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Abstract: Railway networks systems are by design open and accessible to people, but this presents
challenges in the prevention of events such as terrorism, trespass, and suicide fatalities. With the
rapid advancement of machine learning, numerous computer vision methods have been developed
in closed-circuit television (CCTV) surveillance systems for the purposes of managing public spaces.
These methods are built based on multiple types of sensors and are designed to automatically
detect static objects and unexpected events, monitor people, and prevent potential dangers. This
survey focuses on recently developed CCTV surveillance methods for rail networks, discusses the
challenges they face, their advantages and disadvantages and a vision for future railway surveillance
systems. State-of-the-art methods for object detection and behaviour recognition applied to rail
network surveillance systems are introduced, and the ethics of handling personal data and the use of
automated systems are also considered.

Keywords: surveillance; rail network systems; image and video analytics; computer vision; machine
learning; sensors; video anomaly detection

1. Introduction

Rail network systems are, by design, open, accessible and welcoming environments.
Control of entry is largely on the basis of revenue protection, not security, and with a
few exceptions (e.g., international services), they do not share the strict perimeter security
model adopted for air travel. While this is entirely appropriate for efficient transport
operation, it does leave the systems vulnerable in several ways. Terrorist activity is often
identified as the highest-profile vulnerability, and a range of resilience and design strategies
have been adopted to reduce the attractiveness of railways as a target and to enable them to
recover rapidly if attacked [1]. However, disruptions are caused by unexpected events such
as trespass (often linked with theft of materials or equipment) and suicide attempts [2,3].
This requires that railway employees are trained to look out for and offer support to people
who may be considering taking their own life on the railway.

Mitigation measures such as fencing can be used to prevent access at high-risk loca-
tions and help address security, trespass and suicide risks. However, access prevention is
not a solution for station environments, and it is here that recent advances in video analyt-
ics tailored to rail [4,5] offer alternative approaches to reduce these risks in coordination
with ‘designing in’ physical solutions such as blast resistant glazing [6], and management
solutions such as staff training to identify out-of-the-ordinary situations. The development
of digital technology for sensors, sensing, data fusion and machine learning, combined
with the advancing communication and cloud technologies have the potential to contribute
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greatly in these areas. Their application, however, requires careful assessment of ethics
concerning public privacy and data handling, for example, as regulated in Europe through
General Data Protection Regulation (GDPR) regulations. This survey supports the appli-
cation of these technologies in rail by bringing together technical and ethical information
to protect public security, protect the rail system from trespassing, and reduce railway
suicides. This range of applications is useful in correctly balancing the benefits and costs of
a potential system, but it leads to difficulty in the choice of language. Where video analytics
of a potential attacker may aim to identify a ‘target’ for investigation, the same technology
could also be identifying a vulnerable person in distress. For simplicity, in this article, we
have adopted the most common language used in each area of technology.

The main contributions of this work are the following: (i) it provides a thorough survey
of the latest trends in closed-circuit television (CCTV) systems, with their advantages
and disadvantages, (ii) presents the latest trends especially for vision-based behaviour
analytics and especially in the light of improving safety and security in rail network
stations, (iii) presents a systematic approach encompassing the whole process from the
data collection, to storage, communications and video analytics, including ethics and data
protection aspects, (iv) traces a vision for the future autonomous vision-based surveillance
on several aspects, including the impact of the uncertainties in Artificial Intelligence models.

This paper is organised in the following way. Section 2 introduces an overview of cur-
rent surveillance systems in rail networks. Section 2.1 introduces the recent research trends
in railway video surveillance. Following by the main components of current surveillance
systems, including CCTV cameras and non-conventional sensors, and a brief overview of
monitoring and recording systems and various algorithms on anomaly detection in surveil-
lance video data. The strengths of multiple modality sensors are discussed to help in sensor
selection concerning the level of required security. Section 2.5.1 introduces the modern
deep learning methods used in video analytics. Various computer vision technologies built
with Artificial Intelligence (AI) models based on deep learning algorithms used in railway
network surveillance are introduced in Section 2.1.1.

The impact of the uncertainties in computer vision technologies and state-of-the-
art Bayesian deep learning methods for formulating the uncertainties are introduced in
Section 3. A broad vision of next-generation systems is given in Section 4, and future data
centres are introduced in Section 4.1. Ethical and privacy-related aspects are covered in
Section 5, followed by conclusions in Section 6.

2. Overview of Surveillance Systems for Rail Networks

CCTV systems [7] have evolved over the years from simple analogue systems in the
1960s to digital systems developed in the 1980s [8]. The advent of digital systems extended
the limited recording and distribution abilities of analogue systems. Object detection and
tracking are the basic video analytics technologies in digital systems. Since the 2000s, more
and more advanced video analytics technologies have been developed, taking advantage
of valuable video data collected by multiple integrated sensors.

2.1. Bibliometric Analysis

Nowadays, the most advanced video analytics for CCTV is capable of providing
automated detection and alerts based on information processing, reasonable framework and
computer vision technologies such as object detection [9], behaviour analysis and activity
recognition [10–12], crowd tracking [13], emergency evacuation and deterrence [14–17].
We have analysed the current trends in CCTV video surveillance for rail network systems
and related computer vision technologies. Some of the results since 2010 are shown in
Figures 1 and 2. The following keywords are used in the search: “surveillance”, “railway”,
“computer vision” and “machine learning”. A tool called Bibliometrix [18] is used here.
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Figure 1. Keyword co-occurrence network of the published papers under the topic of video surveil-
lance analytics published since 2010.

Figure 2. Conceptual structure map using the Correspondence Analysis (CA) method. The clusters
represent how ideas are connected; the closer they are, the stronger the association.

During the construction of surveillance systems of railway networks, there are certain
rules issued by the government or relevant authorities that must be followed, which are
known as requirements documents. Requirements documents related to the standards
for surveillance systems in different countries [19–29] are compulsory to follow and are
to be prepared based on the outcome of the previous step. It specifies the needs and the
justification of the CCTV system [30]. Additionally, these documents cover the legislative
and privacy limitations. Other kinds of requirements documents include multiple instruc-
tions on building the surveillance systems, for example, how to access data sets on video
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analysis [31]. An example of legislative limitation is to assume that the recording capacity
of the system is one year, whereas the storage time limit defined by the government is
actually six months. An example of privacy limitations is blocking the view of a private
neighbouring property from the system.

2.1.1. Trends in Computer Vision Technologies in Video Surveillance

These technologies are either currently used in surveillance systems in railway net-
works or considered essential to be developed in the next generation of smart surveillance
systems. Table 1 shows the recent research status of the main computer vision technologies
used in railway video surveillance. The result is concluded under the keywords: “surveil-
lance”, “railway”, and “the name of computer vision technology” using the Google Scholar
search tool. These statistical results show that the focus is on human activity recognition,
anomaly detection and crowd analysis.

Table 1. Number of publications of computer vision techniques used in rail networks surveillance by
Google Scholar since 2010.

Computer Vision Techniques Used
in Rail Networks Surveillance

Number of Publications
Shown in Google Scholar

Motion or Moving Object Detection 83
Video Face Recognition 137
Person Re-Identification 6250
Human Activity Recognition 6160
Video Anomaly Detection 1060
Trajectory Analysis 1440
Crowd Analysis 1500

Section 2.2 describes the main objectives of CCTV surveillance systems.

2.2. Objectives of CCTV Surveillance Systems

The primary objective of the CCTV systems is to assist in preventing crime and terrorist
activities and to provide safety and security to people. Sensors are compulsory elements of
the CCTV system. Conventional video-based sensors have limited capability of identifying
hazardous materials or weapons used by terrorists or criminals. The main components for a
surveillance system are various sensors, monitoring and recording systems, video analytics,
communication networks, cloud computing or other storage systems. Communication
networks are critical for ensuring the reliable transfer of data among these components.
The sensors, video analytics and recording systems are configured from the monitoring
system. A block diagram of a CCTV system is shown in Figure 3.

Raw sensor data and the data analytics output can overwhelm security operators
if the data are inefficient. In order to detect behaviours of interest correctly, carefully
designing an efficient monitoring system is important. A satisfying surveillance system
setting relies on the integration of the geographic information system such as the Global
Positioning System (GPS) with the CCTV to reference information from a known location.
This reduces the training time of the operators as effective monitoring does not solely rely
on their knowledge of sensor placement across the site. Data from multiple sensors is
combined to provide all the information and intelligence relevant to a specific area in one
place. Advanced display software provides an option to view the scene not only from the
camera’s point of view but also from multiple viewpoints, which can enhance situational
awareness and reduce response time.
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Figure 3. CCTV modules. In railway surveillance, cameras are the main sensors, which are responsi-
ble for collecting video data. Different types of sensors (introduced in Section 2.3), communication
systems and other computing facilities (introduced in Section 2.4) make up the monitoring and record-
ing systems. The video analytics module receives the data passed from monitoring and recording
systems and then makes decisions using computer vision technologies.

