ﬁ Sensors

Article

Test Case Prioritization, Selection, and Reduction Using
Improved Quantum-Behaved Particle Swarm Optimization

Anu Bajaj ¥*(, Ajith Abraham ', Saroj Ratnoo 2 and Lubna Abdelkareim Gabralla

check for
updates

Citation: Bajaj, A.; Abraham, A.;
Ratnoo S.; Gabralla, L.A. Test Case
Prioritization, Selection and
Minimization Using Improved
Quantum-Behaved Particle Swarm
Optimization. Sensors 2022, 22, 4374.
https://doi.org/10.3390/522124374

Academic Editor: Alex Alexandridis

Received: 7 April 2022
Accepted: 16 May 2022
Published: 9 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Machine Intelligence Research Labs (MIR Labs), Auburn, WA 98071, USA; ajith.abraham@ieee.org

2 Department of Computer Science and Engineering, Guru Jambheshwar University of Science and Technology,

Hisar 125001, India; ratnoo.saroj@gmail.com

Department of Computer Science and Information Technology, College of Applied, Princess Nourah Bint
Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; lagabralla@pnu.edu.sa

* Correspondence: anu.bajaj@mirlabs.org

Abstract: The emerging areas of IoT and sensor networks bring lots of software applications on a
daily basis. To keep up with the ever-changing expectations of clients and the competitive market, the
software must be updated. The changes may cause unintended consequences, necessitating retesting,
i.e., regression testing, before being released. The efficiency and efficacy of regression testing tech-
niques can be improved with the use of optimization approaches. This paper proposes an improved
quantum-behaved particle swarm optimization approach for regression testing. The algorithm is
improved by employing a fix-up mechanism to perform perturbation for the combinatorial TCP
problem. Second, the dynamic contraction-expansion coefficient is used to accelerate the convergence.
It is followed by an adaptive test case selection strategy to choose the modification-revealing test
cases. Finally, the superfluous test cases are removed. Furthermore, the algorithm’s robustness is
analyzed for fault as well as statement coverage. The empirical results reveal that the proposed
algorithm performs better than the Genetic Algorithm, Bat Algorithm, Grey Wolf Optimization,
Particle Swarm Optimization and its variants for prioritizing test cases. The findings show that
inclusivity, test selection percentage and cost reduction percentages are higher in the case of fault
coverage compared to statement coverage but at the cost of high fault detection loss (approx. 7%) at
the test case reduction stage.

Keywords: regression testing; nature-inspired algorithms; test case prioritization; test case reduction;
test case selection; particle swarm optimization; QPSO

1. Introduction

With the advent of healthcare applications and the tremendous amount of information
processing, there is a need for fault handling [1]. Therefore, software testing is becoming
essential for critical safety systems, e.g., IoT devices and sensor networks connected with
it in one or another, where failure may lead to loss of money and life. In other words,
it is an important part of the software development lifecycle since it ensures that the
software is of high quality. It accounts for around half of the entire cost [2]. Testing during
the evolution and maintenance phases becomes more important to assure the software’s
dependability. All of the test cases must be re-implemented to guarantee that the quality
is not affected; this is known as regression testing [3]. In other words, the software is
continually changing to sustain the competitive market by updating and maintaining to
satisfy the changing needs. Complete retesting accounts for around eighty percent of the
entire maintenance cost [4]. On the other hand, it is difficult to test each upgraded version
of software nowadays. Software becomes more complex with frequent upgrades, and the
amount of time and effort required for regression testing may increase. Test case reduction,
selection and priority strategies can help solve these bottleneck problems [5].

Sensors 2022, 22, 4374. https:/ /doi.org/10.3390/s22124374

https:/ /www.mdpi.com/journal /sensors

https://doi.org/10.3390/s22124374
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8563-6611
https://orcid.org/0000-0002-0169-6738
https://doi.org/10.3390/s22124374
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124374?type=check_update&version=2

Sensors 2022, 22,4374

20f18

1. Test Case Prioritization (TCP)
It ranks the test cases based on some predefined goals, such as maximum code
coverage, fault coverage and requirements coverage. It finds T; € PT such that
(VT;) (T; € PT) (T; # T;) [f(T:) > f(T;)]; for a given test suite, T, its permutations
set PT, and f denotes a function from PT to real numbers [2]. In other words, it claims
to identify T; from PT with a value of f(T;) larger than any other test case (T;) in
PT. The coverage rate is represented by f, which calculates the performance of the
permutation series in terms of real numbers.

2. Test Case Selection (TCS)
It chooses essential test cases that are linked with the update of the software. In other
words, it finds a subset of T, T; for testing the modified version of P, P;. [5].

3. Test Case Reduction (TCR)
It focuses on removing redundant test cases by finding a representative test case set,
T;, from T that satisfies test requirements set R: {r1, ..., rn} for the defined coverage
of the program [2].

TCP is the most commonly used out of these three strategies by researchers because
it does not eliminate or pick test cases. Instead, it simply rearranges them such that the
most critical ones are checked first. The significance of these test cases is determined by
a number of factors. It might be code coverage, fault coverage, requirement priority or
critical components [3]. TCS and TCR, on the other hand, may leave out certain crucial
test cases that can be useful for upcoming versions of the product [2]. On the other side,
finding the best order for the test cases, as well as the best way to limit or choose the test
cases, makes it a NP- hard problem [6].

Optimization strategies can be used to successfully overcome these issues. Nature-
inspired algorithms have been successfully employed to solve difficult optimization prob-
lems in many domains [7]. Alternatively, they can improve the cost-effectiveness of re-
gression testing. Nature-inspired algorithms appeal to researchers because of their ba-
sic structure and ease of use. The methods are theoretically built by modeling natural
events [3]. These algorithms are broadly classified into three classes: biology-inspired,
physics/chemistry-inspired and social-phenomena-inspired algorithms. These techniques
have also been applied in regression testing [2]. The most often used algorithms are evo-
lutionary algorithms and swarm intelligence-based algorithms from the biology-inspired
family of nature-inspired approaches [8].

PSO algorithms have been used by researchers for solving regression testing problems.
We have also used similar approaches in our previous works. For Example, Dragonfly was
hybridized with PSO for prioritizing the test cases using fault coverage information. It
reduced the test suite to 87-96%, which thereby removed some of the critical test cases.
Therefore, tri-level regression testing was performed by layering the test case selection in
between the test case prioritization and reduction. The promising results of the nature-
inspired algorithms on statement coverage motivated us to validate the results on fault
coverage as well. As a result, this work analyses the effect of fault and statement coverage
criteria on the performance of the technique. It also suggests a swarm-intelligence-based
algorithm, Quantum-behaved particle swarm optimization (QPSO) and its improved
version, IQPSO, for tri-level regression testing to improve the quality of results. The main
contributions of this research are:

¢ Improved QPSO Algorithm to solve the TCP for fault and statement coverage criteria.

* Extended the algorithm for selecting the modification-revealing test cases using histor-
ical information and further reduction of the test suite size.

¢ Performance analysis of the algorithms using different testing goals, i.e., code coverage
and fault coverage.

* Verified robustness of the proposed algorithm against Genetic Algorithm (GA), Bat
Algorithm (BAT), Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO),
Adaptive PSO (AdPSO) and the hybrid of PSO with Gravitational Search Algorithm
(PSOGSA) and Dragonfly Algorithm (DAPSO).

