clouds, and the time
lag is high [9].

In the recent years, many countries such as Israel, the Netherlands, France, Germany,
the Czech Republic, Switzerland, Italy, and China have adopted commercial microwave
links (CMLs) in wireless cellular networks (WCNs) to retrieve the regional rainfall infor-
mation. The measurement accuracy and ability of capturing the spatial and temporal
dynamics of rainfall for the CML method have been verified through a variety of simula-
tions and experiments. The CMLs that have already been deployed in WCNs to achieve
fronthaul/backhaul communications among base stations can be considered as a widely
distributed environmental monitoring sensor network. Since CMLs were originally de-
signed for the communications purpose and environment sensing is just a by-product,
the network of CMLs is also called an opportunistic wireless sensor network (OWSN) [10].
The IMT-2030 (6G) Promotion Group released a research report on the integration of com-
munications and sensing technology in September 2021 [11], which points out that the
communications and sensing capabilities will finally achieve the integration and symbio-
sis in the future 6G wireless networks. According to the statistics of the Industry and
Information Technology Ministry, the number of 5G base stations in China has already
exceeded one million in 2021. The increasing number of the deployed base stations and
microwave links provides great opportunities and supports to develop CML-based rainfall
measurement technology [12–14]. Table 1 provides the comparisons of the existing rainfall
measurement methods.

Table 1. Comparisons of conventional and CML-based rainfall measurement techniques.

Techniques Advantages Disadvantages

Rain Gauge High accuracy Point measurement; low spatial resolu-
tion; high capital and operational cost;
difficult to deploy in mountainous areas

Weather
Radar

Broad spatial coverage of up
to 300 km

Low accuracy in near-surface measure-
ment; easy to be affected by ground ob-
stacles at a low elevation angle

Satellite Global scale Coarse resolution for small spatial and
temporal scales; affected by clouds;
high time lag

Commercial
Microwave
Links

Path-integrated and near-
surface measurements; high
spatial and temporal resolu-
tion; no additional capital
cost

Hard to acquire CML data; relatively
high complexity for data processing
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In WCNs, in order to monitor the quality of service (QoS) of a CML, the network system
always regularly monitors and records the transmission and received power of the signal in
the CML for every, for example, 15 min. That is, a huge amount of CML attenuation data is
already available and can be used to retrieve real-time rainfall intensity. However, there are
many factors leading to the signal attenuation during the propagation, and it is nontrivial
to extract the rain-induced attenuation from these attenuation data. This is because, first,
microwave link attenuation data contain many spatio-temporal variations and uncertainties,
which are not only related to path length, frequency, polarization, and other attributes of
microwave links [15], but also affected by external factors such as temperature, humidity,
atmospheric composition, and so on; second, rainfall is a highly spatio-temporal dependent
event [16], and it is relatively complex and difficult to establish the model between rain-
induced attenuation and rainfall intensity. Considering the problems mentioned above,
data-driven methods such as machine learning have been proposed to facilitate CML-based
rainfall measurement. Machine learning is a new way to solve interdisciplinary issues
and the problems which are difficult to simulate their processes [17]. In particular, deep
learning (DL) has been proven to be an important tool to exploit the power of big data
(BD) by capturing high-dimensional and multi-modal data distribution, and extracting
spatio-temporal features of data in order to understand the internal data logic and whole
physical process [18].

Rainfall measured by the CML network has a broad application prospect in both
densely populated cities and remote mountainous areas. Although current studies have
made significant contributions on the technological aspects, there are very few review arti-
cles about this technique. One study [1] reviews the existing technologies and challenges of
CML-based precipitation monitoring from a signal processing prospective, which includes
calibration, detection, estimation, classification and separation, assimilation, and recon-
struction. Another [19] divides the CML-based measurement studies into four groups
and points out that the biggest challenge is the capitalization of CML data. Overviews of
the history, theory, challenges, and opportunities toward CML-based rainfall monitoring
technique are given by refs. [5,10]. The former focuses on the background introduction and
continental-scale rainfall monitoring, while the latter emphasizes the issues of wet antenna
attenuation and abnormal signal fluctuations. Studies related to terrestrial microwave
rain attenuation measurement from 2010 to 2020 are investigated by [20], but the detailed
analyses of different methods and current challenges are insufficient. All of the above
literature reviews summarize current research either from a certain prospective or focus on
specific problems, but a comprehensive literature review and comparisons have not been
carried out. Thus, it is paramount important to give a thorough review on this promising
rainfall measurement technology; in particular, to summarize the literature of the past
2 years, in which machine learning has been developing rapidly and has been applied to
this realm widely. The main contributions of this paper are as follows:

• The paper illustrates the main steps in CML-based rainfall measurement, summarizing
the state-of-the-art solutions in each step.

• The paper analyzes uncertainties and errors involved in CML-based rainfall measure-
ment as well as their impacts on the measurement accuracy.

• The paper explores the existing machine learning methods to facilitate CML-based
rainfall measurement. To the best of our knowledge, this paper provides the first
comprehensive review on machine learning for CML-based rainfall measurement.

• The paper summarizes the open-access datasets and codes related to CML-based
rainfall measurement, and discusses the current challenges and future directions.

The rest of the paper is organized as follows. Section 2 describes the principle and
theory of CML-based rainfall measurement. Section 3 outlines the revolution of CML-
based rainfall measurement. The steps from CML received signal level (RSL) to rainfall
map are presented in Section 4. The machine learning solutions to facilitate measurement
are discussed in Section 5. Monitoring phenomena other than rain and the hydrological
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applications are explored in Sections 6 and 7, respectively. The existing challenges and
future directions are presented in Section 8, and finally, Section 9 draws a conclusion.

2. The Principle and Theory of Rainfall Measurement by CML
2.1. Basic Principle

Wireless communications use electromagnetic waves, which can propagate in free
space, to carry data. Microwave refers to the electromagnetic wave with 300 MHz–300 GHz
frequency, i.e., 1 mm–1 m wavelength. Microwave can be further divided into decimeter
wave, centimeter wave, and millimeter wave. Normally, round directional antennas
have stronger beam focusing characteristics than rectangular omnidirectional antennas.
The communication link between two such directional antennas is called a microwave
backhaul link, or microwave link for short. As shown in Figure 1, when the microwave
propagates through the rain area, the transmitting power will be attenuated due to the
scattering and absorption by raindrops [21,22]. This type of microwave attenuation is
called rain-induced attenuation, and the relative loss of power per unit path length is called
specific attenuation, denoted as k (dB/km). Recommendation ITU-R P.838-3 [23] gives
the relationship between the specific attenuation k and rain rate, denoted as R (mm/h),
as follows:

k = aRb, (1)

where the coefficients a and b are functions of microwave signal frequency, polarization,
and raindrop size distribution (DSD). In addition to rain-induced attenuation, non-rain
factors, such as free space path loss, atmospheric attenuation and multipath effect, can also
lead to microwave link attenuation. Therefore, the rain-induced attenuation can only be
obtained by eliminating the non-rainfall induced attenuation from the total attenuation.
CML-based rainfall measurement has the advantages of path-integrated measurement, high
spatial density, less human intervention, low implementation cost, and true reflection of
near-surface rainfall and thus can be used as an effective substitution or supplement to tra-
ditional rainfall measurement methods, such as RGs, weather radar, and satellite [20,24,25].
In addition, CML-based measurement can estimate not only rainfall, but also water vapor,
solid particles, fog, snow, sleet, hail, and so on [26–29].