Taking the advantages of the surveillance systems built in the railway networks,
abnormal behaviour detection methodologies by computer vision methods are widely
implemented. Surveillance systems built for railway networks are usually focused on a
constrained area, which means there are multiple computer vision technologies that could
be applied to specific scenarios. These anomaly detection algorithms based on machine
learning methods can autonomously detect unusual behaviours in video surveillance data
through the camera sensors without operator intervention. By detecting the change of
movement temporally and spatially, the system should be intelligent enough to classify
behaviours as regular or abnormal events [8,32–34]. State-of-the-art methods for anomaly
detection in video surveillance are presented in Section 2.1.1.

2.3. Sensors

The most commonly used sensors for collecting data are optical and infrared (IR)
cameras, chemical sensors and motion detectors. CCTV cameras are an important element
of security and surveillance systems [7] when deployed as part of a multi-layered security
architecture and provide video streams for all areas, both indoor and outdoor.

Conventional sensors, such as video cameras providing behavioural trait analysis, rely
on advances in video analysis to detect the behaviour of interest. Non-conventional sensors,
e.g., chemical sensors, have their advantages in detection through analysis of vapours, with
limitations in tracking and data visualisation. The integration of non-conventional systems
is still promising in current and future systems. Other combined conventional and non-
conventional sensors, such as health sensors that are useful for detecting and preventing
viruses and infections, have also been of benefit during the COVID-19 pandemic. Train
stations are major entrances and exits in national and international transport networks.
With these kinds of sensors, the surveillance systems could aid in the population-level
understanding of epidemic or pandemic spread.

Multimodality (conventional and non-conventional) sensors collaborate to give early
warnings and share useful data for sensor management purposes. Data from a single
sensor is considered low-level intelligence, whereas automated analysis of the sensor’s
data provides higher level intelligence to the security operators. Figure 4 illustrates such a
multi-modal sensor framework.
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Figure 4. An example of a sensor system composed of conventional sensors, such as electro-optical
and thermal imaging sensors, and non-conventional sensors, which enhance the capability in other
frequency domains. Acoustic sensors provide omnidirectional detection and tracking based upon
trilateration from temporal differences in the sound waves. The health sensor provides vital signs of
the individuals for detecting sick people passing through a station for further screening. A chemical
sensor detects specific chemicals for the identification of possible explosive devices. The wave scanner
detects concealed objects, including weapons.

With the continuous advancement of human technology, smart phones or watches
carried by passengers have been developed as other types of modern sensors to collect
behaviour data for behaviour surveillance [35]. However, due to the privacy and security
restrictions, these types of sensors have not been able to be used in surveillance systems.

2.3.1. Cameras

The most important component of a CCTV system is a camera, which is also known
as an imaging sensor. In some systems, non-imaging sensors are integrated to enhance
operations. The two common imaging sensors in the CCTV system are optical and thermal
cameras. The cameras consist of three parts: lens, image sensor and image processor. The
lens focuses the light reflected from an object on the image sensor, the image sensor converts
the light photons to electrical signals, and the image processor organizes, optimizes and
transmits the electrical signals. Some advanced cameras have onboard video analytics as
well. The cameras are available in various options. A summary of basic and value-added
options is given in Tables 2 and 3. These tables can be referred to for choosing the camera
features as per the risk assessment.

Table 2. Camera options (Basic).

Feature Options Pros/Cons

Connectivity
Type

Analogue
Analogue point to point connection.
Low-cost solution when upgrading conventional (analogue) CCTV system.
Secure against cyber security threats.

Digital

Digital (IP) interface.
Flexible point to multipoint connection.
High-cost solution when upgrading conventional CCTV system.
Vulnerable to cyber security threats.
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Table 2. Cont.

Feature Options Pros/Cons

Connectivity
Medium

Wired Secure against cybersecurity intrusion.
Less noise interference.

Wireless Flexible in terms of installation.

Field of view
(FOV)

Fixed Stationary mount.
Monitor one small area of interest.

Pan-tilt-
zoom (PTZ)
camera

Monitor large area using automatic/remote controlled pan (left/right),
tilt (up/down) and zoom (in/out).

Lighting
conditions

Day/night

Automatically adjust to light conditions. Coloured video during day
and black and white at night.
Used for conditions such as glare, direct sunlight, reflections and
strong backlight.

Low light Used in low light, e.g., indoor restaurants, streetlights, etc.
Cannot be used in completely dark conditions.

Night vision/
Fog/Smoke

Used in complete darkness.
Detect through obstructions such as fog and smoke.
These are either active infrared (IR) or thermal cameras. The IR
cameras use built-in IR illuminators and near IR (NIR) and IR cameras for
monitoring. The thermal cameras are passive and might not provide video
through glass or water.
Thermal cameras are more costly than IR cameras.

Image
sensor

Colour Used in daylight or well-lit conditions.
Provide accurate colours at the monitoring and recording systems.

Monochrome
Used in near dark situations and give more details than a naked human
eye can perceive.
Might give low contrast during the day.

Housing

Dome

Spherical in shape to reduce wind and vibration effects.
Protect and conceal camera direction.
Some advanced units, called speed domes, rotate the camera and give an all
around view.

Sealed Used in hostile situations.
All electrical components are sealed to avoid explosion hazards.

Impact
resistant

Military grade.
Used in high crime areas.

Tamper
resistant

Similar to impact-resistant but are additionally protected against tool vandalism.
Usually resistant to cutting, hammering and prying.

Bullet
resistant Similar to impact-resistant with additional safety for the glass.
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Table 2. Cont.

Feature Options Pros/Cons

Mount

Indoor

Wall. A bracket supports housing, and camera FOV is adjustable.
Pendant. Suspend the camera from the ceiling.
Corner. Used where two walls meet at the right angle (both interior and exterior).
Dome. These are installed on the ceiling or other surfaces for dome type housings.
These are susceptible to vibrations.

Outdoor
Pole. These are used for unobstructed FOV.
Corner. These are installed where two walls meet at the right angle.
The best FOV is achieved by installing it close to the roof.

Image
sensor

CCD

Stands for charged coupled devices.
Used in daylight, lowlight and NIR cameras.
Generate less heat.
Susceptible to blooming (blooming is when a bright light source in the FOV
hides some of the image details).
Used for high resolution and quality images.

CMOS

Stands for Complementary Metal Oxide Semiconductor.
Low power and suitable for mobile devices or power constraint environments.
Cheaper.
Better video quality in outdoor areas on a bright sunny day.

Focal length
(Lens)

Fixed Used in fixed cameras for focusing on one area only.

Varifocal Focal length can be varied in a range, and focus is manually adjusted.
Capture close-ups of activities at longer distances.

Zoom Used in PTZ cameras.
Focal length can be varied in a range, but the focus is automatically adjusted.

Optical zoom
factor

Optical zoom factor is calculated from the focal length range of the
varifocal and zoom lens. For example, a range of 2–10 mm focal length
represents a (10/2 =) 5× zoom factor. It does not mean 5 times enlargement
of the image.

Aperture
control

Fixed Suitable for constant lighting conditions.

Manual
Used for fixed cameras with controlled lighting.
Less expensive as compared to the automatic.
Requires a technician to operate.

Automatic Used in outdoor situations or where extreme changes in lighting
conditions are expected.

Aperture
size

Large Used in dim light conditions.
Image fore- and background are out of focus and blurred in daylight.

Small Complete scene will be in focus.

Filter

Neutral
Density
(ND)

Control the level of visible light and reduce it when it is too high.

Polarising
Orient the light in a specific direction.
Used to eliminate reflected light and glare.
Improve image contrast.

IR-cut

To control the NIR light sources such as the sun.
Most image sensors are sensitive to NIR light. The NIR sources during the
day can degrade the performance of image sensors. Without the IR-cut filter,
the image will have unpredictable colours and poor contrast.
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Table 3. Camera options (Value Added).

Options Pros/Cons

External synchronization
The internal clock is synchronised to an external clock. It is
important for any automation system, including CCTV, to have
a synchronised clock.

Remote configuration The cameras, especially the image properties, are
remotely configurable.

Privacy masking Selective blocking of private areas.

Covert cameras These are hidden cameras and are preferably battery operated
and wireless.

Dummy or drone cameras These are non-functioning cameras and are installed for deterrence.

Auto scan of PTZ Camera can perform automatic scanning of an area of interest.

Pre-set of PTZ Camera orientation and lens setting can be programmed to scan/focus
specific areas.

Slip ring PTZ This allows the PTZ camera to rotate without twisting the cable.
These are prone to contamination and temperature changes.