Sensors 2022, 22,4374

30f18

Alternatively, the nature-inspired algorithms prioritize test cases based on the most
extensively used criteria: statement and fault coverage. The modification-revealing test
cases are included with the help of the adaptive test case selection method. It takes into
account test case history and picks failed test cases based on probabilistic potentials. Since
the test selection percentage is large at the expense of high inclusiveness; the TCR is
introduced to minimize test suite size by removing duplicate test cases. The empirical
results show that the proposed technique works for both fault and statement coverage.
Inclusivity, test selection percentage and cost reduction percentages are higher in the case
of fault coverage compared to statement coverage but at the cost of slightly high fault
detection loss at the test case reduction stage.

The organization of the paper is structured as follows: Section 2 describes the research
work done in the application of PSO algorithms for solving regression testing problems. In
succession, Section 3 presents the working mechanism of the basic PSO and QPSO. The
proposed algorithms are discussed in Section 4. Sections 5 and 6 present the experimental
setup and results analysis. The paper is concluded in Section 7.

2. Literature Review

A review of the literature on the applications of nature-inspired algorithms for regres-
sion testing is presented in this section. For Example, Li et al. [4] compared search-based
methods to traditional algorithms. It was discovered that the search space is better ex-
plored with GA. It prompted more research into the use of nature-inspired algorithms.
For example, Zhang et al. [9] used a distance-based and index-based implementation of
ACO to prioritize test cases, and the results were superior to GA, PSO and RS. Using the
Cuckoo Search Algorithm (CSA), a new fixup mechanism for permutation encoding was
developed to address the TCP problem [3]. CSA was also used to reduce the test suite for
configuration-aware software testing [10].

Mohapatra and Prasad [11] have employed Ant Colony Optimization on Java pro-
grams, and analyzed the performance for reduced suite and complexity to traditional
techniques. The quantum-inspired ACO approach for test suite reduction was developed
by Zhang et al. [12]. The suggested method outperformed previous ACOs in terms of a %
decrease in size. NSGA-II was employed by Mondal et al. [13] for TCS by taking the test
suite variety and code coverage as a fitness metric. With a maximum time limit of 20%, it
was discovered that diversity enhanced the defect detection rate by up to 16 percent.

Several researchers have employed PSO, such as Khatibsyarbini et al. [14], who used
string distances to arrange the test instances and validated it on the real-world TSL dataset.
To choose test cases based on redundancy, binary constraint PSO and its hybrid variants
with local search algorithms were developed [15]. PSO was implemented with local search
to select test cases, having goals of increased branch coverage and lower costs [16]. Because
of the positive findings, PSO was also combined with harmony search, which performed
better than NSGA-II [17]. Correia [18] developed a test suite diversity diagnosability
measure, and the results were improved by applying local search algorithms with PSO to
maximize requirement coverage while lowering associated costs.

The test case reduction was also implemented with TCP by hybridizing the PSO with
the Dragonfly Algorithm. The observations suggested that hybrid algorithms outperformed
other search algorithms [6]. Tri-level regression tesing was proposed to prioritize, select
and minimize the test cases based on statement coverage. It was observed that the hybrid of
PSO with Gravitational Search Algorithm (PSOGSA) outperformed GA, PSO and GSA [5].
The test suite was minimized using hybrid PSO and the Firefly Algorithm, considering the
fault coverage [19]. The modified condition decision coverage criteria were employed as
fitness measures in PSO for prioritizing the test cases [20]. Deneke et al. [21] also proposed
the PSO Algorithm for reducing the test suite based on requirement coverage and cost.
Samad et al. [22] proposed multi-objective PSO for optimizing the code and fault coverage
and cost. Agrawal and Kaur selected the test cases using the fault information with the

Sensors 2022, 22,4374

40f18

application of PSO [23]. Table 1 shows the application of PSO Algorithms for regression
testing methods along with their optimization criteria.

Table 1. Summary of PSO Algorithms used in Regression Testing.

Author(s) (Year) Method Nature-Inspired Approaches Criteria

De Souza et al., 2013,2014 TCS Binary PSO Requirement Coverage with Time

De Souza et al., 2015 TCS Binary PSO-HS Branch Requirement Coverage with Cost
Khatibsyarbini et al., 2018 TCP PSO String Distances

Agrawal and Kaur 2018 TCS PSO Fault Coverage and Time

Correia, 2019 TCS PSO-LS Requirement Coverage

Nayak and Ray 2019 TCP PSO Modified Condition Decision Coverage
Samad et al., 2021 TCP MOPSO Code and Fault Coverage with Cost
Bajaj and Abraham, 2021 TCP and TCR DAPSO Fault Coverage

Bajaj and Sangwan, 2021 TCP, TCS, TCR ~ PSOGSA Statement Coverage

Bharathi, 2022 TCR PSO-FFA Fault Coverage

Deneke et al., 2022 TCR PSO Requirement Coverage and cost

PSO algorithms have become one of the state-of-the-art algorithms and show promis-
ing results in various domains, e.g., reduction of CO, emissions in air baggage systems [24].
The original PSO, on the other hand, had issues, such as getting trapped in local optima
and premature convergence [25]. According to the findings, upgraded and hybrid ver-
sions of PSO outperformed PSO for complicated systems [15]. One such algorithm is
Quantum-behaved PSO (QPSO). It is based on quantum mechanics in which particles
can travel through a large search space for global convergence [26]. This method has
shown good results in a variety of applications, such as cancer classification [27], feature
extraction ([28-30]) and constrained engineering problems [31], and others [32]. However,
it has not been investigated in the TCP domain, which might be due to the fact that it was
originally designed for continuous problems. Therefore, to shift infeasible solutions into
feasible ones, we suggested a discrete QPSO method based on an adaptation strategy. It
does, however, have significant drawbacks, such as early convergence. As a result, we have
improved it with a dynamic contraction-expansion coefficient to speed up the performance
in the last iterations [31].

Besides this, we have extended the algorithm for selecting the modification-revealing
(MR) test cases from the current best solution of TCP. It is occasionally necessary to reduce
the test suite by reducing redundancy because of time limits; thus we employed the TCR
approach in the end. Our key focus in this research is on performing regression testing
in three steps, including TCP, TCS and TCR processes for fault and statement coverage.
Alternatively, the effect of different testing criteria on the overall performance of algorithms
was analyzed. The observations suggest that the tri-level regression technique is effective
for both coverage criteria. The proposed algorithm, IQPSO, is statistically not significant
from PSOGSA; however, its variance and mean fitness values are better.

3. Preliminaries

This Section briefly explains the working mechanism of Particle Swarm Optimization
(PSO) and Quantum-behaved PSO.

3.1. Particle Swarm Optimization

PSO is inspired by particle behavior, such as flocking, swarming and herding. Each
particle changes its flight based on self or companion’s previous flight experience. Each
particle, based on its own experience, is aware of the location of food, which is referred to as
the personal best position (P). Simultaneously, the particle has knowledge of the swarm'’s
best-discovered position, the global best position (G). This phenomenon is reproduced in
order to solve real-world issues. In other words, the swarm is made up of particles that fly
randomly in the solution space with velocity v; at position x; and change positions based

Sensors 2022, 22,4374

50f18

on personal experience, social behavior and cognitive behavior ([33]). The position and
velocity of each particle i at tth generation are defined mathematically as:

vi(t+1) = wo; + ey (Pi(t) — xi(t)) + cara(G(t) — xi(t)) ey

xi(t—l—l) :xi(t)—i—v,-(t—i-l) (2)

w is the inertia weight used to regulate the impact of prior velocity; c; and ¢, are the con-
stants used to adjust the attractiveness speeds among these social and cognitive elements;
and r; and r, are uniform random values in the range [0, 1].