Link length L (tens of meters to tens of kilometers)

Transmitting 
terminal

Receiving 
terminal

Directional 
antenna

Signal power attenuated by absorption, 
scattering, multipath propagation, and so on

Incident wave Received wave

Weather 
radar

Satellite

Rain 
gauge

Figure 1. Basic operating principle of CML-based rainfall measurement.
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2.2. Mathematical Models

The amount of signal attenuation, denoted as Atot (dB), is obtained by subtracting
the received power from the transmitting power. Here, Atot comprises three types of
attenuations, i.e., baseline attenuation Abaseline (dB), path-integrated rain attenuation Arain
(dB), and wet antenna attenuation AWAA (dB). That is,

Atot = Abaseline + Arain + AWAA. (2)

2.2.1. Baseline Attenuation

Abaseline is usually determined by the attenuation value in a time interval right before
a rainfall event and mainly consists of free space path loss Ab f (dB) and atmospheric
attenuation Agas (dB), i.e.,

Abaseline = Ab f + Agas. (3)

• Free-space path loss Ab f . The free-space path loss is the loss of signal strength when a
signal propagates through free space. Free-space path loss Ab f increases as the distance
between the transmitter and the receiver increases. According to Recommendation
ITU-R P.525-4 [30], when the distance between antennas is much larger than the
electromagnetic wavelength λ, the path loss of electromagnetic wave in free space is
only related to the frequency and distance, as shown in Equation (4):

Ab f = 20 log(4πL/λ) = 32.4 + 20 log f + 20 logL, (4)

where f (MHz) is carrier frequency and L (km) is the distance between the transmitter
and the receiver.

• Atmospheric attenuation Agas. When electromagnetic waves propagate through the
atmosphere, they will be attenuated by the absorption, reflection, and scattering
of water vapor, fog, solid particles, oxygen, nitrogen, carbon dioxide, and other
substances in the atmosphere. According to Recommendation ITU-R P.676-12 [31],
the specific gaseous attenuation of a microwave link, denoted as kgas (dB/km), can be
estimated by

kgas = ko + kw = 0.1820 f (N′′oxygen( f ) + N′′watervapor( f )), (5)

where ko and kw (dB/km) are the specific attenuation caused by dry air (oxygen,
nitrogen, etc.) and water vapor, respectively, and N′′oxygen and N′′watervapour are the imag-
inary parts of the frequency-dependent complex refractivities. Then, the atmospheric
attenuation of a microwave link can be estimated by

Agas =
∫ L

0
kgas(l)dl. (6)

2.2.2. Path-Integrated Rain Attenuation

According to refs. [5,10,19], path-integrated rain attenuation Arain in Equation (2)
basically is a function of the specific attenuation k, which can be calculated based on
Equation (1), that is,

Arain =
∫ L

0
k(l)dl =

∫ L

0
aR(l)bdl b≈1

= aRbL, (7)

where R (mm/h) is the path-average rain rate. The attenuation caused by rainfall and the
average rain rate are linearly correlated if b ≈ 1. Other than Equation (1), the values of the
rain rate R and the specific attenuation k can be estimated based on DSD refer to [32,33], i.e.,

R = 6× 10−4π
∫

D
v(D)D3N(D)dD, (8)
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k =
1

ln(10)

∫
D

Cext(D, f )N(D)dD, (9)

where D is the raindrop diameter in mm, N(D) is the DSD’s number concentration per
diameter in mm−1m−3, v(D) is the rain droplet final velocity in m/s, and Cext(D, f ) is the
extinction cross section at frequency f in m2, which describes the attenuation of the signal
at frequency f by each raindrop. The dependence of Cext(D, f ) and v(D)D1 on raindrop
diameter D is very similar, especially in the frequency range from 20 GHz to 35 GHz [5].

2.2.3. Wet Antenna Attenuation (WAA)

WAA (AWAA) refers to the signal attenuation due to the water film attached to the
radome during the rainfall, and it will last for a period of time until the water on the
radome evaporates. Because Abaseline is determined prior to the rainfall event, WAA is
generally not included in Abaseline. Usually, WAA is assumed as a constant value (1–2 dB)
or determined by the RSL time series of the link and its surrounding links in the previous
time, and the time probability distribution function of WAA can also be estimated by
data-driven algorithms.

2.3. Example Demonstration

Figure 2 shows the relationship between the total attenuation of the CML and the rain-
fall intensity measured by RG. The simulation data come from an open access dataset [34],
which contains the signal power total loss collected from six E-band (71–76 GHz and
81–86 GHz) CMLs and the rainfall intensity collected from four RGs in Prague, Czech
Republic. We selected the data from one CML of the six and one RG, which is nearest to
the selected link midpoint, to generate the signal level time series of 24 h (23 August 2018
19:39–24 August 2018 19:39) with a time resolution of 1 min. It can be seen that there is a
clear correlation between CML power total loss and rainfall intensity, and even very low
intensity rainfall can be perceived by the CML measurement, because the E-band CML is
more sensitive to rainfall than other used frequency bands (roughly from 10 to 50 GHz) at
present [35,36].

 

Figure 2. Correlation between CML power total loss and rainfall intensity.

3. Development of Rainfall Measurement Based on CML

In the middle of the 20th century, it was found that rainfall had a significant impact
on the attenuation of electromagnetic waves, especially high-frequency electromagnetic
waves, and it was proposed that the attenuation of electromagnetic waves could be used to
retrieve rainfall intensity [37]. At the end of the 20th century, the implementation of the
Tropical Rainfall Measuring Mission (TRMM) project has promoted a series of experiments
to retrieve DSD by using dedicated dual-frequency links [38]. However, it is not realistic
to deploy such a network of microwave links just for rain measurement in a large area.
Fortunately, since the beginning of the 21st century, with the rapid growth number of
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mobile phone users, a variety of wireless base stations and microwave links have been
widely deployed to build seamless WCNs. This forms the infrastructure foundation of the
CML-based rainfall monitoring networks to timely observe rainfall with high temporal and
spatial resolution. Each microwave link between two base stations is equivalent to a sensor
node. Moreover, for the typical frequencies used by CML in WCNs, the coefficient b in
Equation (1) is very close to 1, which means that there is a good linear relationship between
rain-induced attenuation and rainfall intensity. In 2006, Messer et al. [39] used CML-RSL
data to retrieve the rainfall intensity in Israel for the first time. In 2013, Overeem et al. [40]
used an unprecedented number of more than 2400 CMLs to reconstruct the rainfall map
for the entirety of the Netherlands (35,500 km2). Subsequently, countries around the
world established research teams and tried to explore the potential of CML in the field of
environmental monitoring. Table 2 summarizes the countries that have achieved rainfall
measurement by CML in chronological order.

Table 2. Countries that have used CML to measure rainfall.

Authors
(Year) Country

CML Data

RemarksFrequency
(GHz)

Link
Number Length (km) Temporal

Resolution
Quantization
Level (dB)

Messer et al. (2006)
[39] Israel — — — 15 min —

The correlation between rainfall intensity
measured by CML and RG is 0.86 for a 15 min
interval and 0.9 for an hourly interval.

Leijnse et al. (2007)
[41] The Netherlands 38 2 7.75, 6.72 15 min 1

Eight rainfall events are evaluated, and the re-
sults are consistent with the rainfall retrieved
from RGs and C-band radar.

Schleiss et al. (2010)
[42] France 26, 19 4 3.7, 3.7, 7.1, 2.4 30 s, 6 s 1

A wet and dry weather classification method is
proposed, which can identify 92% of all rainy
periods and 93% of the total rain amount.