Motion detection Camera can detect and provide alarm using built-in motion detection.

Backlight compensation (BLC) The camera with BLC provides high-contrast images with a
bright background.

Digital noise reduction (DNR) The camera with DNR reduces the noise in the video. This noise is
prominent in low-light or dark environments.

Mobile compatibility
The camera video can be viewed on a mobile device. The preferred
choice is viewing without the installation of an additional application on the
remote device.

Sun shields on housing This protects the camera from direct sunlight, which can dramatically
reduce the life of the camera.

Wipers on housing These are similar to car windshield wipers. These are not recommended as
they might erode the optical surface of the glass.

Heaters and ventilators for housing
Temperature differences between the interior and exterior of the
housing can cause fog or icing on the glass. The heaters/ventilators help in
maintaining the temperature inside the housing.

Smart camera
A smart camera is a small version of the CCTV system. It consists of a sensor,
processor, video analytics and communication interface with a remote
monitoring device.

2.3.2. Chemical Sensors

Camera sensors are not capable of detecting potential threats in some cases, such as
explosive materials hidden in bags. Chemical sensors are another type of sensor commonly
deployed in public transport stations to detect hazardous materials. Chemical sensors detect
objects by sensing the vapour concentration leaked from the radioactive and explosive
materials. The localisation of the individual carrying hazardous material is a complex
problem. The fusion of chemical sensor data with the data from optical cameras can be
used for tracking of the suspect [36]. Accurate person localisation is achieved through the
fusion of different sensor data in narrow corridor spaces. Once an individual carrying such
material is detected and tracked, the sensors will share the information with other sensors
and the control centre through the communication system.
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2.3.3. Concealed Weapon Sensors

The detection of concealed weapons is a challenge to conventional video and thermal
cameras. Weapons are normally characterised by their shape, material and appearance.
Millimetre (30–300 GHz) and sub-millimetre (0.3–3 THz) wave sensors are state-of-the-art
detectors for concealed weapons. There are active and passive scanners based on the radar
principle. Active scanners operate in the range of 350–800 GHz, direct waves on the subject
and receive the reflected energy. Passive scanners receive radiation from humans and
other objects and operate in the 30–350 GHz range. Compared to active scanners, passive
scanners provide a low signal-to-noise ratio (SNR) and low-resolution images, which are
more challenging to process. Figure 5 shows an example of using radio waves in public
transport stations to perform safety checks.

Figure 5. Using radio waves in the millimeter spectrum to safely penetrate clothing and reflect off
body-worn concealed threats. Images were taken from the “L-3 Airport Scanner” by the Pacific
Northwest National Laboratory [37].

2.3.4. Health Sensors

Train stations are the entry and exit points of states and countries. The spread of an
epidemic or pandemic, such as COVID-19, can be controlled or limited using health sensors.
Such health sensors are deployed to classify whether individuals are healthy or not by
measuring people’s vital signs, such as fever and heart rate. Infrared thermography (IRT)
is currently used at airports for monitoring travellers’ fevers. Accuracy can be improved by
using the same IRT sensor on screening based upon all vital signs [38]. The fusion of health
sensor data with camera data can provide real-time tracking of a sick individual as shown
in Figure 6.
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Figure 6. Infrared thermography used in a train station. Images taken from “Waterloo station” by
branestawm2002 [39].

2.3.5. Acoustic and Vibration Sensors

Acoustic or sound sensors are the most commonly used non-conventional sensors.
Acoustic and vibration sensors provide detection of humans and other moving objects,
which is helpful for object tracking algorithms. Compared to imaging sensors, acoustic and
vibration sensors do not require line of sight to provide omnidirectional coverage. These
sensors can also trigger an event, such as turning on lights and imaging cameras for video
surveillance. In addition, audio analytics helps video analytics detect target events such as
screams, glass-breaking sounds, explosions, and gun fires.

2.4. Monitoring and Recording System

A monitoring system consists of a control room, monitor screens, and control devices.
The number of monitoring screens depends on the number of cameras and their functional-
ity. Some modern monitoring (IP-based) systems can be deployed on mobile devices such
as smartphones and tablets, and even mobile devices provide limited functionality due to
the device size. CCTV operations require big screens for optimum operation. There are two
modern big screen monitoring technologies, liquid crystal display (LCD) and light-emitting
diode (LED) displays, which have superseded the older cathode ray tube (CRT) displays
and plasma displays. Table 4 compares these monitors. The following aspects should be
kept in mind when choosing a display:

• Size: Size is usually specified as the length of the diagonal measurement of the monitor.
The size is selected based on the number of simultaneous camera displays. As a rule,
the operator to screen distance is three to five times the screen size.

• Resolution (Number of pixels): The number of pixels specifies the display resolution.
The pixel number has a one-to-one correspondence to the resolution of the camera
output image. For best performance, these should match.

• Aspect Ratio: Aspect ratio is defined as the ratio of the number of pixels in the
horizontal to those in the vertical. For best results, the aspect ratio of the monitor
should match that of the camera.

The recording system records digital images and auxiliary data, as well as their copies,
on a digital recording device. Some copies are stored on other media platforms, such as
Cloud platforms, for safety reasons. The recording system is an important part of the
surveillance system since smart surveillance relies on recorded video data.

Traditionally, all the components of a CCTV, from sensors to recording and monitoring
stations, are installed at the same location in response to the real-time request. However,
the long-term installation and maintenance costs can be high. These costs can be reduced
by utilising a distributed computing infrastructure. The users of the CCTV system usually
set the regions of interest and the location of monitoring rooms, while the system design-
ers typically set the location of the computing and recording systems. This computing
infrastructure can be set up to reduce the costs in four configurations, as shown in Figure 7.
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Table 4. Comparison of displays.

Type of Display Pros/Cons

Monochrome Provides better details in some scenarios.

Plasma
Wider viewing angles.
Higher contrast ratio.
Higher black levels.

LCD

Compact and lightweight.
Less power requirement.
Low heat dissipation.
Less prone to burn-in.
No flicker.
Long life.
Low image contrast.
True black colour is not produced.
Restricted viewing angle.

LED

All benefits of the LCD.
Better contrast.
Wide colour range.
Shorter life span.
More expensive.

Figure 7. Computing architectures.

2.5. Video Analytics

Video analytics is defined as an automatic processing of video analysis aimed at
assisting the surveillance operations. Some of the main challenges to video analytics for
railway surveillance from a computer vision perspective can be subdivided into two big
groups depending on whether objects are moving or static: (1) classification, detection,
segmentation and decision making for static objects such as left bags or a person laying on
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the rails of the network; (2) classification, detection, segmentation, tracking and decision
making for dynamic events such as crowd monitoring, tracking a terrorist that is running
to escape, a thief or the suicide of a passenger.

Both groups of approaches have in common that they need to be able to provide reliable
solutions under a wide range of conditions, both naturally occurring (e.g., lighting changes,
weather condition changes) and cyber attacks, which include intentional interference during
different stages of the imagery data transmission, processing and storage. Hence, there is
a demand for a wide range of methods able to meet different requirements and provide
trustworthy solutions. One way to provide a level of trustworthiness of machine learning
approaches is to evaluate how the different above-mentioned factors, which we call uncertain-
ties, impact the developed solutions. Are the developed solutions reliable, and if yes, under
what conditions and circumstances? The answer can be found based on probabilities or other
information measures representing different levels of trust in the developed solution.

In addition, there are several other challenges due to occlusions, environmental condi-
tions, scalability—of the considered monitored area, and big heterogeneous sensor data. In
terms of network rail stations, we have small, medium and big train stations for railway
networks in big geographic areas.

Video analytics requires a combination of several computer vision techniques, which
are introduced in Section 2.1.1. There is a wealth of video analytics methods as summarised
on Figure 8 out of which machine learning methods are now an active area of research.
Classical methodologies [40,41] for tracking the motion of the targets and detecting the
change of the motion are implemented by firstly applying object detection techniques such
as the Optical Flow [42–45] techniques to determine objects of interest within the scene
and estimate their motion, and then using classification methods such as Gaussian Process
Regression [46–48] to detect the change point of the behaviour.

Figure 8. Block diagram of sensor-based computer vision methods for object detection and behaviour
analysis tasks. The data collected by sensors will be transformed as input data to the train models.
Models built based on various structures and methods will handle the process of extracting the
features from the training data set. Then, well-trained models can be used as a detector or classifier
to recognise the activities of the detected objects in surveillance systems.

In recent years, deep learning methods based on Convolutional Neural Networks
(CNNs) [49–52], which are also widely used in building Artificial Intelligence (AI) have
become the most popular computer vision technology. Different from the traditional
machine learning methods, deep learning methods developed recently have provided more
robust and accurate algorithms available for object detection and pattern recognition.