3.2. Quantum-Behaved PSO

A more robust variant of PSO called QPSO is created [25], as PSO cannot ensure global
convergence [32]. It determines the Quantum-behaved particles’ route, assuming that N
particles with specified energy and delta potential are well-centered in each dimension of
the n-dimensional Hilbert search space. The jth component of tje particle’s position at tth
iteration is given by the Monte Carlo technique:

byt +1) = agr) & 1n< 1) ®)

u;(t)

L;j(t) = 20|mean;(t) — x;;(t)| and mean;(t) = ;I%xij(t) 4)

i j

where u;j(t) is a uniformly distributed value between 0 and 1, a;;(t) is the individual’s
local attractor and theta is the contraction-expansion coefficient. As a result, the particle’s
location in the QPSO Algorithm may be calculated as follows:

a;j(t) — 0|Mbest(t) — x;;(t)|In(1/u;;(t)) :r(0,1) > 0.5

xi(t+1) ={ a;j(t) 4 8| Mbest;(t) — x;i(t)[In(1/u;j(t)) : otherwise

®)
In each generation, the particles travel around the local attractor a;;(t), which is formed
with the P and G optimal locations as follows:

a;j(t) = ¢y (1) Pi(t) + (1 — ¢3i(t))G;(t), ¢ii(t) ~ (0,1) (6)

The next generation’s particle position distribution is computed using the mean Mbest
of the P best locations of the particles.

N
Mbest;(t) = %Zpij(t) %

The fundamental difference between the PSO and the QPSO is twofold: (1) a large
search space owing to the exponential distribution of the particles; and (2) the particle’s
distance from its partners is considered, whereas in PSO, particles move freely to converge
to the global best. Another benefit is that it only has one parameter, theta, which must be
managed for convergence and whose value is reduced linearly using the equation:

0 = (Omax — Omin) * (Maxit — t)/ Maxit + 0,3, (8)

Because it is simple to use and has been tried and tested on a variety of applications,
ref. [32], we sought to apply the QPSO method to a discrete optimization problem in this
study and compare its performance to that of state-of-the-art techniques.

Sensors 2022, 22,4374

6 of 18

4. Proposed Work

This section explains an improved QPSO Algorithm. It is described in three stages.
First, it incorporates the asexual reproduction operator into the population (ARO). Second,
the adaptive contraction-expansion coefficient is used to alleviate the issue of stagnation.
Finally, the adaptive TCS method is then used to choose the MR test cases. It is followed
by the TCR technique for minimizing the size of the test suite as follows:

4.1. Population Update

Appropriate mapping increases the algorithm’s speed and efficacy, so the real numbers
are being updated to permutation series by applying the asexual reproduction method.
The fix-up process creates a link between real numbers and test case sequences, such that
the current solution acquires the parent solution’s properties by forming the bud from the
parent while keeping the offspring’s possible values (larva). Alternatively, the algorithm
recalculates and rounds the output to natural values. Do not care conditions (*) are used to
replace out-of-range and identical particles [3].

4.2. Dynamic Contraction-Expansion Coefficient (6)

The value of the contraction-expansion coefficient 8 in QPSO indicates the population’s
search radius. The bigger the value, the wider the particle search range; on the other hand,
the smaller value, the more narrow the search range. The evolution velocity coefficient « is
introduced to adaptively alter 6 [34]:

Gfit(t)

T Gfit(t—1) ©)
a € (0,1) since the global optimal solution is always replaced by the solution with superior
fitness as the iteration advances; specifically, Gfit(t) >> Gfit(t —1) > 0. The fitness value
of global best varies significantly when the value of « is tiny. The evolution is speeding up
at small & due to significant changes in Gfit as the particles are beyond the ideal location.
As a result, § needs to be increased to ensure a quick optimization. The evolution gets
slowed down with large &, and the particle search range is reduced, and so is the 6 for
better optimization. The solution converges, and the evolution stops at &« = 1. Therefore,
Equation (8) is replaced with:

0 = Omax — aOpin (10)

here 6,,;, and 0,,4x are the minimum and maximum values, and « is the evolution velocity
coefficient’s weight. Further, the difference between P(t) — G(t) approaches zero as the
iterations proceed, so this value is replaced with the mutation operator x,;(t) — x,;(t), where
r and s are the particles selected randomly from the population [34]. It is mathematically
formulated as:

xii(t) = ¢ij(t) (% (1) — x5i(t)) + (1 — ¢3;()) Gj(t) & 0| Mbest;(t) — x;;(t) [In(1/u;;(t)) (11)

4.3. Adaptive Test Case Selection

The test case selection approach was proposed [5] that takes into account the state-
ments they cover in the modified version and the impact of failed test cases. It is a dynamic
algorithm that picks test cases depending on their pass or fail information after each itera-
tion of TCP step. During the selection process, it requires exact input information, which is
quite important in uncovering errors. It is called adaptive as it revises the fault detection
capabilities (P(t)) of unallocated test cases and chooses test cases based on existing and
earlier historical data. The technique is described as:

Pot'(s) 2 s is not run by ¥/
Pot(s) ={ Pot'(s)*q :sisrunbyt andt is failed (12)
Pot'(s)xp :sisrun byt and t' is passed

Sensors 2022, 22,4374

7 of 18

Before picking the test case #/, Pot(s) is the chance of any statement s having additional
errors. p and g are constants with values between 0 and 1, such that p + g = 1. It measures
the influence of pass or fail status on the Pof(s) of any statement s. The values of p and
q are set to 0.15 and 0.85, and q is set high since the goal is to acquire a larger proportion
of failed test cases than passed ones. It also uses Equation (13) to update the P(t) of the
unallocated test cases t:

P(t)=) Pot(s) (13)

s is run by t

The test case t with the highest P(t) is chosen, and other test cases’ potentials are
updated using the chosen test case’s state. The P(t) of unassigned test cases t is also
updated depending on their revised potentials. In other words, the unassigned test cases’
fault detection capacity is recalculated. The shortlisting sequence is based on the most
recent data obtained, and it picks the test case ¢ that has the highest rank in the modified
P(t). If the test cases are tied, the initial copy of the test case order is used to break the
tie. ST is created by removing the specified test case from PT. The previous steps are
continued until the stopping requirements are fulfilled, i.e., it creates a sufficient test case to
achieve 100 percent statement and fault coverage (mx), as presented in Algorithm 1. As the
algorithm contains two loops that run up to the size of the test suite, the time complexity of
the algorithm is O(n?).

Algorithm 1 Adaptive Test Case Selection (ATCS) Algorithm.

1: Define potentialspand q,p+q=1
2: Initialize PT = Prioritized suite ST = empty test set with capacity mx
3: Select the first r test cases that covers all faults and statements
4: st=1and t =PT(1) =ST(1)
5: Find Pot(s) and empty PT(1)
6: Find other test cases needed for full coverage
7. while size(PT) > 0 do

8 if (st = mx) then

9 break

10: end if

11: st=st+1

12: for t do = 1.PT Calculate P(t)

13: end for

14: t = max(P)

15: Update Pot(s), PT=PT — t, ST=ST +t
16: Empty P array for reassignment

17: end while

18: Return selected test cases

4.4. Test Case Reduction (TCR)

To reduce suite size and cost, the current best solution of every generation is followed
by the duplicate verification, and the very first RT test cases covering the faults/statements
completely are chosen. This technique has the advantage of exposing how the test cases are
ranked precisely [6]. The pseudo-code of TCR is given in Algorithm 2. Since it contains one
loop for the test cases (1) and another for finding the faults or statements (), so the time
complexity of the algorithm can be calculated as O(nm).