Chwala et al. (2012)
[43] Germany 15, 18.7, 23 5 17.4, 10.2, 4, 17.1,

10.4 selectable <0.05

A new algorithm based on short-time Fourier
transform (STFT) is proposed for the wet/dry
classification. The correlation reaches 0.81 for
the link-gauge comparison.

Bianchi et al. (2013)
[44] Switzerland 23, 38, 58 14 0.3–8.4 5 min 0.1 or 1

RGs, weather radar and CMLs are combined
to estimate the intensity and temporal distri-
bution of rainfall more accurately.

Fencl et al. (2013)
[45]

Czech
Republic 38 14 — — —

CML networks can better capture the spatio-
temporal rainfall dynamics, especially in heavy
rain, and thus improve pipe flow prediction.

Doumounia et al.
(2014) [46] Burkina Faso 7 1 29 1s 1

95% of the rainy days are detected by CML
measurement, and the correlation with the
RGs data series is 0.8.

D’Amico et al.
(2016) [47] Italy 25 3 average of 6 — —

Tomographic technique was applied to re-
construct 2-D fields of rainfall accumulation,
and the link density and topology affect the
accuracy of the reconstruction algorithm.

Rios Gaona et al.
(2018) [48] Brazil above 15 145 shorter than 20 — 0.1

As compared to RGs, CML-based measure-
ment can better capture the city-average rain-
fall dynamics.

Sohail Afzal et al.
(2018) [49] Pakistan 38 35 0.5–2.5 15 min —

The correlation coefficient value between
rainfall intensity measured by CMLs and RGs
is as high as 0.97.

Jacoby et al. (2020)
[50] Sweden 14–39 17 1.5–7 10 s —

Using long short-term memory (LSTM) to learn
from previous attenuation values is sufficient to
generate accurate attenuation predictions.

Song et al. (2021)
[51] China 15–23 8 0.55–1.08 1 min 0.1

The correlation coefficient values between the
rain rate measured by CMLs and RGs are all
higher than 0.77, and the highest coefficient is
over 0.9.

Pudashin et al.
(2021) [52] Australia 10–40 144 0.2–57 15 min 0.1

Using two types of datasets collected
by different sampling strategies (maxi-
mum/minimum RSL and average RSL)
to retrieve rainfall, the results show that
the maximum/minimum RSL data are bet-
ter than average in terms of the statistics,
i.e., root mean square error (RMSE), bias, and
coefficient of variation (CV).

“—” represents that the content is not mentioned in the literature.
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4. Signal Processing from RSL to Rainfall Map

The main steps from obtaining the RSL data to the generation of rainfall map in-
clude the identification of the starting and ending time of rainfall (wet/dry classification),
the baseline determination, the compensation of WAA, the calculation of path-average
rain rate, and the reconstruction of rainfall map. As shown in Figure 3, each step can be
implemented in different ways. The function of each step and the related methods will be
described in detail below, and the sources of uncertainty and the reasons to cause errors are
also analyzed.

Figure 3. Typical steps in CML-based rainfall measurement.

4.1. Wet/Dry Classification

After obtaining the RSL data, the first step is to identify the corresponding duration
of rainfall from the original rough RSL data. As long as the time period of rainfall is
identified, the attenuation for a microwave link during the corresponding time period can
be more accurately evaluated to calculate the rainfall intensity. At present, various wet/dry
classification methods are widely used to identify the rainfall period and can be mainly
categorized into three types.

4.1.1. Time or Spectrum Series Analysis

Based on the assumption that the correlation of RSL time series between two frequen-
cies is higher in the rainy period than in the dry period, Overeem et al. [53] proposed
the nearby link approach (NLA). If the RSL value of a microwave link decreases in a
time interval and the RSL values of at least half of all the neighbouring links within a
radius of 15 km also decrease, then the selected time interval is considered to be wet.
Schleiss et al. [42] applied the local variability of the link signal to distinguish the wet and
dry weather. Basically, the standard deviation of the RSL data, which are collected within a
predetermined 15–30 min window, is calculated, and so the weather during this time period
would be regarded as wet if the standard deviation is greater than a predefined threshold.
Based on the assumption that rainfall would cause more generation of high-frequency RSL
samples, Chwala et al. [43] analyzed the power spectrum of RSL time series based on STFT
to determine the wet/dry weather. Wang et al. [54] used the Markov model to distinguish
wet/dry period.
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4.1.2. Assisted by Other Rainfall Measurement Methods

Rainfall periods can be identified with the help of using rainfall data measured by
RGs, radar, or satellite [55]. For example, path-averaged mean 15 min rainfall intensity
along the link from unadjusted radar data can be used to identify wet and dry weather
conditions for each link and time step. If the rainfall intensity is greater than 0.1 mm/h,
the current and the following steps are classified as wet [56].

4.1.3. Machine Learning Algorithms

Song et al. [57] used support vector machine (SVM) to distinguish the wet/dry period.
Specifically, the average, minimum, and maximum attenuation are used as the feature
vectors, and the radial basis function is used to convert the data. It is pointed out that the
classification accuracy increases as the carrier frequency and the length of the link increases.
Other machine learning algorithms, such as convolutional neural networks (CNNs) and
LSTM, can also be used to establish classification models based on the RSL data, and we
will discuss these algorithms in Section 5, which covers machine learning.

In addition, the wet/dry classification methods in current studies also include Fisher
discriminant analysis based on kernel function [58] and multi-family likelihood ratio test [59].

4.2. Baseline Determination

Baseline attenuation, also known as zero-level attenuation, is the attenuation of the
total attenuation excluding the rain-induced part. Baseline attenuation is usually equal to
the attenuation of the last dry interval before rainfall occurs. The NLA method takes the
median signal level of all the dry periods over the past 24 h as the baseline. Fenicia et al. [60]
compared the constant baseline model and the single parameter model based on the first-
order low-pass filter, and the results show that the latter model has better performance
than the former, but the uncertainty of the latter model is relatively larger during the
light rain. Ostrometzky et al. [61] used the minimum attenuation value of CML-RSL to
determine the dynamic baseline, which assumes that the rain rate is a random process, the
non-rain-induced attenuation is relatively stable in a specific time period, and the real-time
dynamic baseline is derived by analyzing the statistical characteristics of the minimum
attenuation samples and the rain rate without the need of wet/dry classification in advance.

4.3. WAA Compensation

When rainfall occurs, the radome will be covered with a layer of water film to absorb
and scatter the signal, which is called wet antenna attenuation [62]. After the rain stops,
the water droplets covering the antenna slowly evaporate over time, and so the WAA value
gradually decreases until water droplets disappear. If WAA is not taken into account in
the CML-based rainfall retrieval, the rain rate will be overestimated. WAA is related to
radome material characteristics, temperature, and rain intensity, and WAA in the short link
scenario is more significant. Fencl et al. [63] used eight short CMLs at 38 GHz frequency
band to quantify WAA, and the experimental results confirm that WAA is closely related to
rainfall intensity, and the WAA value is 1.5–2.0 dB in light rain (R < 2 mmh−1), 2.8–5.3 dB
in rainstorm, and 6–9 dB during heavy rainstorm (R ≈ 70–130 mmh−1). Pastorek et al. [64]
investigated the performance of six WAA models and the transportability of WAA model
parameters among CMLs, which have different features. The results show that the WAA
model derived from the rainfall intensity is better than constant WAA model and the
time-dependent WAA model. Moreover, the rainfall-intensity-based WAA model does not
depend on the frequency and link length, and so it can be reused by other CMLs, where
the antenna characteristics are similar.