2.5.1. Deep Learning Methods for Video Analytics

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and
Vision Transformer (ViT) are the three most popular deep learning methods used imple-
menting video analytics models for video surveillance.
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Convolutional Neural Networks

CNNs have become the most powerful tool for computer vision tasks due to their strong
performance on image and video data. CNNs are biologically inspired, and they are built to
learn invariant features with millions of neurons. Compared to a regular Neural Network,
a Convolutional Neural Network layer consists of weights parameters in three dimensions:
width, height, depth, which makes it possible to reduce the image features into a single vector
by the end of an entire network’s architecture. In recent years, various deep learning models
developed based on CNNs have been demonstrated with strong robustness performance
on image datasets such as ImageNet [49], which makes it the most popular deep learning
framework in the area of computer vision [52]. One of the most popular applications is face
recognition [53–55]. A basic CNN structure is shown in Figure 9.

Figure 9. A basic CNN structure used for classification tasks. Generally, there are three types of layers
used to form a full CNNs architecture: Convolutional layer, Pooling layer and Fully-connected (FC)
layer. A convolution layer is a linear transformation that preserves spatial information in the input
image. It will compute the output of neurons that are connected to local regions in the input, each
computing a dot product between their weights and a small region they are connected to in the input
volume. Pooling layers take the output of a convolution layer and reduce its dimensionality under
certain rules. FC layers are used to connect the neurons between two different layers. It consists of
the weights and biases along with the neurons. The FC layers are usually deployed before the output
layer to work on the last few layers of a CNN architecture.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [50,56–59] are another important class of networks
for video surveillance. However, learning the image features in certain tasks requires a
short-term memory. Hence, deep RNNs [50] are developed to address the problem where
traditional neural networks are not able to learn the features of the input data from the
previous data in a temporal sequence. RNNs are built based on loops of neural networks.
Figure 10 shows the architecture of the loop structure inside RNNs. AI models built with
RNNs allow them to understand the current features based on the previous data.

In recent years, RNNs have been widely applied for solving problems with sequential
input data such as speech recognition, language modelling and image prediction [58,59].
However, in some cases, not only short-term memories are required, long-term dependen-
cies are also needed. In response to this problem, Long Short-Term Memory networks
(LSTMs) [60] are designed as a certain type of RNN, which is especially good at learning
the long-term dependencies. Different from RNNs, the repeating module in LSTMs has
several neural network layers, which are designed to be able to memorise the previous
features in the cell state.

A convolutional LSTM is firstly used in building a spatio-temporal video autoen-
coder in future frame prediction [61]. The convolutional LSTM cells are used to build
the temporal encoder to integrate changes over time. Deep neural networks are normally
used as the method for learning the spatial representations. Recent works [62,63] utilise
the advantages of LSTM networks with long-term dependencies to build Convolutional
LSTM networks used to learn the temporal features of the input sequence video data,
which significantly improves the performance of the proposed method of using an LSTM
convolutional autoencoder for video anomaly detection.
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Figure 10. A diagram for a one-unit RNN. From bottom to top: input state, hidden state, output state.
U, V, W are the weights of the networks. The compressed diagram is on the left, and the unfolded
version is on the right.

Vision Transformer (ViT)

In addition to CNNs and RNNs, a novel deep learning structure called a transformer,
which is based on a self-attention mechanism [64], has become a popular method used in the
area of objective detection and behaviour recognition. A transformer is firstly developed
for solving Natural Language Processing (NLP) tasks. Due to its strong representation
capabilities and huge success with NLP tasks, researchers are expecting that transformers
will be able to achieve huge success performing computer vision tasks as well [65]. Such
improved transformers built for computer vision tasks are called Vision Transformers
(ViT) [65]. A basic Transformer structure is shown in Figure 11.

Figure 11. Pipeline of a Transformer [64]. A transformer is made up of an encoder module and a
decoder module with multiple identical encoders and decoders. Each encoder and decoder contains
a self-attention layer and a feedforward neural network. Each decoder has extra an encoder–decoder
attention layer.
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When evaluated on computer vision benchmarks, AI models built based on transform-
ers have achieved similar or even better performance than models built based on other
types of classic networks such as CNNs and RNNs [65]. Transformers are gaining popular-
ity among the computer vision community due to their strong performance and lack of the
necessity for vision-specific inductive bias [66,67]. As a novel deep learning framework,
ViT now has gradually become the most powerful method for image classification tasks.

2.6. Motion or Moving Object Detection

Motion or moving object detection (MOD) [68–70] is one of the earliest video analytics
features made available in CCTV surveillance systems. The aim of MOD is to detect the
event of a single object or multiple target objects of interest moving in the region of interest.

There are three traditional MOD approaches, namely frame difference [71,72], back-
ground subtraction [73,74] and optical flow. Frame difference relies on the temporal
difference of pixel intensity in consecutive frames. The difference of pixels belonging to
static objects is close to zero, and the moving objects are detected with high difference
values. The moving objects in a static background are detected using a foreground detector.
The optical flow approach measures pixel-level velocity vectors to detect the motion.

2.6.1. Static Object Detection

Static object detection (SOD) [75–77] alarms a surveillance operator when an instance
of an object of interest is detected in the scene captured by the cameras. The methods for
static object detection are different from the moving object as there is no relative movement
between the object of interest and the background. Most of the other video analytics
processes such as tracking, face recognition, person re-identification, and many more rely
on SOD as a pre-processing step.

Figure 12 shows an example pipeline of a two-step SOD. The object detection methods
generally do not differentiate between objects of one type, e.g., the suitcase and the backpack
are classified as one type, i.e., bag. In a single-stage detector, all these steps are performed
by a multi-layer neural network. From a user point of view, all objects of interest are
mentioned in the requirement document.

Figure 12. A two-step SOD pipeline using Background Subtraction. The images are from the CAVIAR
dataset [78]. By comparing two different frames in the video data provided by the same camera
sensor, the input image is divided into multiple region proposals based on the objects of interest. Each
region is processed separately, and the object features in each region are extracted. The background
subtraction detects all moving objects from the background. Then, by continuing to compare other
frames in the video, the static object in the frame apart from the moving objects, such as people
and trains, will be separated from other objects. Therefore, the static objective—in this case, the
luggage—will be successfully detected.
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2.6.2. Multiple Object Tracking

Multiple object tracking (MOT) [34,79,80] aims at identifying and tracking multiple
objects of interest in a video without any prior knowledge of their appearance and disap-
pearance from the scene. The video can be from the same or different cameras. MOT differs
from SOD in the sense that each object will be given a unique label, which is maintained in
all video frames by the MOT algorithm. The MOT algorithm will identify all objects, such
as the example using Gaussian models shown in Figure 13.

Figure 13. Multiple object detection examples [81]. The targets are detected and marked in red boxes.

Object detection, feature extraction, motion prediction and the association method-
ology are the key areas of research for static and multiple object tracking. State-of-the-art
methods for object detection and feature extraction are deep learning methods [13].

State-of-the-art object detection methods are built based on deep learning models.
Generally, there are two types of detectors: two-stage and single-stage detectors [82]. Two-
stage models have a separate module to generate region proposals. In the first stage, the
models aim to find an arbitrary number of object proposals. Then the objects will be
classified and localised in the second stage. Single-stage detectors classify and localize
semantic objects in a single shot using dense sampling. Several popular two-stage detectors
are: R-CNN [83], Fast R-CNN [84] and R-FCN [85].

Faster-RCNN [86] is one of the advanced CNN-based deep learning objective detection
methods with powerful performance. You Only Look Once (YOLO) [87], which is an even
more powerful algorithm widely developed in recent years, is also used as the object
detector ending up with a significant improvement for objective detection under different
kinds of scenarios. These algorithms usually label the objects in the video by bounding box
regressions, i.e., the tracking box shown in Figure 14. Then, other object tracking algorithms
can be applied to the objects.

Figure 13 shows multiple detected objects, including vehicles passing through the
traffic crosses and the pedestrians walking across the roads. In intelligent surveillance
systems, Extended Kalman filters and Gaussian Mixture models are commonly used
machine learning-based methods to track moving objects [88]. In classical methods, such
as optical flow types and background subtraction, the minimum number of frames used to
detect traffic flow disruptions is two, although the number of frames used can vary.

After detecting the objects using the object detection algorithms introduced above, then
motion prediction is achieved by using Bayesian approaches such as Kalman filters, particle
filters and probability hypothesis density filters. The association probability calculated
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using both the motion and feature information performs better than those which use one
of them. Advance methods, such as the Multiple Hypothesis Tracking (MHT) framework,
process the data of multiple images to associate labels. These methods are based on data
from multiple time steps to give better results.

