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Abstract: With the high penetration of photovoltaic (PV) and electric vehicle (EV) charging and
replacement power stations connected to the distribution network, problems such as the increase
of line loss and voltage deviation of the distribution network are becoming increasingly prominent.
The application of traditional reactive power compensation devices and the change of transformer
taps has struggled to meet the needs of reactive power optimization of the distribution network.
It is urgent to present new reactive power regulation methods which have a vital impact on the
safe operation and cost control of the power grid. Hence, the idea that applying the reactive power
regulation potential of PV and EV is proposed to reduce the pressure of reactive power optimization
in the distribution network. This paper establishes the reactive power regulation models of PV and
EV, and their own dynamic evaluation methods of reactive power adjustable capacity are put forward.
The model proposed above is optimized via five different algorithms and approximated through
the deep learning when the optimization objective is only set as line loss and voltage deviation.
Simulation results show that the prediction of deep learning has an incredible ability to fit the Pareto
front that the intelligent algorithms obtain in practical application.

Keywords: photovoltaic; electric vehicles; reactive power optimization; deep learning; Pareto front

1. Introduction

Renewable energy sources (RES) such as the photovoltaic (PV) system have played
an important part in reducing environmental pollution in recent years due to their ability
to reduce greenhouse effects [1]. As a kind of mature and widely used power generation
method, PV power generation perfectly conforms to the strategy of sustainable develop-
ment and the concept of safe power generation. With the development of distributed
generations (DGs), PV can be operated at a smaller scale called distributed energy resources
(DER). This form of PV aims to be closer to the load that needs to consume power, which
uses the idea of decentralized investment to reduce the loss in the transmission [2]. How-
ever, PV has the characteristics of intermittence and instability. Solar irradiation, cloud
cover, photovoltaic panel orientation or dust diffusion and other factors may interfere with
the normalized PV to a great extent [3]. Besides, high penetration of PV may lead to the
issues of voltage rise, reverse power flow, and increased energy loss [4].

Nevertheless, with the rapid development of electric vehicles (EVs) in recent years, it is
becoming increasingly possible to alleviate this negative phenomenon. Some studies show
that EVs can not only carry out routine charging operation, but also profitably provide
power to the power grid after the EVs with new technology called vehicle-to-grid (V2G)
are connected to the power supply [5]. Therefore, a new idea for implementing energy
storages to the grid which has a strong impact on the traditional distribution network,
and EVs are gradually being accepted by people [6]. V2G greatly improves the flexibility
and availability of EVs. In general, PV is greatly affected by time changes. The energy
storage of EVs can solve the problems of power overflow and voltage rise caused by PV
at noon, and realize the operation of power transmission to the power grid at the peak
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of power consumption at night [7]. In addition, in response to the worldwide appeal to
reduce carbon emissions, the use of EVs is expected to become more widespread. This
trend caters to the need to solve the problems caused by new energy generation in the
distribution network.

Some research has shown that when distributed PV and EVs are connected to the
distribution network, reactive power optimization of distribution system will be a complex
discrete, nonconvex and nonlinear problem [8]. In the daily operation of the distribution
network, line loss of transmission and voltage deviation are usually the issues that need
attention. It is necessary to optimize the variables with line loss minimization and voltage
deviation minimization as two different objectives. The classical methods commonly used
by researchers to solve such multi-objective problems (MOPs) are the interior point method
and the Newton method. The idea of these methods is to transform the MOPs into some
single objective optimization problems with assignable weight. The problem highlighted
by these methods is that the setting of weight is highly subjective and may not reach a
balance point. Using the multi-objective evolution algorithm (MOEA) to solve MOPs is
also a good choice for current optimization problems, but these methods usually spend a
lot of time on optimization in the face of complex problems.

The characteristics of PV and EVs show the ability to provide reactive power support
for a distribution network. As a premise, the future development trend of different types
of EVs was well estimated in reference [9]. With the combination of a residential roof PV
system and EVs, the authors in [10] demonstrated the potential and technical benefits of
such system in terms of the reduction in air pollutant emissions. In reference [11], the
robust dynamic evolutionary optimization of the reactive power system in interconnected
systems under fluctuating and uncertain wind power conditions was proposed. It has been
suggested that leveraging the reactive power range embedded in wind farms can improve
safety and optimality during the power system reactive power optimization process [12].
The reactive power optimization including interval uncertainty model was applied for
developing a voltage control strategy to ensure that the state variables of a power grid
reside within their safe operating limits [13]. The authors of [14] considered the hydrogen
and PV as distributed generation and proposed a list of reactive power regulation strategies.
However, the work presented above does not mention the participation of PV and EV in
reactive power optimization.