4.4. Path-Average Rain Rate Estimation

After wet/dry classification, baseline determination, and WAA compensation, the rain-
induced attenuation in the rainy period is derived, and then the path-average rain rate
can be calculated according to Equation (7). The longer the CML link, the greater the
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attenuation caused by rain on the path, which alleviates the difficulty of low rain rate
detection. In addition to the ITU k-R model in Equation (1), rain rate can also be estimated
by DSD or data-driven algorithms. Song et al. [32] calculated the specific attenuation and
rainfall intensity based on DSD, and then the relationship between specific attenuation and
rainfall intensity was obtained by using nonlinear fitting. Han et al. [33] also confirmed
that the coefficients a and b in k-R relationship of stratiform and convective rain can be
estimated based on local DSD measurement, and compared to the coefficients in the ITU-R
P.838 document, the derived coefficients achieved an improved rain rate estimation. DL
has outstanding advantages in solving the problem of complex dependent data association
mining. It can learn the relationship between the input parameters of multi-attribute fea-
tures and the real-time output rainfall intensity, so as to directly establish the relationship
model between CML total attenuation and rainfall intensity. By taking the advance of
DL, Habi et al. [65] designed a network structure based on gated recurrent unit (GRU) in
recurrent neural network (RNN) to evaluate the rainfall retrieved by CMLs. As compared
to the traditional ITU model in Equation (1), the GRU-RNN based model has better per-
formance in terms of lower RMSE and bias, but higher complexity and poorer robustness.
A trade-off between robustness and performance can be optimized by introducing a time
normalization (TN) layer into the GRU-RNN model. The ability of data-driven methods
based on GRU to relate attenuation and rain rate, which can overcome the uncertainties in
short links, has been proven by [66].

4.5. Rainfall Map Reconstruction

Interpolation algorithm and tomographic reconstruction technology are mainly used
to generate rainfall map from path-average rain rate [67,68]. Inverse distance weighting
(IDW) and ordinary kriging (OK) are two of the most common spatial interpolation algo-
rithms for a geography information system (GIS) [69,70]. IDW is a fairly simple and robust
spatial interpolation point rainfall measurement method. In IDW, if a rainfall intensity
value for a given location needs to be predicted, the points closer to the predicted location
have a greater impact on it, and so the weight of the surrounding points is set based on the
distance to the predicted location, i.e., a short distance means higher weight for a surround-
ing. The OK algorithm requires enough statistical information of the sample field. Kriging
is very suitable for interpolating highly irregular data points. However, OK has its own lim-
itations and needs to make some assumptions, such as isotropy and statistical stationarity.
Eshel et al. [71] compared the performance of the IDW and OK algorithms, and the results
show that the performance improves with the increase in decorrelation distance (i.e., less
intermittent field). The OK interpolation technique uses more prior/auxiliary information
and correlates slightly better with ground truth than IDW, and the performance of OK
and IDW-based algorithms with multiple points representing a CML is slightly better than
that with only one point representing a CML. D’ Amico et al. [47] applied the tomography
technology to reconstruct the two-dimensional rainfall accumulation field, and it was
found that the accuracy of the reconstruction algorithm can be improved by increasing the
network density. For the reconstruction of 2-D rainfall field, Gazit et al. [72] described the
statistical characteristics of the measurements and then used the compressed sensing (CS)
theory, i.e., phase transition diagram, to solve the rain-field sparsity problem.

4.6. Uncertainties Analysis

Every step of CML-based rainfall retrieval may introduce errors. In order to further
improve the accuracy of rainfall measurement, it is necessary to analyze the sources of
errors and their impacts.

4.6.1. Uncertainties in Each Step of Signal Processing

• In wet/dry classification, whether adopting multiple CMLs or single CML RSL data,
the empirical-based thresholds for classification will certainly lead to uncertainties
and errors.
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• In baseline determination, the baseline in rain period determined by the NLA method
is constant. Yet, some signal fluctuations, such as the fluctuations during the dry
period, may also occur during the rain period. For shorter links or lower frequencies
links, the natural fluctuation of baseline attenuation has the same order of magnitude
as the quantization interval (1 dB) [1].

• In WAA compensation, the WAA value depends on the CML antenna characteristics
(hydrophobicity or hydrophilicity) and the weather environment. For example, the wa-
ter vapor condensation induced by the temperature drop at night, even though there
is no rain, can cause the WAA value to be higher than that in light rain. In general,
the WAA value increases as the rainfall intensity becomes stronger. The WAA effect
on CML-based rainfall retrieval is probably the major source of errors for short links,
because WAA becomes more comparable to the overall link attenuation as the length
of the link decreases.

• In rain rate calculation, the k-R power law relationship in Equation (1) is approximately
linear in the frequency of 20–35 GHz, but when the frequency is lower or higher
than that, the uncertainty caused by DSD increases [73]. Rain rates calculated by
different sampling strategies and time resolution also have deviations [74]. Generally,
the performance of rainfall measurement using minimum/maximum RSL with time
resolution of 15 min is better than that using the instantaneous RSL. On the other hand,
for different time resolutions, due to the spatial and temporal variability of rainfall,
a longer sampling time interval (e.g., 15 min) will lead to a larger error, but a very
short sampling time interval (e.g., 1 s) can increase the accuracy while also increasing
the computational complexity.

• In rainfall map generation based on the interpolation algorithm, errors and uncertain-
ties in the reconstructed rainfall field increase as the time aggregation decreases and
the distance between two CMLs increases. The uncertainties in daily rainfall map are
lower than the 15 min rainfall map, because the errors in the 15 min rainfall map are
aggregated to cancel each other out over the course of a day [75]. The OK interpolation
algorithm utilizes the average path link rainfall data, i.e., the mid-point rainfall data in
the link, and so converting the line scale to the point scale will produce errors, which
is called interpolation uncertainty [53].

4.6.2. Other Sources of Errors

The characteristics of microwave links and monitoring environment will also induce
errors and affect the overall measurement accuracy. De Vos et al. [76] used seven months of
instantaneous signal power collected from about 2000 microwave links in the Netherlands
to retrieve rainfall intensity, and the results show that the bias is the relatively high for
path lengths less than 2 km during late night, early morning, and colder months. Van
Leth et al. [77] installed three microwave links between two main buildings in Wageningen,
with one commercial microwave link at 38 GHz and two research microwave links at
26 GHz and 38 GHz, respectively. The results show that WAA in the presence of fog or dew
induces about 3 dB attenuation, and changes in temperature can also cause an attenuation
of similar magnitude.

Rios Gaona et al. [75] divided the errors presented in rainfall maps, which were gen-
erated from link rainfall depths, into two categories: (1) measurement errors, including
sampling interval, received power quantification, wet/dry classification, baseline fluctu-
ation, WAA, DSD, multipath, etc., and (2) interpolation errors, including interpolation
algorithm and link space density. An extensive experiment was carried out by comparing
rainfall maps created from three sets of link rainfall depths: actual available links, simulated
links with the actual network availability, and simulated links with 100% network avail-
ability assumed. The results show that the uncertainty is mainly caused by measurement
errors. The factors leading to the error of CML-based rainfall measurement are ranked
from most important to least important by Messer et al. [1], which are spatial variability of
rainfall, zero baseline selection, DSD and WAA, and RSL quantification.
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5. Machine Learning for CML-Based Rainfall Measurement

Through the uncertainty analysis, we can find that it is a very complicated process
from RSL raw data acquisition to the generation of rainfall maps, and many factors and
uncertainties may deteriorate the accuracy of rainfall measurement. In recent years, many
works have applied machine learning algorithms to evaluate the relationship between the
microwave link attenuation and rain rate, thus avoiding the tedious analysis of uncertainty
sources and error quantization.