Figure 14. Multiple Object Detection with Topic Modelling [81]. The movement of the Fire engine,
which is considered an abnormal event, in this case, is detected and marked with red boxes.

Figure 14 shows an example pipeline using the topic modelling method to detect the
abnormal behaviours under the traffic scenario [81]. The minimum number of required
frames using topic modelling to detect the target disruption in traffic flow is two. The
disruption in traffic flow is detected when the discriminant function reaches the threshold.
In rail network cases, SOD and MOT techniques can be used to detect target objects with
abnormal behaviours that could cause potential harm to the safety of the rail system, such
as a person leaving a suitcase on the platform. SOD and MOT are the basic techniques for
Video Anomaly Detection, which will be introduced in the following section.

2.7. Video Face Recognition

Video face recognition (VFR) [53–55] deals with identifying an individual from the
video data by comparing a given person’s video with a library of still face images. In rail
networks, VFR technologies can be used to automatically raise the alarm when the sensors
detect an individual from a specific watchlist. It can also be used to search for a specific
person, through an image of the target from the recorded surveillance data. A basic VFR
process is shown in Figure 15.

Before the identification stage, the captured video data need pre-processing. The
pre-processing step contains face detection, face alignment, and face aggregation. Firstly,
the face detector localises the faces in each frame. Then, the face alignment detects facial
landmarks such as eyes, nose and other important features. Finally, the face aggregation
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represents the aligned faces in multiple frames by a comparatively smaller set of frames.
As a result of aggregation, noisy and low-quality frames are rejected.

Figure 15. Block diagram of VFR. Images come from a public dataset Face Mask Detection [89].

All VFR methods extract a facial feature set corresponding to a separate image before
matching them with a library of feature sets. Each feature set in the library will be assigned
an identification tag. The matching algorithm identifies the object through the differences
between the feature sets extracted from the aggregated frames and stored in the library.
Whether a feature library consists of single or multiple entries of the same person, the VFR
performs a still-to-video verification process. Some VFR methods that can only identify
objects already recorded in the library are called closed-set VFR. A model based on open-set
VFR is preferred for such a security system as a railway station. For example, the open-set
VFR can be implemented to identify people on a certain watchlist [90]. The VFR methods
are categorised into two main streams, conventional and deep learning methods. Most of
the modern VFR models that are already deployed at railway stations are built based on
CNNs since they are more robust and accurate, and they are able to make decisions by
themselves as compared to the conventional methods [9].

VFR helps in crime detection by tracking missing persons and estimating passenger
traffic at any time in a rail network. Another application of VFR is that a facial recognition
system could be used to replace the need for tickets on trains. Such systems have been
tested in the UK [91]. By using two near-infrared lights helping a single camera determine
the texture and orientation of each pixel, the smart surveillance system is able to success-
fully identify passengers’ tickets without the need for them to stop walking and show
their tickets.

2.8. Person Re-Identification

Person re-identification (Re-ID) [92–94] aims at identifying a person across non-
overlapping cameras and different modalities. It is also used for identifying an individual
who passes through blind spots and re-appears in the coverage of the same camera. It
serves various security purposes such as online tracking of individuals over multiple non-
overlapping cameras and searching by a query from several cameras’ recorded video data.
This query can be an image, a video or a text description of the person. Depending on the
different components involved in the surveillance system, Re-ID can be categorised into
closed-world and open-world settings [92]. The closed-world setting requires annotated
searched video data and vice-versa for open-world settings. The open-world person Re-ID
technology used in video surveillance systems is shown in Figure 16.

As shown in Figure 17, there are five main steps for building a person Re-ID system:
raw data collection, bounding box generation, training data annotation, model training and
pedestrian retrieval [92]. CCTV firstly detects images containing target individuals. Then,
deep learning models provide feature extraction processes. The features extracted from
the particular camera images are matched with those obtained from each library image
through a matching algorithm based on the similarity. Potential targets and images can
thus be filtered out through the matching stage.

The processings are the same when the given image is replaced with an individual’s
video or textual description. The feature extraction is the key stage. In recent years, deep
learning methods have been deeply developed with their great performance, but the current
deep learning methods need further improvements for practical implementations [92].
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Figure 16. Person Re-Identification in video surveillance systems. This figure shows a top view of the
region of interest comprising an entrance hall, a waiting area and a shop, monitored by three cameras
(red is optical and black is thermal) with non-overlapping coverages (orange triangles). The locations
of three individuals (blue, cyan and green dots) are shown at different timestamps in the region of
interest. The person Re-ID aims to associate paths of the individuals denoted by blue and green dots
detected by different modalities (optical and thermal) cameras.

Figure 17. Block diagram of Person Re-ID. The images are from the CAVIAR dataset [78]. Five main
steps for designing a Person Re-ID system: (1) raw data collection, (2) training data annotation, (3)
model training, (4) bounding box generation and (5) pedestrian retrieval.

2.9. Human Activity Recognition

Human activity recognition (HAR) involves classifying an individual’s activities or a
small group of individuals. It is categorised into the following three types [11,95]:

• Gestures. These are elementary motions of the human body, such as stretching of arms
or raising a leg.

• Action. These are the combinations of human gestures, for example, running and
punching.

• Interactions. These involve interactions among multiple individuals and objects.
These can be classified into human–object, human–human and human–object–human
interactions. The human–object interaction deals with recognising the interaction of a
human with an object, for instance, an individual abandoning an object or loitering. An
individual interacting with another is human–human, such as a brawl. The interaction
between two humans and an object leads to human–object–human activity, such as
stealing a bag from another individual.

As shown in Figure 18, the output class is “Abandoned Object”. In addition to the
classification, the alert also provides the object’s location by highlighting it on the screen
(yellow box in the example). The state-of-the-art methods for HAR are deep learning-based
methods that merge the above-mentioned two steps into a single unified framework [12].
The latest architecture of the deep learning methods is based on two streams, one for the
spatial and the other for temporal processing [96]. The output of two streams is merged
to give the final output. This two-stream architecture is also called the Spatio-Temporal
Network (STN). The surveillance system user defines all the classes of gestures, actions,
and interactions required to be automatically detected by the HAR algorithm.
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Figure 18. A block diagram of an HAR algorithm using an example of detecting an abandoned object.
The images come from the i-LIDS bag and vehicle detection challenge of AVSS 2007 conference [97].
Four video frames with labelled objects are input to the HAR algorithm. The first step is feature
extraction. The spatial and temporal information contained in the video helps in the recognition.
Hence, both spatial (green) and temporal (blue) features are extracted. The video classifier classifies
the extracted features. The surveillance operator is alerted if the video is classified as belonging to
any of the pre-defined classes.

2.10. Video Anomaly Detection

Video Anomaly Detection (VAD) aims to detect abnormal behaviour of an individual
or a group of people through a camera or multi-camera video. An anomaly or an abnormal
behaviour is difficult to define; normally it is a psychological term for actions that fall
outside of the realm of what is considered normative in a particular society or culture. In
this case of rail networks for safety purposes, it can be defined as an event or behaviour
that could lead to a potential threat to public safety. VAD is an essential technology for
safety surveillance systems.

In railway systems, VAD can help prevent trespassing and suicides at train stations.
Different from HAR, VAD does not rely on a number of manually labelled training data
to detect normal and abnormal behaviours. VAR has better performance than HAR in
cases where the classifier does not have enough labelled data of abnormal behaviour
occurrences. Individual unsupervised anomaly detection (IUAD) is useful for detecting a
person attempting suicide [98] or a terrorist attempt [99] in the surveillance region, where
it is assumed that the individual carries out the daily routine tasks abnormally with a
suicide or terror motive in mind. A basic block diagram of the IUAD algorithm detecting
an anomaly of a person falling on the floor is given in Figure 19.

Depending on how the algorithms are built based on training data, there are three main
categories of anomaly detection methods [100]: unsupervised methods, weakly supervised
methods and supervised methods. Some of the anomaly detection tasks can be performed
using supervised or semi-supervised anomaly detection methods. The supervised anomaly
detection model is trained on labelled data of normal and abnormal behaviours. The
semi-supervised anomaly detection model is trained on labelled data of normal behaviour.
The unsupervised anomaly detection model trains on unlabelled data, such as real-time
surveillance videos, which is a more practical and dynamic approach. Since the abnormal
detection is supposed to be able to recognise the anomaly events with low happening
probability, unsupervised algorithms can be considered as novelty detection with self-
learning ability, which aims to cluster the outliers from the normal points. These methods
provide a better generalisation ability under a single scenario with a fixed surveillance
camera of the unknown anomalies.