Some researchers have synthesized the active power generation and consumption
as constraints and considered the cost of reactive power injection. The particle swarm
optimization (PSO) was used to optimize the reactive power [2]. Similarly, aiming at the
cost, the authors of [15] presented an in-depth study on the PV-Biomass hybrid independent
power generation system in remote areas. Non-dominated sorting genetic algorithms III
(NSGA-III) were proposed to address the reactive power optimization model which was
established with the objective of minimizing system active power losses, controllable loads
reduction, and PV active power reduction [16]. The authors of [17] discussed the reactive
power based on capacitors allocation by using mathematical remora optimization algo-
rithm. A data-driven model was employed to address the uncertain output of distributed
generators for reactive power optimization in reference [18]. In reference [19], reactive
power, the number of shunt capacitors and transformer taps were taken as optimization
objectives and solved by the improved firefly algorithm. The authors of [20] pointed out
that the reactive power control and actual power reduction of photovoltaic inverter could be
effectively solved by a global sequential quadratic programming (SQP) approach method.
Despite all this, these algorithms manifested the high consumption in time and instability
in optimization.

By contrast, as a popular technology in recent years, deep learning (DL) may replace
the traditional optimization process in the aspects of fitting data and improving the ef-
ficiency. The biggest feature of this method is that it can use a large amount of data for
supervised learning and predict the optimization results in other cases via the previous
optimization data set [21–23]. In this paper, five different multi-objective optimization
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algorithms are listed, and the same problem is optimized respectively. Through the training
of DL, the optimization results of the five algorithms can fit the Pareto front (PF) like the
previous optimization process. The fitted PF can be further optimized by correcting and
supplementing some negative points.

Thus, the innovations of the proposed technique for reactive power optimization in
this paper can be summarized as follows:

• In general, the reactive power optimization only considers the regulation of traditional
equipment without the participation of PV systems or EVs, so that the reactive power
regulation capacities of these new regulation sources are wasted. In this work, PV and
EVs are simultaneously employed to participate in reactive power optimization in a
distribution network, which can greatly decline the pressure of traditional reactive
power regulation and improve the regulation flexibility and performance.

• To address the multi-objective reactive power optimization, the meta-heuristic based
Pareto optimization algorithms easily result in a long computation time to acquire
the high-quality Pareto optimal solutions. Besides, they easily lead to different Pareto
front in different runs due to their random operators. In contrast, the proposed deep
learning-based Pareto optimization algorithm can acquire the high-quality Pareto
optimal solutions within a short computation time since it cannot experience multiple
iterative operators. Moreover, it is a deterministic algorithm to guarantee a high
optimization stability.

The rest of this paper is structured as follows. In Section 2, the model of PV and EVs
connected to the distribution network will be explained. Section 3 will illustrate different
algorithms simply which are applied on the model, and introduce the flow chart of the
reactive power optimization. Section 4 presents the experimental results and analysis for
different examples. Finally, the work will be concluded in Section 5.

2. Reactive Power Optimization of PV and EVs Connected to Distribution Network
2.1. Reactive Power Regulation Model of PV

Generally, small photovoltaic equipment is usually connected to the distribution
network. PV scattered at different nodes are characterized by high flexibility and can
effectively improve the performance of power system [24,25]. When photons in solar
radiation pass through the interior of the PV system, the equipment will release electrons
to form the electric current. As shown in Figure 1, an inverter needs to be added since
the direct current (DC) is released from the PV system when power is injected into the
distribution network. Thus, the converted alternative current (AC) can be absorbed by the
distribution network and redistributed to different loads [26]. PV systems are connected
to PQ nodes or PV nodes of distribution network due to their ability to regulate reactive
power. There are many factors affecting the power output of the PV system, which can be
summarized as solar irradiation and real-time temperature [27]. The active power Ppv can
be presented as follows:

Ppv = Pbase
pv

[
1 + αpv· ( T − Tref )

]
·

spv

1000
(1)

With the inverter is added behind the PV system, the reactive power regulation model
is closely related to it. The output active power of the PV system will affect the range of
reactive power directly in the current regulation model, as follows: Qpv,max =

√ (
Spv

)2 −
(

Ppv
)2

Qpv,min = −
√(

Spv
)2 −

(
Ppv

)2
(2)
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Figure 1. Schematic diagram of PV system reactive power regulation. 
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sumption. The quantitative change will produce qualitative change and provide or absorb 
a large amount of power when there are a certain number of EVs connected to the distri-
bution network [28]. The PV system and electric vehicle can affect the power grid as a pair 
of complementary modules to some extent. Figure 2 shows the principle of reactive power 
regulation complementary to the PV system when EVs are connected to distribution net-
work [7]. In order to convert the AC transmitted from the distribution network into DC, a 
rectifier needs to be used for AC-DC conversion. The current converted into DC may be 
further filtered and the voltage may be changed through the DC-DC conversion. Finally, 
the optimized DC can be stored in the special battery of electric vehicle. Likewise, EVs can 
also transmit power to the distribution network through the opposite steps [29]. 
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gation by EVs. 

The input or output active power of EVs 𝑃ୡୟ୰ is closely related to the converters they 
are connected to, as follows: 

Figure 1. Schematic diagram of PV system reactive power regulation.

2.2. Reactive Power Regulation Model of EVs

EVs have basically been popularized in some big cities and their surrounding areas
through some surveys. Therefore, the V2G technology of EVs can be used to assist the
PV system. EVs can store more electric energy in the battery at the highest rate when
the working efficiency of the PV system is too high. Similarly, EVs idled in the charging
station can discharge to the distribution network at the highest rate during peak power
consumption. The quantitative change will produce qualitative change and provide or
absorb a large amount of power when there are a certain number of EVs connected to the
distribution network [28]. The PV system and electric vehicle can affect the power grid as a
pair of complementary modules to some extent. Figure 2 shows the principle of reactive
power regulation complementary to the PV system when EVs are connected to distribution
network [7]. In order to convert the AC transmitted from the distribution network into DC,
a rectifier needs to be used for AC-DC conversion. The current converted into DC may be
further filtered and the voltage may be changed through the DC-DC conversion. Finally,
the optimized DC can be stored in the special battery of electric vehicle. Likewise, EVs can
also transmit power to the distribution network through the opposite steps [29].
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The input or output active power of EVs Pcar is closely related to the converters they
are connected to, as follows:

Pcar =
VsVc sin(δ)

ωLc
(3)

In this work, the active power of EVs is not the optimization variable in the multi-
objective reactive power optimization in a distribution network. Therefore, the optimization
model will be solved by assuming the fixed active power of EVs at each time period. In
a practical application, the active power of EV can be acquired via the real-time data
acquisition or power forecasting. During the transmission of EVs to the distribution
network, the calculation of reactive power regulation range and principle is similar to that
of the PV system. Its upper limits Qcar,max and lower limits Qcar,min of reactive power can
be determined by the inverter and Pcar as (4):
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 Qcar,max =
√

( Scar )
2 − ( Pcar )

2

Qcar,min = −
√
( Scar )

2 − ( Pcar )
2

(4)

2.3. Objective Function

The most important thing in the process of power generation and transmission is its
economy and security, both of which are indispensable. Part of the energy will lose and
convert into heat due to the resistance of the conductor when the electricity is transmit-
ted through the transmission network. Besides, the surface density of field exceeds the
breakdown strength of the surrounding air after the conductor is charged, resulting in
corona loss of the thin layer of air around the conductor. Thus, line loss, which includes the
loss of heat and corona loss, can be regarded as an important optimization goal related to
the economy [30]. When DGs are connected to the distribution network, the reduction of
transmission power on the distribution feeder and the reactive power output of PV system
will cause high voltage at each load node on the distribution feeder and form voltage
deviation. Voltage deviation is an important indicator of power quality. Excessive voltage
deviation will do great harm to safety, stability, and economic operation [31]. The line loss
minimization and voltage deviation minimization are regarded as a MOP. Finally, MOEAs
are used to optimize the problem [32] and the neural networks are used to predict the
optimization results. The formulas of the two objective functions are as follows (5):

min f1 = ∑
i,j∈NL

gij

(
V2

i + V2
j − 2ViVj cos θij

)
min f2 = ∑

j∈Ni

(
Vj −V∗j

)2 (5)

2.4. Constraint Condition

There will be some constraints when using MOEA to optimize the MOPs. They include
the constraints of power flow in power system and the setting of some important parameter
ranges in distribution network [33].