Algorithm 3 presents an Improved IQPSO Algorithm consisting of two loops, Maxit
and Pop. It also contains ATCS and TCR algorithms, so the overall complexity of the
algorithm is O(Maxit * Pop (n® + nm)).

Sensors 2022, 22,4374

8 of 18

Algorithm 2 Test Case Reduction Algorithm.

1: Define test fault matrix M, Ranked test cases T,

2: Initialize Faults position array Pos and test cases indices array I
3 fort=1,2,...,size(T) do

4 for f =1,2,...,size(Pos) do

5: if (M(T(t),Pos(f)) = 1 and I(f) = 0)) then

6 I(f)=t

7 end if

8 end for

9: end for

10: Reduced array R = T(I)

Algorithm 3 IQPSO Algorithm.

1: Define Pop, Maxit, 6,4x, 0pin and &

2: Initialize random population x;

3: fort=1,2,..., Maxit do
fori=1,2,...,Popdo

5 Calculate fitness f(x;)

6: Update P; and G solutions

7: Update alpha and theta using (9) and (10)
8

9

if « == 1 for J attempts
: Update x;(t + 1) using (11)
10: end if

11: Update x;(t + 1) using (5)
12: end for

13: Apply ATCS Algorithm 1
14: Apply TCR Algorithm 2
15: end for

16: Return: Final solution

5. Experimental Setup

This section outlines the empirical study, including research questions, datasets, eval-
uation metrics and the algorithms with which the proposed algorithm is compared. The
formulated research questions are:

RQ1. What is the performance of the proposed algorithm for TCP?

The objective is to see if the suggested algorithm outperforms others. It also identifies
which algorithm produces the best results, as well as the effect of various testing settings
on algorithm performance.

RQ2. What is the performance of the proposed algorithm for TCS?

The goal is to investigate the efficiency of the provided strategies for the ATCS method,
namely, test selection percentage, inclusivity of MR test cases and reduction in cost percentage.

RQ3. What is the performance of the proposed algorithm for TCR?

The aim is to evaluate the effectiveness of the suggested algorithm to that of the other
methods. Furthermore, to figure out which testing criteria improve TCR. Alternatively, to
see how it impacts the coverage and fault detection capabilities of the test suite.

5.1. Experimental Design

PSO, QPSO and the latest variants of PSO, i.e., PSOGSA [5], DAPSO [6] and Adaptive
PSO (AdPSO) [35], are the algorithms considered for comparison. Apart from these, the
algorithm is also validated against state-of-the-art algorithms, such as GA, BAT and the
recently proposed Grey Wolf Optimization (GWO) [36]. These methods were developed
using MATLAB R2017 on a Dell laptop with an Intel i5 CPU, Windows 11 and 8GB of RAM.
Due to their stochastic nature, the algorithms are performed 30 times. These are used on
three different Java applications (jtopas, ant and jmeter) that are pulled from the software

Sensors 2022, 22,4374

90f18

infrastructure repository (SIR) [37]. We have applied the algorithm to different versions of
these programs. Table 2 provides more information.

Table 2. Subject Programs.

Programs Versions KLOC Classes Methods Test Cases Type
ant 7 80.4 650 7524 878 JUnit
jmeter 5 43.4 389 3613 97 JUnit
jtopas 4 5.4 50 748 209 JUnit

The performance of the algorithms is influenced by parameter choices [38] . As a
result, we carefully choose the parameters based on a comprehensive review of related
works as well as a trial-and-error process for determining optimal values. Table 3 also
contains the data retrieved using the Taguchi approach.

Table 3. Parameter settings of the algorithms.

Algorithms Parameter Values

GA per = 0.8, p = 0.1, tournament selection, ordered crossover

BA 7o =0.001, Ao =1, fiin =0, fiuax = 1.5, 0 = 0.9,y = 0.99

PSO, AdPSO c1 =150 =2, wyi, =04, Wyay = 0.9

QPSO Omin = 0.5, Oppax = 1.7

1QPSO Opin = 0.5, 0ax =1.7,6 =5

PSOGSA cl =15,02 =2, wyiy =04, Wyay =09, « =15, Gy = 100, Sinemap

DAPSO §=02,a=025c=06f=08e=08c1=15c2=2 wy, =04,
Winax = 0.9

Common Parameters Pop = 100, Maxit = 1000

5.2. Performance Measures

The following performance measures were used to validate the efficiency and efficacy
of these algorithms:

5.2.1. Test Case Prioritization

To assess the robustness of the proposed technique, the test cases were selected using
two separate testing criteria: fault and statement coverage. As a result, the commonly used
fitness measurements and effectiveness measures are defined as follows:

Average Percentage of Fault Detection (APFD) is a measure of how well a system detects
faults. It finds a weighted average of the detected defects based on where they are in the
test suite [39]. It is computed as follows:

izy TF(i) n 1

APFD =1 —
nxm 2%n

(14)
The location of the test case that detects the ith fault is denoted by TF(i), and the faults
covered by n test cases is denoted by m. Its value lies between 0 and 100, with greater being

better. The Average Percentage of Statement Coverage (APSC) is calculated in the same
way as the APFD.

5.2.2. Test Case Selection and Reduction

Test selection percentage, cost reduction percentage, fault detection percentage and
coverage loss percentage are commonly used efficacy measures. In addition to these, the
inclusivity measure is also used for TCS as follows:

Test Selection Percentage (TSP): It is a percentage selection in the size of the test suite.

TSP = %t %100 (15)

Sensors 2022, 22,4374

10 0of 18

here st indicates the test cases selected from # test cases.
Inclusivity (1): The extracted MR test cases emr divided by the total MR test cases totmr

gives the inclusivity measure.

=" 100 (16)
totmr

Fault Detection Loss Percentage (FDLP): The ratio of faults not covered by minimized
test suite 71 to total faults covered by the original suite t fc [40]:

_ nfl
FDLP = e 100 (17)

Cost Reduction Percentage (CRP): It is a percentage of the test suite’s cost that is reduced
rcost when compared to the original suite’s cost fcost.

rcost
tcost

CRP =

% 100 (18)

6. Results and Analysis

This section experimentally assesses the proposed algorithm for TCP using statement
and fault coverage criteria. TCS and TCR have been studied for their effects on fault
coverage loss, statement coverage loss and cost benefits. To determine the experimental
results of a software, the cumulative average of all its iterations was employed. The
performance metrics for each version were calculated using the average of 30 runs. For
fitness metrics, boxplots and convergence curves are also shown. A one-way ANOVA
test with a p-value = 0.05 was used to analyze the algorithms’ output statistically. If
p < 0.05, the null hypothesis was rejected, suggesting that the algorithms’ difference
was statistically significant. Further, Tukey’s simultaneous test was used to evaluate the
pair-wise comparison of the methods.

6.1. Performance Analysis of TCP (RQ 1)

Table 4 shows the mean fitness and variance of performance metrics as well as their
corresponding Tukey group ranks for all of the programs. The observations state that IQPSO
is statistically different from all other nature-inspired algorithms, with a p-value of less
than 0.05, for both statement and fault criteria except PSOGSA. Moreover, it suggests that
there is no significant difference between the means of (1) PSOGSA and QPSO, (2) AdPSO
and DAPSO, (3) AAPSO and GWO and (4) GA and PSO for both criteria. The convergence
curves for one of the versions of the subject programs are illustrated in Figure 1. It shows
that the proposed IQPSO Algorithm possesses high-quality solutions for both criteria.

Table 4. Comparisons of the algorithms for TCP over fault and statement coverages.