5.1. Application of Machine Learning

Machine learning focuses on finding patterns in data and uses these patterns to make
predictions [78–80]. Table 3 lists the machine learning algorithms applied in microwave-link-
based rainfall measurement during recent years. For wet/dry classification, He et al. [81]
analyzed the variation of RSL data of C-band microwave links under the conditions of no
rain, drizzle, light rain, and moderate rain; then the LSTM network was used to analyze
the RSL data in different time scales to distinguish the rainfall period. Polz et al. [82]
established a CNN-based model by using the instantaneous RSL data collected from 3904
CMLs in Germany for wet/dry classification. Four months of data from 800 randomly
selected CMLs are used to train, and two different months of data, one for all CMLs and one
for the 3104 CMLs not included in the training, are used for model verification. Radar data
adjusted by RGs are used as the reference method. The results show that the designed CNN
model is superior to the current state-of-the-art model, which uses the rolling standard
deviation of the CML signal as the detection criterion.

Table 3. Machine learning algorithms applied in CML-based rainfall measurements.

Ref. Algorithms Function Data Source Data for Training and Testing Results

[81] LSTM Wet/dry
classification

Experimental data were col-
lected from 1/11–31/12 except
for 13/12–21/12 by using a C-
band microwave link (7.7 GHz)

Data from 1/11–30/11 are used
to train a classifier, and the De-
cember data are used for testing.

The accuracy of wet/dry clas-
sification is higher than 60%,
and even higher than 98% in
some days.

[57] SVM Wet/dry
classification

15 microwave links (15–23 GHz)
and 8 RGs

Half of the data from rainfall
time over 2 h in 14 days were
used as the training set and the
remaining half as the test set.

The accuracy of rainfall iden-
tification is higher than 80%,
and most of the accuracy is even
higher than 90%.

[82] CNN Wet/dry
classification

Data came from 3904 CMLs,
and gauge-adjusted radar data
are used as a reference

4 months of data from 800
randomly selected CMLs were
used for training and 2 different
months of data for testing.

76% of rainfall and 97% of non-
rainfall periods can be detected,
and more than 90% of rainfall
intensities that are greater than
0.6 mmh−1 can be detected.

[83] LSTM WAA quanti-
zation

Total attenuation data of 6 E-
band full-duplex CMLs and
4 RGs data

Rain period data were divided
into 12 subsets, of which 10 sub-
sets were training sets and the
remaining two for testing.

It has a good correlation with the
RGs measured WAA, but the cu-
mulative rainfall estimates based
on LSTM are lower when the
rainfall increases sharply.

[84] LSTM Rain rate es-
timation

A CML (22.715 GHz) and an OTT
PARSIVEL disdrometer

The training group accounts for
80% of the whole sequence,
and the remaining 20% is used
as testing group.

The relative bias decreases from
7.39% to 1.14%, and the coeffi-
cient of determination (R2) in-
creases from 0.71 to 0.82 com-
pared with constant weighted av-
erage method.



Sensors 2022, 22, 4395 13 of 27

Table 3. Cont.

Ref. Algorithms Function Data Source Data for Training and Testing Results

[65] GRU-RNN Rain rate es-
timation

A total of 1.4 M samples are from
40 full duplex links and 8 RGs in
Swedish region, and 1.7 M sam-
ples are from 34 full duplex links
and 9 RGs in the Israeli region

80% of the total samples are used
as training set and the remaining
20% as validation.

RMSE and bias are smaller com-
pared with the traditional power-
law-based algorithm, and the
trade-off between performance
and robustness of RNN methods
can be controlled by introducing
a TN layer.

[85] SVC, ANN Wet/dry
classification,
rain rate esti-
mation

Measurement report (MR) data
from TD-LTE networks, and RGs
data and runoff data are used as
references

60% of the wet/dry records are
used as ANN training samples
for classification, while the re-
maining 40% are used as testing
samples.

The performance of rainfall re-
trieval from MR data is in good
agreement with RG measure-
ments, and the accuracy is more
than 80% in the application of
runoff simulation.

[86] ANN, LSTM Rain rate es-
timation

3×216480 RSL units and 2164800
target rain rate samples in Korea
region, and satellite RSL data in
Ethiopia region

Data are split into 85% and 15%
for training and testing.

Rainfall retrieval performance of
ground link is better than that
of satellite link. Performance
(RMSE, R2, CC) of LSTM at
11 GHz ground link is better than
that of ANN.

[87] DT, PNN,
GDA, LR

Rainfall
types classifi-
cation

2475 samples of convective rain-
fall (31.3%) and 5441 samples of
stratiform rainfall (68.7%) from
March to November

7916 total samples are divided
into 5 groups on average,
4 groups are selected as the
training set, and the remaining
1 group is used as the test set.

DT and PNN algorithms have
better fault tolerant ability than
GDA and LR, and the classifica-
tion accuracies of tri-frequency
models are higher than those of
dual-frequency models.

[50] LSTM CML attenu-
ation predic-
tion

17 CMs with the frequencies of
14–39 GHz

1400 h of training time; 16 h of
validation time.

The prediction accuracy of CML
attenuation values by LSTM
during rainfall is greater than
ARIMA.

For WAA quantization, Pu et al. [83] obtained the WAA values based on LSTM, which
has a good correlation with the measured WAA, and the performance of the model in the
72.75 GHz link is better than that in the 82.75 GHz link. For accurate rain rate calculation,
Pudashine et al. [84] designed and trained a DL model by using RGs data and applied it
to CML-based rainfall measurement, and the result is better than the constant weighted
average method. Liu et al. [85] used the measurement report (MR) data in a time-division–
long-term-evolution (TD-LTE) network to retrieve rainfall, and support vector classification
(SVC) and artificial neural network (ANN) were used to distinguish wet/dry weather
and estimate rain rate, respectively. Diba et al. [86] compared the accuracy of rainfall
measurement between the terrestrial links (18, 38, 75 GHz) and the satellite links (12.25 and
20.74 GHz). The accuracy of rainfall measurement by applying ANN and LSTM at 11 GHz
terrestrial link is studied, and the results show that LSTM is better than ANN.

In addition, machine learning can also be used to distinguish different types of rain-
fall (convective or stratiform) [87], determine the baseline [88], predict the short-term
attenuation [50], and so on.

5.2. Potential of Deep Learning

It can be found that DL algorithms, such as CNN, RNN, LSTM, and GRU, are widely
used in CML-based rainfall measurement compared with the traditional machine learning
algorithms. This is because traditional machine learning has limited ability to simulate high
spatio-temporal dynamics events such as rainfall, while DL can capture high-dimensional
and multi-modal data distribution, automatically extract spatio-temporal features, and bet-
ter mine the internal logic of data [89].
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5.2.1. LSTM

As one of the most popular DL algorithms for processing time-series data, the LSTM
is equipped with a memory cell and several gates to overcome the gradient explosion
or gradient disappearance problem of RNN. Figure 4 shows the cell structure of the
LSTM, and Equations (10)–(15) give the basic mathematical computational steps of the
algorithm [90]. First, the forgetting gate ft, input gate it, and candidate value zt are
calculated by using the current input xt and the previous hidden state ht−1. Second,
the current memory cell state ct is updated by combining ft, it, zt, and the previous memory
cell state ct−1. Finally, the information of ct is transferred to the current hidden state ht
through the output gate ot.

ct-1

ht-1

xt

ft it zt ot

ct

ht

Figure 4. LSTM cell structure.

ft = σ(W f xt + U f ht−1 + b f ), (10)

it = σ(Wixt + Uiht−1 + bi), (11)

zt = tanh(Wzxt + Uzht−1 + bz), (12)

ct = it × zt + ft × ct−1, (13)

ot = σ(W0xt + U0ht−1 + b0), (14)

ht = ot × tanh(ct), (15)

where σ(·) and tanh (·) are the sigmoid and hyperbolic tangent functions, respectively.
The weight matrices W f , Wi, Wz, Wo, U f , Ui, Uz, Uo and the bias vectors b f , bi, bz, bo
can be predicted in the training stage. Through the cooperation between the memory
cell and the gates, LSTM is equipped with a powerful ability to predict time series with
long-term dependence.