2.4.1. Power Flow Equality Constraints

The conventional power flow equality constraints can be written as follows:
PGa − PDi −Vi ∑

j∈Ni

Vj
(

gij cos θij + bij sin θij
)
= 0 , i ∈ N0

QGa −QDi −Vi ∑
j∈Ni

Vj
(

gij sin θij − bij cos θij
)
= 0 , i ∈ NPQ

(6)

2.4.2. Generator Constraints

The generator outputs should satisfy the following constraints:{
Qmin

Ga ≤ QGa ≤ Qmax
Ga , a ∈ NG

Vmin
Ga ≤ VGa ≤ Vmax

Ga , a ∈ NG
(7)

2.4.3. Reactive Power Compensation Device and Transformer Tap Constraints

The actions of reactive power compensation device and transformer tap should be
limited within their bounds, as follows:{

Qmin
Cb ≤ QCb ≤ Qmax

Cb , b ∈ Nc
Tmin

h ≤ Th ≤ Tmax
h , h ∈ NT

(8)
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2.4.4. Security Constraints

To guarantee a safe operation, the node voltage and line transmission power should
satisfy the following constraints:{

Vmin
i ≤ Vi ≤ Vmax

i , i ∈ NPQ
| Sl | ≤ Smax

l , l ∈ NL
(9)

Note that the presented multi-objective reactive power optimization in Equations (5)–
(9) is a NP-hard optimization with a high non-linearity and multiple local optimums [34].
In general, it is very difficult to acquire the global solutions for this problem. Hence, the
proposed method is used to acquire the high-quality local optimums with a high probability.

3. Optimized Variable Prediction and the Process of Reactive Power Regulation Model
3.1. Overview of PREA, SPEA2, NSGA-II, NSGA-III and TOP

The promising-region-based evolutionary many-objective algorithm (PREA) [35] in-
vestigates the properties of ratio and difference-based indicators under the Minkovsky
distance. PREA with the ratio-based indicator is proposed by the researchers according
to the ratio-based indicator with infinite norm. This new MOEA proposes an individual
selection strategy based on parallel distance to ensure the diversity of the population in the
algorithm. PREA has relatively high dominance in the optimization problems with 3–20 ob-
jectives from the experimental results. Having stronger robustness is the characteristics of
PREA compared with the current advanced MOEA.

The strength Pareto evolutionary algorithm 2 (SPEA2) [36] stores the nondominated
solutions in another continuously updated population. Then it computes the fitness accord-
ing to the number of nondominated solutions that an individual independently dominates.
A cluster analysis process is added for the sake of reducing the nondominated solution set
without destroying its characteristics. In addition, Pareto dominance is used to preserve
population diversity in SPEA2. In some MOPs, SPEA2 shows excellent optimization ability.
Path planning simulation can be addressed by the traditional hybrid target method and the
improved SPEA2 based on a local search.

A fast non-dominated sorting genetic algorithm II (NSGA-II) is proposed in [37] to
reduce the complexity of calculating nondominated orders. An elite strategy is intro-
duced and the sampling space is expanded in NSGA-II. Such approaches are conducive to
maintaining the excellent individuals in the parent generation, ensuring that those great
individuals will not be discarded in the process of evolution. Therefore, the accuracy of
optimization results can be highly improved. The best individuals will not be lost, and the
population level can be rapidly improved by storing all individuals in layers. NSGA-II
takes the crowding degree as the comparison criterion between individuals in the popula-
tion. It has the characteristic that the population individuals in the quasi Pareto domain
can be evenly extended to the whole Pareto domain, which ensures the diversity of the
population.