Mean Fitness, Variance and Tukey Ranking for TCP (%)

Programs Algorithms - -
APFD Variance TR APSC Variance TR
IQPSO 96.702 0.879 A 98.559 0.494 A
PSOGSA 95.965 1.413 AB 98.229 0.842 AB
QPSO 95.621 1.966 B 97.998 0.806 BC
DAPSO 94.066 3.884 C 97.841 0.976 BCD
jtopas AdPSO 93.93 4.576 CD 97.795 0.817 BCD
GWO 93.118 4.299 D 97.706 1.895 DE
GA 91.918 4.555 E 97.463 1.809 DE
PSO 91.18 9.875 E 97.33 1.905 EF
BAT 89.951 9.152 F 96.863 4.034 F

Sensors 2022, 22,4374

110f18

Table 4. Cont.

Mean Fitness, Variance and Tukey Ranking for TCP (%)

Programs Algorithms
APFD Variance TR APSC Variance TR
IQPSO 95.337 7.283 A 98.105 0.976 A
PSOGSA 94.344 10.394 AB 97.482 2.135 B
QPSO 93.937 9.935 B 97.403 2.241 B
DAPSO 93.292 14.327 BC 97.397 2.49 B
ant AdPSO 92.53 15.674 C 97.239 2.85 B
GWO 92.149 15.204 CD 96.586 4.991 C
GA 91.304 17.977 DE 96.657 4.476 C
PSO 90.577 19.975 EF 96.529 4591 C
BAT 90.094 20.42 F 95.924 6.397 D
IQPSO 95.402 3.498 A 99.218 0.193 A
PSOGSA 94.31 5.603 B 98.989 0.351 AB
QPSO 93.696 6.492 B 98.987 0.358 AB
DAPSO 92.137 10.134 C 98.916 0.359 B
jmeter AdPSO 92.12 9.617 C 98.819 0.592 BC
GWO 91.943 8.38 C 98.625 0.677 C
GA 90.672 8.894 D 98.331 0.747 D
PSO 89.396 10.309 E 98.22 0.703 D
BAT 89.145 12.483 E 97.748 1.914 E

96

95

94

Mean Fitness Values

93

Fault Coverage

1 100 200 300 400 500 600 700 800 900 1000

a8

a6

Mean Fitness Values

aa-{|

Number of Iterations

Statement Coverage

1 100 200 300 400 500 600 700 800 900 1000

Number of Iterations

Algarithms
BAT

- = P50
====GA

— - GWO
=== AdPs5O
~— DAPQ

— — QP30
==== PS0GSA
= = IQPs50

Algorithms
BAT

— T P50
TTTTGA

— - GWO

— °° AdPSD
~ DAPsQ

— — QPs0
—--—- P50GSA
— ~ IQPs0

Figure 1. Convergence curves of algorithms for fault and statement coverage criteria of TCP.

It was also observed that most of the algorithms had equivalent variance in the
case of statement coverage. The boxplots in Figure 2 also depict variation in algorithmic
performance for fault coverage that is higher for statement coverage. This is because faults
are dispersed across the entire software. In other words, most test cases cover almost the
same statements. Therefore, the statement coverage boxplots are more compressed than the
fault coverage boxplots. Overall, the proposed IQPSO is superior to all other algorithms in
terms of variance.

Sensors 2022, 22,4374

12 0f 18

NTTLEARA

S o & (s] (] (] o & (] o & (s] (] (]
F & & R 4 & & § e & &£ 58 & & <
APFD APSC

MMMMW?BMEM

Mean Fitness Yalues
32

%\O
%
=
%\O

100

v
W

85

&0

Mean Fitness Yalues
]

A -} O 0 0 .o) W3 o & o .0 .0 o o
& & <?@\?§»$@ £@o§\£ & & & & # o@éoé‘“\g
APFD X APSC
¢ Jmeter
= moe®m TR T
2 . & &
iL g5
3
a0
= & O & © o o .0 o 4 O F WO L O 0)
& $ A 4 @O@" & & & R I 4 éoé‘” &
APFD APSC

Figure 2. Boxplots of algorithms for fault and statement coverages of TCP.

6.2. Performance Analysis of TCS (RQ 2)

The performance of the test case selection is evaluated using test selection percentage,
inclusivity and cost reduction percentages as follows:

6.2.1. Test Selection Percentage (TSP)

The full version study revealed a random pattern, indicating that all of the algorithms
behave similarly. We are unable to determine which algorithm is superior to the others.
However, according to the program analysis, DAPSO produced the best TSP for two out of
three programs in both coverages (see Table 5). It can be observed that IQPSO, PSOGSA,
QPSO and AdPSO are better than PSO, GWO, GA and BAT for fault coverage. On the
other side, GA, GWO and PSO performed better than IQPSO, PSOGSA, AdPSO, QPSO and
BAT in the case of statement coverage. IQPSO performed better for ant, which includes a
significant number of test cases and statements. As a result, it can be said that the improved
approach may outperform the large programs. It was also observed that the selection
percentage is less in the case of fault coverage than the statement coverage.

6.2.2. Inclusivity (I)

All the algorithms are capable of incorporating over 78% and 76% MR test cases in
statement and fault coverages. The proposed algorithm worked well for statement coverage,
followed by PSOGSA, QPSO, DAPSO, AdPSO, PSO, GWO, GA and BAT. However, IQPSO
and PSOGSA performed least well in the case of fault coverage and the performance-wise
algorithms can be ranked as AdPSO, BAT, PSO, GA, QPSO, DAPSO, GWO, IQPSO and
PSOGSA. Alternatively, the ATCS method picks a large number of test instances in the case
of statement coverage than the fault coverage criteria. Table 5 also showed that the fault
coverage criteria is better for inclusiveness of the MR test cases. The inclusivity of variable
state test cases is critical since they necessitate extra care because they do not produce the
same results for all versions. In other words, the ATCS method is based on the modification
coverage so the fault coverage is the more appropriate choice for inclusivity of the MR test
cases over statement coverage.

Sensors 2022, 22,4374

13 0f 18

6.2.3. Cost Reduction Percentage (CRP)

TCS has witnessed a cost reduction of 6.93-30.26% and 18.78-48.73% for statement and
fault coverage criteria. In the case of ant and jmeter, DAPSO delivers the best cost reduction
% in most of the cases, whereas IQPSO outperformed DAPSO for statement coverage in
ant and fault coverage in jtopas. In other words, DAPSO, GA, GWO and PSO performed
better than the PSO variants in statement coverage, whereas IQPSO is the first runner-up
for fault coverage after DAPSO (see Table 5). It was also discovered that the TSP and the
CRP have an indirect link. In other words, the lower the number of tests in the suite, the
higher the CRP.

Table 5. Comparisons of the algorithms for TCS over fault and statement coverages.