5.2.2. GRU

GRU is proposed in [91] and its structure is simpler as compared to LSTM. It eliminates
memory cell state and integrates the forgetting and input gates into one update gate to sim-
plify the structural model. Figure 5 shows the structure of the GRU, and Equations (16)–(19)
give the basic mathematical computational steps of the algorithm [92]. First, two gate states
named reset gate rt and update gate zt are obtained from the previous state ht−1 and
the current input xt. Second, ht−1 × rt is spliced with input xt, and then through a tanh
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activation function to covert the data into the range of −1∼1; that is, h̃t is obtained. Finally,
the current hidden state ht is obtained through the update gate zt.

Figure 5. GRU structure.

zt = σ(Wz · [ht−1, xt]), (16)

rt = σ(Wr · [ht−1, xt]), (17)

h̃t = tanh(W · [rt × ht−1, xt]), (18)

ht = (1− zt)× ht−1 + zt × h̃t. (19)

where Wz, Wr, and W are weight matrices. In the GRU model, the reset gate defines
how to combine new input with previous memories, and how much memory should be
retained is decided by the update gate. Some varaints of GRU have been proposed and
evaluated by reducing parameters in the update and reset gates [93]. Considering the
hardware computing power and time cost, the more practical GRU is suggested to be
chosen. However, if training data are sufficient, LSTM may generate better predictions due
to its strong expressive ability. So, which model to use depends on the system requirement.
The GRU model has been used in CML-based rainfall measurement (e.g., [65]), which we
have discussed in Section 4.4.

6. Monitoring Phenomena Other than Rain

The attenuation of microwave links can not only be used to measure rainfall, but also
theoretically monitor all substances that affect microwave signals propagating in the at-
mospheric environment, such as water vapor, oxygen, CO2, snow, dust, and so on [94,95].
However, different substances have different absorption characteristics for specific fre-
quency bands. For example, water vapor strongly absorbs the microwave in the frequency
around 22.2 GHz (i.e., 1.35 cm in wavelength), and oxygen has a strong absorption of
microwave in the frequency around 60 GHz (i.e., 0.5 cm in wavelength). Therefore, when
measuring different atmospheric substances, the corresponding absorption bands should
be avoided. Monitoring other meteorological phenomena by microwave link attenuation is
summarized as follows:

6.1. Water Vapor

Zheng et al. [96] used a 4.8 km long E-band mm-wave link in the Xianghe area located
in the city of Langfang, Hebei Province, China. As compared to the data of meteorological
station, the annual correlation value of the water vapor retrieved from the link is as high as
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0.95, RMSE is as low as 0.35, and the average relative error is as low as 0.05. Pu et al. [97]
proposed a water vapor retrieval model by using dual-frequency E-band CMLs based on
LSTM network, and the results show that the retrieved water vapor density is in good
agreement with the results measured by temperature and humidity sensors. Fencl et al. [98]
also used a longer E-band link to realize the water vapor retrieval because E-band is more
sensitive to raindrops and atmospheric gases, and the signal attenuation is sufficiently
strong to enable the detection of water vapor at long CMLs. The proposed empirical model
does not require in situ calibration. However, the separation of gaseous attenuation from
the total losses is more challenging than traditional 15–40 GHz CMLs.

6.2. DSD

Van Leth et al. [99] used two or three configured microwave link instruments to
estimate the three parameters of a gamma DSD model; the DSD retrieval performance
using different microwave link combinations of frequency and polarization are analyzed.
The experimental results show that the DSD retrieval based on microwave link is accurate
under ideal conditions, and the accuracy and successful rate in practical situations are
highly dependent on the stability of the power level and the precision of the instrument.
Song et al. [100] proposed a method for retrieving path-averaged DSD parameters using
dual-frequency and dual-polarization joint microwave links. The DSD parameters are ob-
tained based on the Levenberg–Marquardt optimization algorithm, and this method can be
used as an effective supplement to traditional DSD monitoring systems, such as disdrometer.

6.3. Hydrometeor Types

Pu et al. [101] proposed a method to identify rain, graupel, and wet snow based on
microwave links, and single-frequency, dual-frequency, and triple-frequency models are
established by using the extreme learning machine algorithm to analyze the hydrometeor
size distribution data in Nanjing. The results indicate that accuracy increases as the total
frequency or frequency difference among microwave links increases.

When using CML to measure rainfall in stormy weather, the wind will cause the
antenna to shift slightly, resulting in the RSL fluctuations. Atmospheric dust particles and
vehicle emissions (e.g., CO and NOx) can also induce microwave signal attenuation and
phase shift. Hence, it seems feasible to monitor wind, dust and air pollution by measuring
the attenuation or phase change caused by these small changes.

7. Hydrological Application

Rainfall measured by CML has a broad application prospect in radar rain attenuation
correction, urban rainfall-runoff simulation, drainage pipe flow prediction, flash flood
warning, and so on [102,103]. On the one hand, CML-based measurement provides a new
source of rainfall data for hydrology research; on the other hand, the results of hydrological
application can verify the performance of CML-based rainfall measurement.

7.1. Combined with Conventional Methods for Rainfall Measurement

Zhang et al. [104] verified that microwave links in any direction can be used to com-
pensate the attenuation effect of radar reflectivity through experimental methods. A new
method of CML-based rainfall retrieval adjusted by RGs is proposed by Fencl et al. [105],
which does not require installing RGs near the CMLs intentionally. Using RGs with dif-
ferent spatial and temporal resolutions, even if they are relatively far away, can improve
the performance of CML-based rainfall measurement. Bianchi et al. [44] integrated the RG,
radar and microwave links to improve the measurement accuracy of the spatial distribution
of rainfall and rainfall intensity, and the Gauss–Newton method is used to minimize the
cost function of all sensing methods. CML also has a great potential in the calibration of
rainfall measured by radar or satellite images [106].
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7.2. Runoff Simulation and Prediction

Rainfall is the key input of many hydrological models, and the errors and uncer-
tainties of rainfall data sets will propagate through the hydrological system [107,108].
Smiatek et al. [109] used CML-derived rainfall data as inputs of a distributed hydrological
water balance model, named as WaSiM-ETH, to predict the runoff in the Ammer River
Basin in Germany. As compared to RG and radar, the Nash–Sutcliffe efficiency (NSE) based
on the CML data model is much higher, which effectively improved the initial state of the
flow simulation and forecasting system. Liu et al. [85] used a lumped hydrological model,
i.e., MISDc, to simulate the runoff of Andunshui River basin in Huizhou, Guangdong
Province, China, with the CML rainfall data as the inputs, and the model also generates a
high NSE.