NSGA-III [38] can be regarded as an improved algorithm of NSGA-II. With the devel-
opment of technology, optimization problems become more and more complex. In order to
adapt to the development of MOPs, NSGA-III is proposed and widely used to deal with
high-dimensional problems with objective dimension greater than 3. The nondominated
individuals of the population will increase exponentially in high-dimensional problems.
Thus, an issue that it is difficult to distinguish individuals by Pareto dominance will be
exposed. The decomposition-based algorithm is proposed in NSGA-III to set reference
points and then address this kind of problem.

Two-phase framework (ToP) [39] is the most recently published algorithm that mainly
handles constrained multiobjective optimization problems (CMOPs). Without considering
the decision constraints and the objective constraints, CMOPs may become easier but not
practical. In order to improve the performance of current algorithms in dealing with such
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problems, ToP is proposed to obtain feasible solutions with more uniform distribution and
better convergence.

3.2. Application of DL in Reactive Power Optimization of Distribution Network

In this paper, deep deconvolutional neural network (DDNN) is applied to acquire
the knowledge between the reactive power regulation command and the Pareto optimal
solutions based on the standardized data. DDNN, which is based on a deep neural network
(DNN) and developed from a fully connected neural network, improves the fault tolerance
rate and data analysis ability of data processing. For good measure, DDNN will avoid
an excessive co-adaptation between different neurons to a large degree. Then, the new
network that is more robust than before can be applied to handle the overfitting problem.
Thus, according to the reactive power regulation command, the trained DDNN can directly
generate the approximate PF, as follows (10):

x̂∗nt = gDDNN(W, b, ∆Q) (10)

To obtain multiple sets of data for prediction with DL, a variety of intelligent algo-
rithms are applied to the optimization of the problem. Both continuous variables and
discrete variables will exist in the process of reactive power optimization. Continuous
variables can be iterated according to normal optimization, and discrete variables need to
be rounded by continuous spatial values. Besides, the fitness function of each algorithm
should also add a penalty mechanism to ensure that the optimization results meet the
above constraints, as follows (11):

ffit,d

(
xi
)
= fd

(
xi
)
+ ηq, d ∈ D (11)

The advantages of different algorithms will be reflected in the PF. Thus, the prediction
can concentrate and use the optimized data obtained by the algorithms with different
characteristics. The method that calculates the Euclidean distance between the infeasible
solution and the feasible solution is common in correcting the infeasible solution. Conse-
quently, the points on the PF can be sorted and pruned before the data training. In order to
better extract the characteristics of the optimized data obtained by multiple algorithms, the
number of layers of the DL network will be set to five in this work. Each layer is set as a
fully connected layer, and the dimension of the input features are different.

The process of multi-objective reactive power optimization can be summarized as
Figure 3. Firstly, the basic operating data of the distribution network including the active
power data are taken as the inputs. Then, the reactive power regulation range of PV and
EVs can be evaluated according to their current active power. Meanwhile, the objective
functions and constraints will be determined based on the optimization model constructed
above. Five different intelligent algorithms are used to generate the training data for DDNN.
Hence, DDNN can be trained by the data from the optimization results, and then it can be
adopted to rapidly acquire the Pareto optimal solutions for different tasks of multi-objective
reactive power optimization.
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4. Example Analysis
4.1. Simulation Model

In this work, IEEE 14-bus and IEEE 33-bus distribution network will be used to test
the different algorithms. The topology of the two models are shown in Figure 4. In the
IEEE 14-bus system, the installed capacity of PV is set as 1 MW, while the capacity of
EVs charging and replacement power station can be set as 100 kW. Only two PV in small
scale and two EV charging and exchange stations were simulated in the experiment due
to the limited number of nodes. The location of connected nodes can be obtained from
Figure 4. Hence, two groups of reactive power regulation ranges need to be optimized can
be obtained from active power of PV and the EVs power station. Besides, 1 reactive power
compensation device and 3 taps of transformer are set, each of which will have 5 gears
{0.98, 1.00, 1.02, 1.04, 1.06} pu for adjustment respectively. Similarly, the capacity of PV
and EV station are set as 1 MW and 100 kW, respectively. PV or EV stations connected to
the distribution network will increase accordingly while the number of nodes increases.
Therefore, 5 different reactive power regulation ranges can be obtained by the 5 PV and 5 EV
stations respectively in the simulation. At the same time, 2 reactive power compensation
devices and 5 taps of transformer are set.
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Generally, the main influencing factors of PV output power are current temperature
and solar irradiation. Thus, different solar irradiation will be set in different PV to observe
its impact on the reactive power regulation range. In addition, each EV charging and
replacement station accommodates 10 EVs, and the residual power of each EV is 0–10 kW
by considering actual optimal scheduling problem of EVs [40]. The range of total power
can be simply added to 0–100 kW. Tables 1 and 2 show the parameters range of PV and EV
station in IEEE 14-bus and IEEE 33-bus, respectively.