Some works categorise VAD methods, specifically with respect to their final objectives
instead of network architecture or learning strategy, into two categories, namely using
reconstruction error or reconstruction-based methods and predicting the future frames
or prediction-based methods [101]. Some of the recent deep learning methods [102–104]



Sensors 2022, 22, 4324 22 of 39

focused on implementing the video anomaly detection by reconstructing the predicted
frames based on the features extracted from the previous frames through an autoencoder
model. Abnormal events are located by the calculated reconstruction errors. When the
reconstruction errors are over the threshold, the event happening in the current frame is
considered an abnormal event.

Figure 19. Block diagram of IUAD. The images come from the CAVIAR dataset [78]. Four labelled
video frames are input to the algorithm. The spatial and temporal features are extracted first, followed
by the anomaly detector. The anomaly detector uses parameters from a model trained on historical
video data, which are all classified as normal. The output of anomaly detectors is either score or
binary, where a binary output is used in this case.

Two methods built upon the autoencoders are proposed to generate a model for
computing the irregularity error [102]. An autoencoder [105–107] is a feedforward neural
network built for denoting a process of encoding the input into a more compact represen-
tation and then reconstructing the input with the learned representation as to the output.
The irregularity error is implemented through two stages: first is to train a fully connected
autoencoder on the spatio-temporal local features. Secondly, build a fully convolutional
feedforward autoencoder to learn the classifier. To improve the performance of the Au-
toencoder, LSTM Convolution Neural Networks are leveraged for memorising the motion
features of the past frames [103]. The proposed Convolutional LSTM Autoencoder frame-
work has better performance with respect to encoding the change of the motions of the
objectives for normal events.

As the deep Autoencoder has been widely applied for anomaly detection, a new
autoencoder model with a memory module called Memory-augmented Autoencoder
(MemAE) is implemented [104]. The traditional Autoencoder is improved by memorising
the model parameters trained from normal samples at the training stage. Then, the recon-
struction error is obtained while updating the rest of the autoencoder model at the test stage.
MemAE has been proved to have better generalisation ability and higher effectiveness than
the normal autoencoder algorithms. A novel deep Predictive Coding Network (AnoPCN)
consisting of two modules: a Predictive Coding Module (PCM) and an Error Refinement
Module (ERM) is introduced in [108]. Similar to LSTM, the feedback connections of PCM
carry frame prediction, and the feedforward connections are built for computing the pre-
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diction error. AnoPCN has been verified with state-of-the-art performance on experimental
data sets.

Instead of using an Autoencoder to compute the reconstruction error, there are other
deep learning frameworks built to predict future frames. A method was developed that
uses Generative Adversarial Networks (GANs) to train a generator, and alternatively, a
discriminator is used to achieve the future prediction [100].

2.11. Trajectory Analysis

The MOT localises multiple objects across time. The path of each object is called a
trajectory. Analysis of trajectory, also called Trajectory Analysis (TA) [109,110], provides
valuable intelligence in the domain of video surveillance. Short-term trajectory analysis
detects abnormal events such as walking and fighting. The long-term analysis can detect
events such as loitering and interactions. The analysis can also be extended to analyse
group activities by analysing multiple relative motions.

Combining TA with prior regional information provides detection of important events.
For example, marking out-of-bounds areas in the TA alarms for intrusion detection and
integrating the station layout with TA can detect pedestrian falls on the tracks. TA is also
used for generating a summary or synopsis of a video. A video synopsis or summarisation
aims to shorten a video by selecting critical frames. Fast-forwarding is another way of
shortening a long video, but this method may miss essential frames.

2.12. Crowd Analysis

Crowd analysis [111,112] aims at understanding the behaviour of a crowd. A crowd
is defined as a group of people behaving coherently. In a train station, travellers often
move in groups, which makes it challenging to perform high-level processing such as
MOT and anomaly detection. In such scenarios, instead of tracking and analysing each
individual, the tracking and analysis of the crowd are feasible. Crowd analysis also aids in
crowd management under unforeseen circumstances, such as emergency evacuation. The
following types of crowd analysis are essential in video surveillance [16,113]:

Crowd Count (CC) aims at estimating the number of people from a video of a region
of interest. CC enhances situational awareness in crowded areas. An increasing number of
people in an area requires extra attention for management and safety purposes in a railway
station. Moreover, CC can be used for gathering statistical data of visitors in different areas.
The conventional methods for crowd counting rely on detection and regression techniques.
Detection methods perform worse when there is a dense crowd and high background
clutter. Counting by regression extracts low-level features and maps them onto a crowd
count without considering spatial information. A block diagram of a typical density-based
CC method is shown in Figure 20.

Figure 20 shows an example process of how CC algorithms deal with the input videos
consisting of small groups of people. A more intuitive output of the CC algorithm is the
congestion level. The crowd count is mapped on a scale ranging from sparse to dense crowd
level. An alarm will rise when the crowd density rises beyond a critical threshold, which
can cause dangers such as a stampede. One state-of-the-art method for crowd counting in
videos is called the deep Spatio-Temporal Network (STN) [17].

Crowd Behaviour Recognition (CBR) identifies specific actions and events of a large
gathering or crowd. Identification of different crowd behaviours helps in preventing a
difficult situation. It can also be used to manage the flow of pedestrians. For example,
bottlenecks and blocking of pedestrian flow are recognised using CBR [114]. A typical block
diagram of CBR is similar to that of HAR, shown in Figure 18, where instead of extracting
features of individual objects, the crowd features are extracted. Crowd Anomaly Detection
(CAD) deals with the detection of abnormal behaviour in a crowd [115]. Similar to VAD,
CAD helps automatically detect suspicious activities in crowded scenes and helps prevent
a security-related incident from happening.
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Figure 20. Block diagram of Crowd Count. The input frames are processed by two streams, spatial
and a temporal, to extract features. The spatial features are represented by a yellow colour, and the
temporal using a red colour indicates the direction of motion. The extracted features are processed to
generate an estimated density map using different colours. The blue colour represents minimum or
zero capacity, where yellow and red represent the bigger and maximum density. Finally, a well-trained
density model is able to provide a prediction of the crowd number, which is 888 in this case.

3. The Impact of Uncertainties in Computer Vision Technologies for
Surveillance Systems

In addition to the challenges that exist in the current methods of CCTV surveillance,
including the accuracy and efficiency of the results, there is another research area of the
uncertainty in deep learning methods, which is the potential challenge of the security of
surveillance systems. Investigating whether the results output by AI models are reliable is
essential to security-related systems. For surveillance systems in rail networks, a practical
and comprehensive AI model with the ability to think can provide trustworthy results for
detecting the abnormal behaviour of people in public scenarios.

Most deep learning models introduced in Section 2.1.1 are considered as deterministic
functions, which are barely used as solutions for possessing uncertainty information com-
pared to probabilistic models. Probabilistic Graphical Models (PGM) use diagrammatic
representations to describe random variables and relationships among them [116], which
provide us with a practical tool for investigating the uncertainties inside the neural net-
works. Different from deterministic deep learning methods relying on estimations of the
weights parameters and predictions, probabilistic models instead infer the distributions
of the weights to reserve the uncertainties. A Gaussian Process [46,48] is one of the classic
methods that define probability distributions over functions. This machine learning proba-
bilistic method provides confidence bounds for data analysis and decision making—reliable
information that, for instance, allows a biologist to analyse data or an autonomous car to
decide whether to stop or not.

3.1. Uncertainty in Deep Learning

Deep learning models are designed to be able to return prediction results with high
confidence when given data under the same category as the training data. However, the
data fed to deep learning models can often be different from training data. These kinds of
data are called out of distribution test data [117]. Under such circumstances, an ideal model
would not only be able to return a prediction but also be capable of returning an analysis
with additional information on whether the result lies outside of the data distribution.
There are a number of factors that could lead to inaccurate solutions:

(1) Noisy data/out of distribution data.
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(2) Uncertainty on the deep network parameters that are chosen during the training stage.
This is also known as uncertainty in model parameters.

(3) Model structure difference depending on the chosen algorithm for building the model
(also called structure uncertainty). This uncertainty can be reflected in the following
ways: an absence of theory and causal models and computational costs.

3.1.1. Types of Uncertainty

Generally, there are two main types of uncertainty: aleatoric uncertainty and epistemic
uncertainty [104,117,118]. Aleatoric uncertainty, also known as data uncertainty, refers to
the irreducible uncertainty caused by the inconsistency between the data used in training
the model and the out of distribution data mentioned above. Compared to an inherent
property of the data distribution, aleatoric uncertainty is more like a property of the model,
which makes it irreducible. On the other hand, the uncertainty caused by model structure
and inadequate knowledge is called epistemic uncertainty [117], which can have a great
impact on various uncertainties related to the choice of model structure.