7.3. Urban Drainage System Scheduling

It is important to predict the ability of an urban catchment to respond to rainfall-
generated runoff, which is essential for effective management and control of urban drainage
systems. Fencl et al. [45] verified that the application of CML-based rainfall measurement
data in the urban hydrological model can better capture the spatial and temporal dynamic
distribution of rainfall, and thus better capture the temporal dynamic changes of drainage
pipe flow, especially in heavy rainfall, which can better reflect the changes of outlet and
peak flows. Pastorek et al. [110,111] studied the effects of the characteristics and locations
of CMLs on the runoff forecast. The experimental results show that the quantitative
precipitation estimates (QPEs) of shorter CMLs located within or near the catchment
boundary reproduce the runoff dynamics better than the QPEs of longer CMLs located
outside the catchment boundary.

7.4. Flash Flood Warning

Accurate and real-time rainfall measurement plays an important role in flash flood
warning [112,113]. A flash flood early warning system using rainfall intensity data, which
are retrieved from terrestrial CMLs and the geostationary satellite in Kenya, Africa, is
designed by [114], and it has been proven to be an effective measure to strengthen the
resilience to climate change of developing countries. CMLs are sparsely deployed in
mountainous areas and the link length is relatively long; rainfall measured by CML is the
line average of the whole path, and high local rainfall intensities are smoothed, i.e., the peak
rainfall intensities can easily be ignored. To resolve this problem, Eshel et al. [115] proposed
a new method to identify the potential conditions of flash floods using only a single long
microwave link integrated with weather radar. Radar measurement is first used to identify
rainfall changes along the link path, and then a CML is used to quantify the rain rate.
The results show that there is a close relationship between the proposed inverse-kurtosis–
rain-rate relation and the flash flood response, and thus flash flood warning systems can
possibly be improved.

8. Challenges and Future Directions
8.1. Development of CML Data Acquisition Standards

The feasibility of using CML to measure rainfall has been verified by works and
projects, but the difficulty of obtaining available CML data in WCNs is obvious, thus
limiting the adoption of this technology [19,116]. Although some studies have published
open-access datasets, as listed in Table 4, due to security considerations, the way to obtain
CML sensing data is still greatly limited, especially the CML datasets from the Asia-Pacific
region, most of which are not public available to the best of our knowledge. The original
intention of obtaining CML data is to improve wireless communications business, and using
CML data for sensing requires complicated signal analysis and processing, i.e., we need to
transform the rain-induced attenuation data, which are noise for communication, into useful
information for sensing. It is suggested that relevant standard protocols for microwave-
based fronthaul/backhaul communications should be standardized to facilitate not only
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communications but also sensing and attenuation data acquisition. By achieving this,
the barriers between scientific research and commercial business can be overcome, and the
CML-based rainfall measurement can be widely adopted to benefit the society as a whole.

Table 4. Open-access datasets.

Dataset Code
Availability

Location Data Description URL

Dübendorf data [117] No Dubendorf,
Switzerland

Received and transmitted power of
1 dual-polarization CML (38 GHz); rain-
fall rate and cumulative rainfall from
5 RGs; temperature, dew point, rela-
tive humidity, wind direction, and wind
speed from 5 weather stations.

https://doi.org/10.5281/zenodo.4
923125 (accessed on 17 May 2022)

Wageningen data [77] No Wageningen,
the Netherlands

Received power of 1 CML (38 GHz) and
2 research microwave links (26 GHz,
38 GHz); relative humidity, temperature,
and wind speed from 5 disdrometers.

https://doi.org/10.4121/uuid:1dd4
5123-c732-4390-9fe4-6e09b578d4ff
(accessed on 17 May 2022)

Melbourne data [3] No Melbourne,
Australia

RSL data from a microwave research link
(24 GHz), and specific attenuation, wind
speed and direction, air temperature and
humidity, barometric pressure, and so on
from disdrometers, RGs, and weather sta-
tion.

https://doi.org/10.5281/zenodo.4
442322 (accessed on 17 May 2022)

PSO data [118] No The Netherlands Frequency, minimum and maximum re-
ceived power, path length, coordinates,
and link ID of about 2800 microwave
sublinks; rain intensity from gauge-
adjusted radar.

https://doi.org/10.4121/uuid:3235
87ea-82b7-4cff-b123-c660424345e5,
https://dataplatform.knmi.nl/catal
og/datasets/index.html?x-dataset
=rad_nl25_rac_mfbs_5min&x-data
set-version=2.0 (accessed on 17 May
2022)

Sri Lanka data [119] No Sri Lanka The gridded rainfall maps retrieved from
CML data from Sri Lanka over the
3.5 month period, and hourly/daily rain-
fall depths from satellite product and
the global precipitation measurement
(GPM) product.

https://doi.org/10.4121/14166539
.v2,https://gpm.nasa.gov/data/di
rectory (accessed on 17 May 2022)

R package “RAINLINK”
[53]

Yes The Netherlands Frequency, maximum RSL, minimum
RSL, link length, location coordinates of
about 2600 CMLs.

https://github.com/overeem11/R
AINLINK (accessed on 17 May 2022)

Code processing steps: data preprocess-
ing, wet/dry classification, baseline de-
termination, filtering of outliers, correc-
tion of received power, path-average rain-
fall intensity estimation, generation of
rainfall map, and map visualization.

Prague data and code
[34]

Yes Prague,
Czech Republic

Total power loss of 6 E-band full-duplex
CMLs; rainfall intensity, temperature,
and humidity from 4 RGs.

https://doi.org/10.5281/zenodo.4
090953 (accessed on 17 May 2022)

Code processing steps: data preprocess-
ing, loading data, RG-based wet/dry
classification, estimating baseline, quan-
tifying WAA, estimating rainfall, quan-
tifying uncertainty, and retrieving water
vapor density.

Python package “py-
comlink” [120]

Yes Germany Code processing steps: data sanity
checks, anomaly detection, wet/dry clas-
sification, baseline calculation, wet an-
tenna correction, transformation from at-
tenuation to rain rate, rainfall map gener-
ation, and results validation against RGs.

https://github.com/pycomlink/p
ycomlink (accessed on 17 May 2022)

https://doi.org/10.5281/zenodo.4923125
https://doi.org/10.5281/zenodo.4923125
https://doi.org/10.4121/uuid:1dd45123-c732-4390-9fe4-6e09b578d4ff
https://doi.org/10.4121/uuid:1dd45123-c732-4390-9fe4-6e09b578d4ff
https://doi.org/10.5281/zenodo.4442322
https://doi.org/10.5281/zenodo.4442322
https://doi.org/10.4121/uuid:323587ea-82b7-4cff-b123-c660424345e5
https://doi.org/10.4121/uuid:323587ea-82b7-4cff-b123-c660424345e5
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8.2. Strengthen Uncertainty Analysis

Uncertainty analysis is an important prerequisite for formulating effective measures to
improve the measurement accuracy. The spatio-temporal dynamics of rainfall, multi-path
propagation, atmospheric absorption, sampling strategy, and quantization error are all
sources of uncertainty. The combination of data resources, computing power, and machine
learning provides an opportunity to discover the spatial and temporal uncertainties of the
rainfall and the relationship between the rain-induced attenuation and rainfall intensity.
Moreover, the input–output relationship derived from these data-driven models can pro-
vide inspiration and guidance to explain and understand the mechanism in the physical
world. In addition, for uncertainty study, we can also build a dedicated microwave link
experimental environment to carry out targeted analysis for a certain interference factor.
Because the CML network covers a wide area, and the amount of CML data is huge, many
of the uncertainties are difficult to quantify when the CML data are directly applied to
actual rainfall measurement.

8.3. Extending Machine Learning Capabilities

Machine learning has a great application potential in the field of earth environment
systems [121]. In particular, DL can extract the spatio-temporal structure and characteristics
of data, and it is a good solution to the problem of strong time dependence such as rainfall
simulation and prediction. However, machine learning also has some challenges, such as
the cost of big data and interpretability [122,123]. The cost of a big data platform is high,
and only when the cost of data collation and cleaning is low can the advantages of big data
be maximized. Machine learning lacks behavioral interpretation. Therefore, in the future,
we should try to give machine learning the necessary causal reasoning ability to get rid of
the traditional “black box” operation [124].