Table 1. Parameters of PV and EV stations in the IEEE 14-bus distribution system.

Number Solar Irradiation (W·m−2)
Active Power

(kW)
Reactive Power
Range (kVar)

PV
1 600 12 [−17.23, 17.23]
2 700 14 [−15.65, 15.65]

EV
1 −56.76 [−82.33, 82.33]
2 −49.16 [−87.08, 87.08]

Table 2. Parameters of PV and EV stations in the IEEE 33-bus distribution system.

Number Solar Irradiation (W·m−2)
Active Power

(kW)
Reactive Power
Range (kVar)

PV

1 600 12 [−17.23, 17.23]
2 700 14 [−15.65, 15.65]
3 800 16 [−13.60, 13.60]
4 900 18 [−10.82, 10.82]
5 1000 20 [−6.40, 6.40]

EV

1 −48.38 [−87.52, 87.52]
2 −53.31 [−84.61, 84.61]
3 −52.14 [−85.33, 85.33]
4 64.99 [−76.00, 76.00]
5 −44.67 [−89.47, 89.47]

It is necessary to ensure that the initialization conditions are the same when the
different intelligent algorithms for optimization are used. The population number and
maximum iteration of the optimization process are set to 50 in order to simplify the
calculation and accelerate the experimental progress. In the process of optimization, five
different algorithms will operate in the same environment.
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4.2. Analysis of Experiment Results

Figure 5 shows the acquired PFs of IEEE 14-bus and IEEE 33-bus systems in the case
of this model, respectively. The abscissa of PF is set as the line loss of distribution network,
and the ordinate is set as the voltage deviation. NSGA-II and ToP have a wider PF than
other algorithms on the IEEE 14-bus system. This reveals that these two algorithms can
implement a wider exploration for multi-objective reactive power optimization on the IEEE
14-bus system. The optimization results of NSGA-III will be densely distributed in the
middle of the front, which results from the strong exploitation for a local area. However,
the performance of SPEA2 is somewhat unsatisfactory. Most of the optimization results
prefer to minimize the voltage deviation in the locally enlarged figure. In contrast, the
distribution range of line loss is much smaller. The PF distinction on the IEEE 33-bus system
can be more obvious than that on the IEEE 14-bus system from Figure 5b. PREA performs
relatively poorly among all the algorithms. It can be found that slight dominated solutions
are distributed near the two ends of the PF in many simulations. The optimization results
of SPEA2 in this system still have the problem of uneven distribution due to the blind
selection from the Pareto repository. Many solutions only perform well in a single objective
minimization, but it is difficult to achieve the balance of multi-objective minimization.
NSGA-II and NSGA-III perform better in the optimization value. Nonetheless, these two
algorithms still have the issue of small distribution range compared with other algorithms.
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The solution differences between DL and other five meta-heuristic-based Pareto opti-
mization algorithms are presented in Tables 3 and 4. It can be found that the range of PF
obtained by DL is slightly narrower than that by other algorithms. It demonstrates that,
with DL, it is difficult to achieve a high generalization for all the Pareto optimal solutions.
Even though there is a gap of maximum and minimum value among DL and other algo-
rithms, the average line loss and voltage obtained by DL are almost the smallest among all
the algorithms since its training data is generated from multiple algorithms. Besides, when
it comes to the economic benefits of optimization, this model of reactive power regulation
embodies its advantages. In the IEEE 14-bus system, the electric energy saved from line
loss is about 192 kWh per day, i.e., the cost saved in one day is $19.2 when the electricity
price is set to $0.1 per kWh. Furthermore, the expenses reduced from optimization can be
calculated as $16.7 per day in the IEEE 33-bus system.
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Table 3. Statistical results of PFs obtained in the IEEE 14-bus system.