TSP Inclusivity CRP
Program Versions Algorithms
TSPapsc TSPaprD Iapsc IapFD CRPypsc CRPaprp

1QPSO 81.235 51.750 89.024 87.834 17.356 48.731

PSOGSA 81.567 53.567 88.457 86.238 18.986 48.001

QPSO 83.485 51.833 87.422 81.034 19.084 48.767

DAPSO 68.960 59 87.644 84.387 30.265 41.83

jtopas AdPSO 80.518 61.5 85.087 92.083 19.711 29.359
GWO 74.035 64.75 82.39 75.67 26.125 34.918

GA 77.926 77.867 84.263 85.544 21.829 23.966

PSO 71.593 65.5 86.672 89.792 26.897 34.695

BAT 83.368 73.858 81.536 90.424 17.451 32.993

1QPSO 85.333 59.667 80.449 79.509 14.321 31.527

PSOGSA 86.468 62.879 79.298 80.687 12.686 30.878

QPSO 88.81 67.622 79.5 89.621 10.016 40.798

DAPSO 87.995 55.667 79.423 85.064 11.378 45.799

ant AdPSO 90.905 77 78.363 95.803 8.487 22.966
GWO 90.057 72.533 78.506 88.889 8.961 27.57
GA 89.914 72.944 77.68 93.953 9.054 28.057

PSO 91.014 63.889 79.752 94.038 7.887 36.914

BAT 89.676 79.333 78.583 94.915 9.259 20.893

1QPSO 86.483 62.4 96.940 78.305 12.518 35.895
PSOGSA 88.567 63.588 95.876 77.365 11.568 34.757
QPSO 91.476 66.15 94.828 84.463 6.934 31.637

DAPSO 82.016 61.540 94.149 83.014 15.728 36.501

jmeter AdPSO 90.843 71.89 96.02 96.367 7.656 26.219
GWO 82.903 74.19 91.695 87.447 15.025 23.725

GA 82.363 77.51 91.557 95.509 15.251 21.195

PSO 84.343 69.64 94.413 88.404 14.75 27.25

BAT 86.223 78.37 93.147 92.617 12.894 18.783

The best results are highlighted with bold.

6.3. Performance Analysis of TCR (RQ 3)

The performance of the test case reduction is analyzed by calculating the test selection
percentage, cost reduction percentage and fault detection loss percentages as follows:

6.3.1. Test Selection Percentage (TSP)

Table 6 shows that all the methods perform almost equally well when it comes to
reducing the test suite. Nonetheless, the proposed approach performed better than other
nature-inspired algorithms for both coverages. Comparatively, BAT had a higher selection
percentage. TSP was larger for statement coverage than fault coverage. It is because there
was a lot of redundancy in statement coverage, and the faults were spread over the whole
program and to balance them APSC had slightly higher TSP than APFD.

Sensors 2022, 22,4374

14 0f 18

Table 6. Comparisons of the algorithms for TSR over fault and statement coverages.

TSP FDLP CRP
Program Versions Algorithms
TSPapsc TSPaprp FDLPspsc FDLPaprp CRPgpsc CRPapFD

1QPSO 22.085 19.642 0.974 1.707 77.911 82.373
PSOGSA 22.138 19.711 0.902 1.909 77.656 81.876
QPSO 22.341 19.717 0.905 2.302 77.85 81.253
DAPSO 22.626 19.742 0.000 1.372 77.576 81.333
jtopas AdPSO 23.593 23.45 0.974 0.000 76.44 76.45
GWO 22.426 20.583 0.905 1.949 77.71 80.775
GA 23.718 21.783 1.112 0.000 76.569 78.67
PSO 22.626 21.842 0.835 1.064 77.505 79.164
BAT 24518 24.642 0.399 0.764 75.446 75.894
1QPSO 30.998 27.933 0.318 8.134 69.275 73.407

PSOGSA 31.755 28.234 0.412 6.689 68.587 73
QPSO 31.425 27.933 0.434 5.975 67.295 72.07
DAPSO 31.283 29 0.337 2.887 67.288 71.014
ant AdPSO 32.278 30 0.318 3.998 66.886 70.209
GWO 33.267 29.667 0.89 5.888 65.408 70.127
GA 33.891 27.780 0.359 7.982 65.028 73.513
PSO 32.61 28.333 1.121 4572 65.855 72.17
BAT 35.291 30.333 0.446 3.696 64.574 70.274
1QPSO 21.767 19.000 0.000 1.387 77.132 81.248
PSOGSA 22 19.354 0.000 1.076 76.453 80.653
QPSO 22.272 19.94 0.000 0.752 76.541 79.73
DAPSO 22.003 20 0.000 2.331 76.535 78.874
jmeter AdPSO 23.088 21.2 0.000 0.000 75.643 77.755
GWO 22.834 22.4 0.000 0.321 76.349 77.455
GA 22.684 21.47 0.000 0.000 76.193 78.171
PSO 22.044 21.4 0.000 0.752 76.859 77.102
BAT 23.75 23.16 0.000 0.357 74.837 77.237

The best results are highlighted with bold.

6.3.2. Fault Detection Loss Percentage (FDLP)

The incorporation of ATCS helped the TCR in reducing the suite size with complete
statement coverage and minimized the fault loss too. The findings reveal that the direct
application of TCR gave quite a high fault loss, i.e., between 5% and 40% [40]. AdPSO out-
performed the other methods for statement (0-0.318%) as well as fault coverages (0-2.887%).
Table 6 shows that IQPSO had the least loss in statement coverage compared to the other
algorithms, except jtopas, where DAPSO worked better. The observations also depict that
the fault loss in APFD (0-8.134%) was higher compared to that in APSC (0-1.121%). The
reason for this is that the faults are spread over the software. Hence, the fault coverage is
lost by removing certain statement redundancy. It may be deduced that the loss of coverage
and the reduction in test suite size are inversely proportionate.

6.3.3. Cost Reduction Percentage (CRP)

The experimental findings show that the cost reduction in fault coverage was more
than the statement coverage, as it reduced the test suite better too. It was also observed
that cost reduction was inversely proportionate to test selection percentage, i.e., the larger
the decrease in test suite size, the lower the running cost. TCM costs were estimated to be
roughly 60 and 40 percent lower than TCS for statement and fault coverage. Table 6 clearly
shows that the CRP of IQPSO outperformed all other algorithms, followed by PSOGSA,
QPSO and DAPSO. GA, PSO, GWO and AdPSO had nearly identical performances. Overall,
IQPSO demonstrated superior search capabilities for solving the regression testing problem
in all three subject programs.

Sensors 2022, 22,4374

150f18

7. Conclusions

In this paper, we have suggested an improved QPSO Algorithm for regression testing
and validated it against GA, GWO, BAT and PSO and its variants, DAPSO, PSOGSA and
AdPSO. The empirical results show that the proposed algorithm IQPSO has a comparatively
low variance for statement and fault coverages. Further, the adaptive test selection approach
was able to successfully identify 77-96% of the MR test cases in both fault and statement
coverages. The study also revealed that the adaptive test selection percentage of fault
coverage was 40-60% less than the statement coverage with high inclusivity. IQPSO
performed better than all other algorithms for test case reduction and cost reduction %. The
algorithms showed approximately a 7% difference in the fault detection capability loss for
fault coverage over statement coverage. In the future, we will strive to reduce this fault
detection loss to almost zero and validate the algorithm’s results in a variety of large-scale
real-world applications. We intend to investigate alternative variants of QPSO Algorithms
by modification and hybridization to improve the inclusivity and algorithm’s performance
even further.

Author Contributions: Data curation, A.B.; Formal analysis, A.B. and A.A.; Funding acquisi-
tion, L.A.G.; Investigation, A.B.; Methodology, A.B.; Project administration, A.A. and L.A.G.; Re-
sources, A.B.; Software, A.B.; Supervision, A.A.; Validation, A.B.; Visualization, A.B., A.A. and S.R;;
Writing—original draft, A.B.; Writing—review and editing, A.B., A.A,, S.R. and L.A.G. All authors
have read and agreed to the published version of the manuscript.