Efficient estimation of these two types of uncertainties can be achieved within the
framework of Bayesian neural networks [119]. One way to accomplish this is in the last
layer of the Bayesian neural network and by providing the mean and variance, e.g. over
the image classification result. The method of Kendall and Gal [119] estimates the aleatoric
and epistemic uncertainties by constructing a Bayesian neural network with the last layer
before activation consisting of mean and variance of logits. In this method f ω(x?) = (µ, σ2)
represents the last 2K-dimensional pre-activated linear output of the neural network, where
µ and σ2 are the mean and the variance of K nodes. For the realised weights {ω̂t}T

t=1, with
new input x∗, predicted mean and variance denoted by hat, with corresponding outputs
f ω̂t(x?) = (µ̂t, σ̂2

t ) [120], an estimator calculates the predicted uncertainty as a sum of the
two types of uncertainty

Predicted Uncertainty = Aleatoric Uncertainty + Epistemic Uncertainty. (1)

There are different ways to express the aleatoric and epistemic uncertainty terms
from (1) and these aspects are currently a subject of intensive research.

The next subsection discusses common adversarial attacks that are intentionally intro-
duced to disturb deep learning methods.

3.1.2. Adversarial Attacks

In addition to the uncertainties introduced above, another type of uncertainty can
be added intentionally into models, which could disrupt significantly security systems
such as surveillance systems. These uncertainties can be caused by changes made to the
video or image data, which are often called adversarial attacks [121–124]. These intentional
disturbances could have a great impact on how much people trust the results output by the
models. As shown in Figure 21, even adding a little change to the original image, the result
can be completely different. Many machine learning methods, including state-of-the-art
neural networks, are vulnerable to adversarial instances [118].

Adversarial Samples

An example showing that a machine learning model makes an incorrect prediction
as a result of tiny, deliberate feature changes is shown on Figure 21. These changes are
created by diverse technologies that are especially effective for machine learning models,
while they are not comprehensible to human eyes. Adversarial attacks are normally formed
by intentionally added small perturbations, which can cause an incorrect result with high
confidence [125]. These perturbations are commonly too small to be perceptible for deep
learning models. Moreover, the same image perturbations can fool different kinds of deep
learning network classifiers [126].
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Figure 21. Adversarial attack examples. Image was taken from the Google AI Blog [127].

Adversarial attacks can be generated intentionally in surveillance systems in rail
networks. This technology is a huge potential hazard to security monitoring systems. For
instance, adversarial attacks can be used to turn the abnormal behaviours detected by the
camera sensors into normal behaviours. It also can be used to fool the facial recognition
systems, turning a dangerous criminal into another totally different person, or even worse,
breaking into surveillance system centres to achieve full control of the monitoring systems.

Generally, there are two stages, the training stage and testing stage, where the adversar-
ial attacks can disturb the final results of the deep learning models. White-box attacks and
black-box attacks are two types of adversarial attacks in the testing stage [128]. White-box
attacks refer to the circumstance where the adversaries have the full acknowledgement
of the target models, including its structure, data distribution, and model parameters.
However, black-box adversarial attacks can create adversarial examples without access to
the gradient and parameters of the underlying deep neural networks. Different defence
strategies are more efficient when facing different types of attacks [129].

3.1.3. Impact of COVID-19

The CCTV systems are planned, designed and deployed to keep the objectives and
the assessed risks in view simultaneously. Sometimes, unforeseen events occur that are
not expected to be handled by the system. The spread of COVID-19 and its impact on
the world is a good example of such a rare event. The railway network has been one
of the worst-hit industries, as the way we travel, visit or commute through the station
was radically changed. During the pandemic, a range of options by which CCTV and
related technologies could assist has been developed. Examples from around the world are
summarised in this section.

Early in the pandemic, airports began routine walk-through temperature checks for
passengers [130], and this is a readily transferable approach for a CCTV system with
thermal camera capability (however, an estimated 46% of positive cases would not be
detected). If audio recording is available, methods developed by researchers such as at
the Carnegie Mellon University [131] or Cambridge University [132] could be deployed
based on audio samples of COVID-19 positive and negative patients. The research aimed
to detect a COVID-19 patient based on cough, breathing, and voice. The reported accuracy
of one such algorithm is above 90% [133]. Face masks and social distancing have become
mandatory measurements in many countries to prevent the spread of the virus. Some
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aspects of video analytics, such as VFR, are affected by the introduction of face masks.
The accuracy of the state-of-the-art DNN-based VFR algorithms relies on how well the
training data represents real data. These algorithms are trained on faces without masks
and may give inaccurate results for masked faces. To erase these uncertainties caused by
the inconsistency between training and test data, AI models need to be equipped with
advanced deep learning algorithms such as Bayesian Deep Learning methods. Few public
datasets of faces with masks are available [134], which can be used to re-train the AI models.
A proposed VFR algorithm has improved the accuracy of face recognition with and without
masks to 95% [134].

The CCTV system could also automatically detect people with and without masks
using video analytics. A DNN-based algorithm, named RetinaMask, can provide greater
than 90% accuracy in detecting and localising the face and the mask [135]. Some examples
of the detection results are shown in Figure 22. The green and red boxes indicate a face
with and without a mask, respectively. The algorithm was shown to perform accurately in
confusing situations, e.g., faces covered with hands, hair or even tissues are detected as
faces without a mask (red box). Audio analytics has also been used to detect if an individual
is speaking through a face mask or not [136].

Other algorithms include crowd analysis to detect whether social distancing is under
observation and raise the alarm for areas when it is too crowded for distancing to be
effective. However, these are highly dynamic situations. In most cases, observation through
surveillance is more useful for understanding trends in behaviour at the population or
location level rather than supporting an immediate response. Any response would also
need careful consideration of the legal basis of any intervention.

Figure 22. Facial recognition with masks. Images are from a public dataset Face Mask Detection [89].

3.2. Uncertainty Quantification with Bayesian Deep Learning Methods

Probabilistic models, also known as Bayesian models, are the main methods for
formulating the uncertainty [137,138]. The core idea of Bayesian modelling is, instead
of calculating the certain values of weights parameters in neural networks, inferring
posterior distribution of weights parameters by Bayesian probability theory. Thus, the
certain prediction result output by deep learning models will be replaced by a result with
a confidence interval. Combining with a particular rule such as an uncertainty score, a
deep learning model with Bayesian methods will be able to tell whether the output result
is reliable [139–144].

The main challenge of machine learning models such as the Gaussian Process is that
they do not scale to big data very well, which makes them not applicable to deep learning
models with millions of weights parameters. In order to investigate the uncertainties in
computer vision tasks, which normally would have a significantly big image or video data,
Bayesian Deep Learning (BDL) methods [116,145,146] are the solutions.
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Different from CNNs, Bayesian Neural Networks (BNNs) [138,147] aim to learn the
proposed posterior distribution over the weight parameters. The history of BNNs can be
traced back to the 1990s [137,138]. These works extended the proposed models to small
data sets, providing a robustness to over-fitting problems and uncertainty estimates. Over
the decades, a lot of works have been focused on improving the scalability and explainable
uncertainties of the existing deep neural networks [47,48,147–149].

In Bayesian Neural Networks (BNNs), instead of calculating the certain value of
weight parameters ω in neural networks, the goal of the optimising process is to build the
prior distributions p(ω) by following the Bayesian theory and then using this distribution
to estimate which parameters are most likely to have created the data. To capture epistemic
uncertainty in a neural network, [119] assumes a prior distribution over the weights, e.g.,
p(ω) can be chosen to be a Gaussian distribution. The posterior distribution over the space
of parameters by the Bayesian theorem can be denoted as [118,119]

p(ω|X, Y) =
p(Y|X, ω)p(ω)

p(Y|X)
(2)

where for classification prediction purposes X = {x1, . . . xN} is the training input data
and their corresponding classes Y = {y1, . . . yN}, p(Y|X, ω) is the likelihood function. p(ω)
is the known prior probability. The aim is using (2) to optimise ω to produce the desired
classification output. However, in practice the true posterior distribution p(ω|X, Y) given
by Equation (2) is hard to evaluate analytically in most real cases. The solution is to define
an approximating variational distribution qθ(ω) to be as close as possible to the original
posterior distribution.

Variational inference (VI) is the basic approximate inference method for approximating
the posterior distribution. However, the biggest challenge of VI is that it is difficult to
apply to complex deep learning models aiming to solve real-world problems. Based on
VI, more research has been focused on applying various advanced approximate inference
methods to deep learning models to solve more complex tasks. Some popular researches
are Bayes by Backprop [137,150–153], Monte-Carlo Dropout (MC Dropout) [151,154], Varia-
tional Autoencoders (VAE) [105,155], Natural-Parameter Networks (NPN) [156], Bayesian
GAN [157,158], and Subnetwork Inference [159].