Objective Algorithm Minimum Maximum Average

Line loss/MW

PREA 0.0223 0.0235 0.0226
SPEA2 0.0223 0.0235 0.0231

NSGA-II 0.0223 0.0240 0.0227
NSGA-III 0.0223 0.0231 0.0226

ToP 0.0223 0.0242 0.0228
DL 0.0236 0.0251 0.0240

Voltage
deviation/pu

PREA 0.0248 0.0438 0.0316
SPEA2 0.0244 0.0438 0.0268

NSGA-II 0.0244 0.0471 0.0327
NSGA-III 0.0250 0.0359 0.0292

ToP 0.0245 0.0425 0.0298
DL 0.0245 0.0421 0.0308

Table 4. Statistical results of PFs obtained in the IEEE 33-bus system.

Objective Algorithm Minimum Maximum Average

Line loss/MW

PREA 0.0810 0.1091 0.0938
SPEA2 0.0809 0.1081 0.0916

NSGA-II 0.0813 0.1089 0.0877
NSGA-III 0.0819 0.1086 0.0904

ToP 0.0809 0.1079 0.0920
DL 0.0873 0.0939 0.0906

Voltage
deviation/pu

PREA 0.0065 0.0164 0.0102
SPEA2 0.0066 0.0167 0.0111

NSGA-II 0.0066 0.0171 0.0119
NSGA-III 0.0067 0.0140 0.0105

ToP 0.0067 0.0171 0.0107
DL 0.0077 0.0167 0.0102

In addition, the five algorithms and DL have almost the same goal of minimizing line
loss in IEEE 14-bus system from Table 3. However, there is little difference in the results of
voltage deviation minimization and optimization among various algorithms in the IEEE
33-bus system from Table 4. Besides, the conclusions observed in the graph can also be
obtained from the table data. The PF of NSGA-II shows excellent scalability compared
with other algorithms in the 14-bus system while its multi-objective minimization ability is
incisively and vividly demonstrated in the 33-bus system. The simulation of ToP can get
relatively stable values under any system model from the average data. It must have great
advantages in some practical applications that highlight stability compared with other
algorithms with large numerical changes in optimization results. In general, the prediction
results of DL have little difference from the five algorithms. Both the width of PF and
optimization degree can basically reach the optimal value of various intelligent algorithms.

Take the IEEE 33-bus system as an example to verify the prediction effect of DL in this
kind of model. Two PV and three EV charging and replacement power stations are set as
same as the above experiments. Every PV can output 10 kinds of active power values, and
the output data of EV charging and replacement stations are set randomly. The above five
algorithms are used to optimize the model respectively, and a large amount of optimized
reactive power data is obtained through the above active power. The optimized results in
each case will be used as samples for DL training. Offline training only takes a few minutes
to get the same number of solutions as the number of data groups. Then the training results
integrated comprehensively by the five algorithms will be used in the same case. Some
dominated solutions will be deleted, and some virtual solutions will be supplemented, so
that the PF will become more smooth than before. There is no doubt that the supplementary
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solution must remain within the constraints. Thus, a set of solutions with five different
excellent algorithms can be used for prediction.

The comparison between the prediction results of DL and the integrated results from
five algorithms is shown in Figure 6. It can be seen that the predicted results of DL can
basically reach or even exceed the optimization results integrated by five algorithms. Firstly,
DL can extend the PF range compared with the integrated PF by five algorithms in Figure 6a,
which resulted from the effective generalization formed in network training. Secondly,
DL can further improve the PF quality compared to the original integrated PF, as shown
in Figure 6b. This verifies that the training data from different optimization tasks can
enhance the Pareto optimization performance of DL due to the high similarity between
them. Furthermore, the computation time consumed by different methods is provided
in Table 5. The computation time of all the algorithms except DL is close because their
computation time is mainly determined by the population size and maximum iteration
number, where these two parameters are set to be the same values for each algorithm. Note
that the computation time of DL is the shortest among all the algorithms as it can directly
generate the Pareto optimal solutions without multiple iterative operators. In particular,
the computation time of NSGA-II is about 79.58 times that of DL.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 17 
 

 

training results integrated comprehensively by the five algorithms will be used in the 
same case. Some dominated solutions will be deleted, and some virtual solutions will be 
supplemented, so that the PF will become more smooth than before. There is no doubt 
that the supplementary solution must remain within the constraints. Thus, a set of solu-
tions with five different excellent algorithms can be used for prediction. 