8.4. Assimilation of Multi-Source and Heterogeneous Data

Data assimilation is always an important problem in the data-intensive field. The data
assimilation problem in the study of CML-based rainfall measurement is mainly reflected
in two aspects: one is the data assimilation among different CMLs. One CML can measure
the average rain rate along the path, and if we want to get the surface rainfall information
in a larger coverage area, we need multiple CMLs nearby to cooperate with each other.
However, different CMLs use different carrier frequencies, sampling strategies, and power
resolutions, so it is necessary to convert the data of various formats collected by multiple
independent CMLs into data of the same magnitude and uniform specification. On the
other hand, data collected from different rainfall monitoring methods, i.e., RGs, radar,
satellite, and CMLs, need to be assimilated. CML-based rainfall measurement can be used
as a supplement to the existing rainfall measurement methods [125], and for a specific
monitoring area, using multiple rainfall measurement methods may be able to construct a
more detailed rainfall map than using only one of them.

8.5. WAA Quantization

WAA has been experimentally verified to have an important influence on the rainfall
intensity retrieval, and many factors affect the WAA value, such as rainfall intensity, tem-
perature, link length, radome material, and so on. The WAA value should be a dynamic
function of time, and it is obviously inappropriate to give WAA a fixed constant to compen-
sate the total attenuation. In the future, we should further understand the change pattern
of WAA and then use appropriate time-frequency domain transformation, probability
statistics, machine learning, and other methods to construct WAA model.

8.6. Refinement of Rainfall Retrieval and Mapping Algorithms

When the rainfall intensity is strong, the attenuation of microwave signal is obvious,
and the classification of wet/dry weather, the determination of zero baseline, and the
calculation of rain rate are more accurate. On the contrary, when the rainfall intensity is
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light, the attenuation of microwave signal caused by rain is easily covered by abnormal
signal fluctuations or WAA, and uncertainty is greater compared with heavy rain, so the
calculation method of rain rate should be refined according to different rainfall intensities.
It can be combined with other measurement methods to achieve more accurate rainfall
measurement. The network density and topology of microwave links have a great influence
on the construction of rainfall map [126]. In general, the higher the density, the higher
the resolution of the constructed rainfall field. The design of CML topology should refer
to the topology optimization algorithms of wireless sensor networks (WSNs) to further
expand the sensing range and improve the sensing accuracy. Based on the existing GIS
spatial interpolation and tomographic reconstruction techniques, more flexible algorithms
of rainfall mapping should be designed to meet the complex geographical conditions.

8.7. Adoption of Synthetic Storm Technique

Synthetic Storm Technique (SST) is one of the most reliable methods to estimate rain
attenuation time series [127]. Rain attenuation time series are usually generated through
SST with the input rain rate data measured by RGs or other equipments. Based on the
generated rain attenuation time series, the seasonal, annual, or daily statistics which
reflect the dynamic patterns of the received power of the signal in a communications
link are obtained, and then the rain attenuation can be compensated more effectively.
The implementation of the SST technique can yield more accurate predicted values of
rain attenuation as compared to the ITU model [128,129]. On the other hand, SST may
also be used to estimate the rain rate in short time intervals (e.g., 1 min) by inverting the
convolution integral. Therefore, SST should be considered and given more attention in the
future in the CML-based rainfall measurement field.

8.8. Exploring Information Other Than RSL as the Basis of Retrieval

At present, most of the studies on CML-based rainfall measurement use the maximum–
minimum RSL, average RSL, instantaneous RSL, and other amplitude informations, and a
few studies have used other informations, for example, the transmission error of a mi-
crowave link signal was used for the first time by Habi et al. [130] to divide dry and
wet weather. Pu et al. [87] proposed a rainfall type distinguishing method by using the
differential attenuation rate from multi-frequency and dual-polarization microwave links.
In the research of using WIFI signals to identify indoor human activities, the channel
state information (CSI) with phase information is commonly used as the retrieval basis.
Therefore, CML-based rainfall measurement should also be considered to explore some
phase information other than RSL as the basis of retrieval, which may be able to obtain
more accurate and real-time rainfall spatial information.

8.9. Promoting the Integration of Sensing and Communications

The proposal of sensing and communication integration provides a new development
opportunity for CML-based rainfall measurement. On the one hand, monitoring rainfall
by using CMLs is a typical application of communication-assisted sensing, especially
driven by the deep integration of information and communication technology (ICT), AI,
and BD technologies. The absorption spectrum characteristics of water molecules based
on 6G terahertz and the “fingerprint spectrum” characteristics of chemical information
will achieve more accurate and wide-area real-time monitoring of rainfall, atmospheric
humidity, and air quality in the near future. On the other hand, CML-based rainfall sensing
can also assist the promotion and development of communication services. For example,
sensing technologies such as beamforming can be used to assist the transmitting terminal of
each node in the communication system to realize the parameter set selection or parameter
configuration for transmission signals according to real-time environmental conditions,
and thus to save energy, improve spectrum utilization, and so on. Therefore, in the future,
the abilities of sensing and communications should be optimized jointly to realize the
overall performance improvement.
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9. Conclusions

As a new approach of rainfall measurement, The CMLs in wireless cellular networks
have a broad application prospect. In densely populated cities, CMLs can be used as an
effective supplement to traditional rainfall measurement methods. Moreover, in remote
mountainous areas, where RGs and radars are not easy to deploy and maintain, CMLs
have much greater potential in some scenarios, such as real-time rainfall monitoring, short-
term rainfall forecasting, flash flood warning, and so on. During the more than ten years
of development of CML-based rainfall measurement technology, great progresses have
been made in the accuracy of wet/dry classification, the real-time dynamics of baseline
determination, the authenticity of WAA simulation, the diversity of rainfall intensity
retrieval and mapping algorithms, and so on. More and more researchers around the world
have devoted themselves to this research.

Although CML-based rainfall measurement has been greatly improved in terms of
both monitoring range and mapping accuracy, there are still some challenges that limit
the practical application of this technology. The biggest problem is the data acquisition.
Because the operation processes of cellular networks for communications and sensing
are independent from each other, it is relatively difficult to obtain the dedicated commu-
nication data and adapt them to suitable environmental sensing data. From the view
of technological aspects, various error sources have a certain impact on the accuracy of
rainfall measurement, especially the change in WAA. Therefore, dedicated microwave link
experimental equipment should be built to further analyze the weights of various errors in
the total errors, and thus to provide help for acquiring more accurate rainfall information
in actual CML network environments.

In recent years, machine learning has been widely used in CML-based rainfall mea-
surement to solve problems mostly related to big data, such as classification, regression,
simulation, prediction, and so on. In particular, deep learning provides a new way to
simulate the complicated hydrological cycle processes. In the future, we should strengthen
the combination of data-driven machine learning and physical mechanism models in order
to explain and understand the data logic. It is also necessary to enhance the cooperation
among different rainfall measurement methods to establish a more comprehensive rainfall
measurement network. At the same time, applying CML-based rainfall measurement data
to hydrological cycles should be promoted, and the potential of CMLs as an opportunistic
wireless sensor network in environmental sensing should be fully explored. This paper
has summarized the state-of-the-art of CML-based rainfall measurement technology and
discussed the future directions, and we hope it can inspire more innovative ideas and
deeper thinking.
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