To avoid incorrect predictions when performing deep learning algorithms, it is im-
portant to take uncertainty into account. Bayesian deep learning methods have been
applied to solve various computer vision tasks, including but not limited to image/video
retrieval [139,160], depth estimation [140,141], object detection [103,161,162], semantic seg-
mentation and scene understanding [142,163–165], optical flow estimation and motion
prediction [143,166,167], human pose estimation and pedestrian localisation [144,168,169],
person re-identification and face recognition [170], camera re-localsation [171], and avoiding
adversarial attacks [172,173].

The uncertainty measurement abilities of Bayesian methods have been demonstrated
to be useful for accurate object detection [103]. Since large-scale object detection datasets
have ambiguities when labelling the bounding boxes, a novel bounding box regression loss
function for learning bounding box transformation and localisation variance is proposed to
improve the accuracy of localising the objects.

Bayesian Deep Learning [116] offers a promising framework to handle the two types of
uncertainties in a general way. Since deep learning networks are mostly over-parameterised,
it is a great challenge to handle the uncertainties efficiently in such a large parameter
network. By placing a prior over hidden units, which composes the neural networks,
Bayesian deep learning can reduce the overfitting problem with advanced regularisation
methods, especially when we have insufficient data [154].
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4. About the Next Generation of CCTV Surveillance Systems for Railway Stations
4.1. Data Centre

Often, advanced computing and recording systems are located at the periphery of
train stations or at remote control centres [174]. The control centres communicate, store and
process the big data from sensors. These centres also provide simultaneous storage and
software services to multiple CCTV systems. The multiple sensor data are processed, fused,
analysed and communicated to the CCTV operator through the monitoring system with
appropriate warnings and decision cues in real-time. The concept is shown in Figure 23.

Figure 23. Data processing in the next generation of CCTV surveillance systems.

Future CCTV surveillance will have additional capacities, including augmented and
virtual reality systems, advanced cloud computing and autonomous recognition and warn-
ing technologies. Figure 23 shows that such a CCTV system could be installed in two
geographically distant stations communicating with a data centre for data processing and
storage. This architecture enables economical use of the resources with the concept of
(common) data centres, which are expensive to deploy and maintain. With the fast devel-
opment of Cloud Computing and 5G networks [175,176] and technologies combined with
AI, the function and performance of surveillance systems will be significantly enhanced.
Under a deployed 5G network, the data recorded and developed by live sensors could be
transformed fast and wirelessly and then stored in a Cloud Centre. A data centre will be an
essential part of future surveillance systems.

4.2. Data Analytics

Another important aspect of future CCTV systems is the need of various and efficient
methods for analysing the different types of sensor data both in real time and off-line.
The data analytics are divided into four intelligence levels, as shown in Figure 24. The
intelligence level increases from the bottom to the top, i.e., detection to decision making.
The detection is provided by both conventional and non-conventional sensors. The higher-
level intelligence is achieved through multisensor data fusion. The video data are important
from the presentation point of view as the fused data are presented to the operator on top
of the video data. The recent research is focused on autonomous and semi-autonomous
detection, tracking, behaviour understanding and activity recognition [33,177,178]. The
state-of-the-art data analytics are even smart enough to understand some types of scenes
and record the time duration. The future decades will see progress in scene understanding
and decision-making. The CCTV systems should be installed while keeping in mind the
frequent software and hardware updates of the data analytics system.

The data presentation and control in the monitoring systems is another domain that
will see a lot of enhancements in the future. With the increase in the number and modal-
ities of the sensors, the monitoring stations would be upgraded for ease of the security
operations. In current systems, the data of all the sensors are presented either on separate
screens or in separate windows of the same screen. The operator manually selects different
cameras to obtain situational awareness. For this, the operator remembers the building
layout and the location of each camera to relate the video to the location within the region
of interest. This task requires mental capacity, training and experience.
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Figure 24. Intelligence levels of data analytics for CCTV.

Future systems may blend real-world data feeds with 3D virtual models of an environ-
ment to provide the 3D situational awareness of the sensor data. Such systems are called
augmented virtuality approaches [179]. Localisation and tracking of data can be matched
between the real and virtual worlds.

The integration of a 3D virtual model of a real environment with sensor feeds from
that real environment can draw inspiration from the ideas in a geographic information
system (GIS). The sensors are geolocated and produce georeferenced data. On detection
of an important event, a geolocated movement sensor, for example, could signal the main
system to activate the corresponding CCTV camera for video coverage and recording and
also engage any available operator’s attention. Another option would be for an operator
to select an area of an environment and for the system to automatically direct all relevant
sensors on that area, e.g., PTZ cameras. In addition, event prediction in blind zones could
be performed, as illustrated in Figure 25.

Figure 25. Event prediction in a blind zone [180]. This figure shows an example of two persons
leaving the coverage of two different cameras (orange and green) and entering a blind zone. The video
analytics system would predict and display the most probable trajectory of these individuals. The
same concept could be used for the prediction of complex events such as criminal activity, possibly
giving an operator extra time to respond.

Rail networks, especially railway stations, are an important social and economic pillar.
While it is important to take state-of-the-art security measures when installing the latest
CCTV systems, it is important to keep track of the financial implications. The best solution
requires reasonable emerging technologies for the future systems in mind. In addition,
cybersecurity measures need to be considered when implementing a surveillance network.
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5. Ethics and General Data Protection Regulatory

Computer and information technologies can bring advantages to not only railway
networks but also other computer smart cities and public transportation systems, while they
will also raise ethical concerns about computer and information security and privacy [181].
Due to the fast development of new networked technologies, such as facial recognition
(FR), some research aims to find and raise public awareness of ethical issues lying in urban
big data analytics and public transportation systems [182–185]. Some researchers have
been working on providing ethical frameworks for big data and smart cities focusing on
contemporary ethical and non-ethical issues in big data analytics applications in smart
cities and public transportation systems [183]. There are four emerging issues considered
to exist commonly in all smart cities: privacy and surveillance, data integrity, social equity
and the ageing population and data collection and analytics in public transportation [183].

The work of video analytics in rail network surveillance relies on the video data col-
lected through CCTV systems. As video surveillance is enhanced due to the advancements
in technology, it can produce a vast amount of personalised raw and analysed data. One
of the main ethical concerns in the domain of CCTV is privacy. For example, video data
used to identify a person using facial and gait features can cause a leak of personal infor-
mation. Additionally, video analytics could identify an individual’s interactions with other
individuals and objects. It helps in automatic monitoring on the one hand, but individual
privacy is compromised on the other hand. Personal privacy is an important component of
human rights, but maintaining safety and security in justifying an interference is subject
to evolving interpretation. The privacy breach is not the only ethical consideration. The
sense of being watched by a CCTV system could also constrain individual decisions and
behaviour. Moreover, individuals may also be worried and act nervously to avoid being
falsely detected as suspicious individuals.

In 2018, many countries enacted a law to protect individual privacy. The European
Union General Data Protection Regulation (GDPR) took effect based on the six basic
principles [186], as given in Figure 26. The UK implemented GDPR through the Data
Protection Act (DPA) 2018, subsequently amending this to UK-GDPR. Under such rules,
video data are considered personal data when it can be used to identify the person.

Figure 26. Six basic principles of GDPR.
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Smart surveillance is an area of evolving interpretation, particularly for automated
facial recognition. In the UK, the Information Commissioner gave an opinion about the
use of live facial recognition in 2019 [187], and in 2020, the use of this by the South Wales
Police was ruled unlawful [188]. Another aspect of ethical concern is ensuring the use
is for identifying specific people of concern rather than conducting mass surveillance
and demonstrating that the software used does not have a racial or gender bias in its
identification processes. Knowledge of the training datasets used in the production of
the facial identification software would be crucial in ensuring freedom from these biases,
indicating the degree of diligence required of end-users before the legal operation of
such systems.

6. Conclusions

This paper provides a survey of the latest trends in CCTV systems and presents a
vision for the future of such systems. The ever-evolving nature of security hazards and
threats can be countered through analysis and fusion of multi-modal sensor data. The
CCTV system produces big data, which can overwhelm the operator if not presented
efficiently. Georeferenced monitoring systems with an augmented virtuality display can
ease the burden and improve the response of the operator. The document gives a detailed
account of the video analytics aspects that aid in the security and management of the station.
The data analytics of other sensors, such as audio and thermal sensors, can further enhance
the capabilities of the CCTV system. The processing and storage of the big sensor data
cannot be met through a centralised computing architecture. The alternative architectures,
namely cloud, cloud–fog and cloud–fog–edge, can be implemented for cost-effectiveness.
Prior to the operation of automated systems, consideration must be given to ensuring
outcomes are free from racial or gender bias imparted by poorly selected training datasets
and that personal data are handled according to legal requirements of data privacy.
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