Funding: The APC was funded by the Princess Nourah bint Abdulrahman University Researchers
Supporting Project number (PNURSP2022R178), Princess Nourah bint Abdulrahman University,
Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations

ACO Ant Colony Optimization

AdPSO Adaptive Particle Swarm Optimization
ANOVA Analysis of Variance

APFD Average Percentage of Fault Detection
APSC Average Percentage of Statement Coverage

ARO Asexual Reproduction Operator
ATCS Adaptive Test Case Selection
BAT Bat Algorithm

CRP Cost Reduction Percentage

CSA Cuckoo Search Algorithm

DA Dragonfly Algorithm

FDLP Fault Detection Loss Percentage
FpP Fault Position Array

GA Genetic Algorithm

GWO Grey Wolf Optimization

I Inclusivity

1QPSO Improved Quantum behaved Particle Swarm Optimization
MR Modification-Revealing test cases
PSO Particle Swarm Optimization

QPSO Quantum behaved Particle Swarm Optimization

Sensors 2022, 22,4374

16 of 18

SIR Software Infrastructure Repository
TCP Test Case Prioritization
TCR Test Case Reduction
TCS Test Case Selection
TFP Test Fault Matrix
TRP Test Reduction Percentage
Nomenclature
T; test case of the test suite
PT permuted test suite
70 fitness function
R requirement Set
X; position of a particle
v; velocity of a particle
P; personal best particles
G global best particles
w inertia weight
1,02 social and cognitive components
a local attractor
u uniform random number
0 contraction-expansion coefficient
Mbest mean best of personal best particles
¢ random number
Maxit ,aximum number of iterations
Gus(x) Gaussian distribution of x
% evolution velocity coefficient
Gfit() fitness value of global best particle
Pot(s) potential of statement
s statement covered by test case
P() priority of test case
ST selected Test Suite
RT reduced Test Suite
max maximum capacity of test suite to be selected
RSInd indices of reduced array
Pop maximum number of population
Per crossover probability
Pm mutation probability
A loudness of bat
To pulse emission rate of bat
Sfmins fmax ~ minimum and maximum frequency of bats
n number of test cases
m number of faults
st selected test cases
emr extracted modification-revealing test cases
totmr total modification-revealing test cases
nfl number of faults not covered
tfc total faults covered
rcost reduced cost of test suite
tcost total cost of test suite
p.q potential coefficients
References
1. Webert, H.; D683, T.; Kaupp, L.; Simons, S. Fault Handling in Industry 4.0: Definition, Process and Applications. Sensors 2022,
22,2205. [CrossRef] [PubMed]
2. Yoo, S.; Harman, M. Regression testing minimization, selection and prioritization: a survey. Softw. Testing Verif. Reliab. 2012, 22,
67-120. [CrossRef]
3. Bajaj, A.; Sangwan, O.P. Discrete cuckoo search algorithms for test case prioritization. Appl. Soft Comput. 2021, 110, 107584. [CrossRef]

http://doi.org/10.3390/s22062205
http://www.ncbi.nlm.nih.gov/pubmed/35336376
http://dx.doi.org/10.1002/stv.430
http://dx.doi.org/10.1016/j.asoc.2021.107584

Sensors 2022, 22, 4374 17 of 18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Li, Z.; Harman, M.; Hierons, R.M. Search algorithms for regression test case prioritization. IEEE Trans. Softw. Eng. 2007, 33,
225-237. [CrossRef]

Bajaj, A.; Sangwan, O.P. Tri-level regression testing using nature-inspired algorithms. Innov. Syst. Softw. Eng. 2021, 17,
1-16. [CrossRef]

Bajaj, A.; Abraham, A. Prioritizing and Minimizing Test Cases Using Dragonfly Algorithms. Int. J. Comput. Inf. Syst. Ind. Manag.
Appl. 2021, 13, 62-71.

Shaukat, N.; Ahmad, A.; Mohsin, B.; Khan, R.; Khan, S.U.D.; Khan, S.U.D. Multiobjective Core Reloading Pattern Optimiza-
tion of PARR-1 Using Modified Genetic Algorithm Coupled with Monte Carlo Methods. Sci. Technol. Nucl. Install. 2021,
2021, 1802492. [CrossRef]

Fister,].I.; Yang, X.S.; Fister, I.; Brest, J.; Fister, D. A brief review of nature-inspired algorithms for optimization. arXiv 2013,
116-122. arXiv:1307.4186.

Zhang, W.; Qi, Y,; Zhang, X.; Wei, B.; Zhang, M.; Dou, Z. On test case prioritization using ant colony optimization algorithm. In
Proceedings of the 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity /DSS),
Zhangjiajie, China, 10-12 August 2019; pp. 2767-2773. [CrossRef]

Ahmed, B.S. Test case minimization approach using fault detection and combinatorial optimization techniques for configuration-
aware structural testing. Eng. Sci. Technol. Int.]. 2016, 19, 737-753. [CrossRef]

Mohapatra, S.K.; Prasad, S. Test case reduction using ant colony optimization for object oriented program. Int.]. Electrical.
Comput. Eng. 2015, 5, 2088-8708. [CrossRef]

Zhang, Y.N.; Yang, H.; Lin, Z.K.; Dai, Q.; Li, Y.F. A test suite reduction method based on novel quantum ant colony algorithm.
In Proceedings of the 2017 4th International Conference on Information Science and Control Engineering (ICISCE), Changsha,
China, 21-23 July 2017; pp. 825-829. [CrossRef]

Mondal, D.; Hemmati, H.; Durocher, S. Exploring test suite diversification and code coverage in multi-objective test case selection.
In Proceedings of the 2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST), Graz,
Austria, 13-17 April 2015; pp. 1-10. [CrossRef]

Khatibsyarbini, M.; Isa, M.A.; Jawawi, D.N.A. Particle swarm optimization for test case prioritization using string distance. Adv.
Sci. Lett. 2018, 24, 7221-7226. [CrossRef]

De Souza, L.S.; Prudéncio, R.B.; Barros, FD.A.; Aranha, E.H.D.S. Search based constrained test case selection using execution
effort. Expert Syst. Appl. 2013, 40, 4887—4896. [CrossRef]

De Souza, L.S.; Prudéncio, R.B.; Barros, ED.A. A hybrid binary multi-objective particle swarm optimization with local search
for test case selection. In Proceedings of the Brazilian conference on intelligent systems, Sao Paulo, Brazil, 18-22 October 2014;
pp. 414-419. [CrossRef]

De Souza, L.S.; Prudéncio, R.B.C.; De Barros, EA. A hybrid particle swarm optimization and harmony search algorithm approach
for multi-objective test case selection. J. Braz. Comput. Soc. 2015, 21, 1-20. [CrossRef]

Correia, D. An industrial application of test selection using test suite diagnosability. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Tallinn,
Estonia, 26-30 August 2019; pp. 1214-1216. [CrossRef]

Bharathi, M. Hybrid particle swarm and ranked firefly metaheuristic optimization-based software test case minimization. Int. J.
Appl. Metaheuristic Comput. 2022, 13, 1-20. [CrossRef]

Nayak, G.; Ray, M. Modified condition decision coverage criteria for test suite prioritization using particle swarm optimization.
Int.]. Intell. Comput. Cybern. 2019, 12, 425-443. [CrossRef]

Deneke, A.; Assefa, B.G.; Mohapatra, S.K. Test suite minimization using particle swarm optimization. Mater. Today Proc. 2022,
1-5. [CrossRef]

Samad, A.; Mahdin, H.B.; Kazmi, R; Ibrahim, R.; Baharum, Z. Multiobjective Test Case Prioritization Using Test Case Effectiveness:
Multicriteria Scoring Method. Sci. Program. 2021, 2021, 9988987. [CrossRef]

Agrawal, A.P; Kaur, A. A comprehensive comparison of ant colony and hybrid particle swarm optimization algorithms through
test case selection. In Data Engineering and Intelligent Computing; Springer: Singapore, 2018; pp. 397-405. [CrossRef]

Lodewijks, G.; Cao, Y.; Zhao, N.; Zhang, H. Reducing CO, Emissions of an Airport Baggage Handling Transport System Using a
Particle Swarm Optimization Algorithm. IEEE Access 2021, 9, 121894-121905. [CrossRef]

Sun, J.; Xu, W.; Feng, B. A global search strategy of quantum-behaved particle swarm optimization. In Proceedings of the IEEE
Conference on Cybernetics and Intelligent Systems, Singapore, 1-3 December 2004; pp. 111-116. [CrossRef]

Lukemire, J.; Mandal, A.; Wong, WK. d-qpso: A quantum-behaved particle swarm technique for finding d-optimal designs with
discrete and continuous factors and a binary response. Technometrics 2019, 61, 77-87. [CrossRef]

Iliyasu, A.M.; Fatichah, C. A Quantum Hybrid PSO Combined with Fuzzy k-NN Approach to Feature Selection and Cell
Classification in Cervical Cancer Detection. Sensors 2017, 17, 2935. [CrossRef]

Peng, C.; Yan, J.; Duan, S.; Wang, L.; Jia, P; Zhang, S. Enhancing Electronic Nose Performance Based on a Novel QPSO-KELM
Model. Sensors 2016, 16, 520. [CrossRef] [PubMed]

Guo, X; Peng, C.; Zhang, S.; Yan, J.; Duan, S.; Wang, L.; Jia, P; Tian, F. A Novel Feature Extraction Approach Using Window Func-
tion Capturing and QPSO-SVM for Enhancing Electronic Nose Performance. Sensors 2015, 15, 15198-15217. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TSE.2007.38
http://dx.doi.org/10.1007/s11334-021-00384-9
http://dx.doi.org/10.1155/2021/1802492
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2019.00388
http://dx.doi.org/10.1016/j.jestch.2015.11.006
http://dx.doi.org/10.11591/ijece.v5i6.pp1424-1432
http://dx.doi.org/10.4018/IJAMC.2022010106
http://dx.doi.org/10.1109/ICST.2015.7102588
http://dx.doi.org/10.1166/asl.2018.12918
http://dx.doi.org/10.1016/j.eswa.2013.02.018
http://dx.doi.org/10.1109/BRACIS.2014.80
http://dx.doi.org/10.1186/s13173-015-0038-8
http://dx.doi.org/10.1145/3338906.3342493
http://dx.doi.org/10.4018/IJAMC.290534
http://dx.doi.org/10.1108/IJICC-04-2019-0038
http://dx.doi.org/10.1016/j.matpr.2021.12.472
http://dx.doi.org/10.1155/2021/9988987
http://dx.doi.org/10.1007/978-981-10-3223-3_38
http://dx.doi.org/10.1109/ACCESS.2021.3109286
http://dx.doi.org/10.1109/ICCIS.2004.1460396
http://dx.doi.org/10.1080/00401706.2018.1439405
http://dx.doi.org/10.3390/s17122935
http://dx.doi.org/10.3390/s16040520
http://www.ncbi.nlm.nih.gov/pubmed/27077860
http://dx.doi.org/10.3390/s150715198
http://www.ncbi.nlm.nih.gov/pubmed/26131672

Sensors 2022, 22, 4374 18 of 18

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Wen, T Yan, J.; Huang, D.; Lu, K,; Deng, C.; Zeng, T.; Yu, S.; He, Z. Feature Extraction of Electronic Nose Signals Using
QPSO-Based Multiple KFDA Signal Processing. Sensors 2018, 18, 388. [CrossRef] [PubMed]

dos Santos Coelho, L. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design
problems. Expert Syst. Appl. 2010, 37, 1676-1683. [CrossRef]

Ombkar, S.N.; Khandelwal, R.; Ananth, T.V.S.; Naik, G.N.; Gopalakrishnan, S. Quantum behaved particle swarm optimization
(QPSO) for multi-objective design optimization of composite structures. Expert Syst. Appl. 2009, 36, 11312-11322. [CrossRef]
Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural
Networks, Perth, WA, Australia, 27 November-1 December 1995; pp. 1942-1948. [CrossRef]

Guo, X.; Song, X.; Zhou,].T. A synergic quantum particle swarm optimisation for constrained combinatorial test generation. IET
Softw. 2022, 16, 279-300. [CrossRef]

Nabi, S.; Ahmad, M.; Ibrahim, M.; Hamam, H. AdPSO: Adaptive PSO-Based Task Scheduling Approach for Cloud Computing.
Sensors 2022, 22, 920. [CrossRef]

Gupta, D.; Gupta, V. Test Suite Prioritization Using Nature Inspired Meta-Heuristic Algorithms. In Intelligent Systems Design
and Applications; Advances in Intelligent Systems and Computing; Madureira, A., Abraham, A., Gamboa, D., Novais, P, Eds.;
Springer: Cham, Switzerland, 2017; Volume 557. [CrossRef]

Do, H.; Mirarab, S.; Tahvildari, L.; Rothermel, G. The effects of time constraints on test case prioritization: A series of controlled
experiments. IEEE Trans. Softw. Eng. 2010, 36, 593-617. [CrossRef]

Bajaj, A.; Sangwan, O.P. Study the impact of parameter settings and operators role for genetic algorithm based test case
prioritization. In Proceedings of the International Conference on Sustainable Computing in Science, Technology and Management,
Jaipur, India, 26-28 February 2019; pp. 1564-1569. [CrossRef]

Elbaum, S.; Malishevsky, A.G.; Rothermel, G. Test case prioritization: A family of empirical studies. IEEE Trans. Softw. Eng. 2002,
28,159-182. [CrossRef]

Bajaj, A.; Sangwan, O.P.; Abraham, A. Improved novel bat algorithm for test case prioritization and minimization. Soft Comput.
2022, 6, 1-27. [CrossRef]

http://dx.doi.org/10.3390/s18020388
http://www.ncbi.nlm.nih.gov/pubmed/29382146
http://dx.doi.org/10.1016/j.eswa.2009.06.044
http://dx.doi.org/10.1016/j.eswa.2009.03.006
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1049/sfw2.12054
http://dx.doi.org/10.3390/s22030920
http://dx.doi.org/10.1007/978-3-319-53480-0_22
http://dx.doi.org/10.1109/TSE.2010.58
http://dx.doi.org/10.2139/ssrn.3356318
http://dx.doi.org/10.1109/32.988497
http://dx.doi.org/10.1007/s00500-022-07121-9

	Introduction
	Literature Review
	Preliminaries
	Particle Swarm Optimization
	Quantum-Behaved PSO

	Proposed Work
	Population Update
	Dynamic Contraction-Expansion Coefficient ()
	Adaptive Test Case Selection
	Test Case Reduction (TCR)

	Experimental Setup
	Experimental Design
	Performance Measures
	Test Case Prioritization
	Test Case Selection and Reduction

	Results and Analysis
	Performance Analysis of TCP (RQ 1)
	Performance Analysis of TCS (RQ 2)
	Test Selection Percentage (TSP)
	Inclusivity (I)
	Cost Reduction Percentage (CRP)

	Performance Analysis of TCR (RQ 3)
	Test Selection Percentage (TSP)
	Fault Detection Loss Percentage (FDLP)
	Cost Reduction Percentage (CRP)

	Conclusions
	References