The comparison between the prediction results of DL and the integrated results from 
five algorithms is shown in Figure 6. It can be seen that the predicted results of DL can 
basically reach or even exceed the optimization results integrated by five algorithms. 
Firstly, DL can extend the PF range compared with the integrated PF by five algorithms 
in Figure 6a, which resulted from the effective generalization formed in network training. 
Secondly, DL can further improve the PF quality compared to the original integrated PF, 
as shown in Figure 6b. This verifies that the training data from different optimization tasks 
can enhance the Pareto optimization performance of DL due to the high similarity be-
tween them. Furthermore, the computation time consumed by different methods is pro-
vided in Table 5. The computation time of all the algorithms except DL is close because 
their computation time is mainly determined by the population size and maximum itera-
tion number, where these two parameters are set to be the same values for each algorithm. 
Note that the computation time of DL is the shortest among all the algorithms as it can 
directly generate the Pareto optimal solutions without multiple iterative operators. In par-
ticular, the computation time of NSGA-II is about 79.58 times that of DL. 

  
(a) (b) 

Figure 6. Examples of DL prediction and raw data in IEEE-33 bus system. (a) Example 1; (b) Exam-
ple 2. 

Table 5. Comparison of time required for different algorithm optimization and DL prediction in 
IEEE-33 bus system. 

Algorithm Average Time/Seconds 
PREA 7.77 
SPEA2 8.67 

NSGA-II 9.55 
NSGA-III 9.03 

ToP 9.70 
DL 0.12 

  

Vo
lta

ge
 d

ev
ia

tio
n 

/ p
u

Figure 6. Examples of DL prediction and raw data in IEEE-33 bus system. (a) Example 1; (b) Example 2.

Table 5. Comparison of time required for different algorithm optimization and DL prediction in
IEEE-33 bus system.

Algorithm Average Time/Seconds

PREA 7.77
SPEA2 8.67

NSGA-II 9.55
NSGA-III 9.03

ToP 9.70
DL 0.12

5. Conclusions

In this work, a novel DL based Pareto optimization method is proposed for multi-
objective reactive power optimization in a distribution network with PV and EVs, which
contains the following contributions:

(1) By taking the participation of PV and EVs into account, the reactive regulation
burden of the distribution network can be effectively reduced. As a result, the operation
economy and the voltage quality of the distribution network can be further improved.
Simulation results demonstrate that the line loss can be reduced by 25.2% by the proposed
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method compared to that without the participation of PV and EVs on the IEEE 14-bus
system, and 7.7% on the IEEE 33-bus system. In addition, the voltage deviation can be
reduced by 0.16% and 0.38% on the IEEE 14-bus and IEEE 33-bus systems, respectively.

(2) The proposed technique for multi-objective reactive power optimization is verified
on IEEE 14-bus and IEEE 33-bus systems, which is compared with five different intelligent
algorithms. Simulation results show that the proposed DL method can rapidly acquire a
high-quality PF, while another five algorithms can complete the optimization task well, and
the Pareto optimal solutions have little difference in the degree of optimization. Particularly,
the computation time of DL is only 1.26% of that by NSGA-II on the IEEE 33-bus system,
while the average line loss and voltage deviation of all the Pareto optimal solutions obtained
by DL are the smallest among all the algorithms.

Although the proposed DL based multi-objective reactive power optimization can
perform well on the test systems, it still easily faces two main challenges. Firstly, it should
spend a long computation time on the data acquisition and network training. Secondly, it
will easily lead to multiple infeasible solutions due to the poor generalization of DL with
insufficient data. To handle these two problems, our future work will focus on the historical
data utilization and the generalization for DL.
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Nomenclature

Variable
Ppv active power of PV system
Pcar input or output active power of EVs
T real-time temperature
spv solar irradiation at the current time
Qpv,max upper limits of adjustable reactive power range of PV system
Qpv,min lower limits of adjustable reactive power range of PV system
Qcar,max upper limits of adjustable reactive power range of EVs
Qcar,min lower limits of adjustable reactive power range of EVs
δ phase difference between Vs and Vc
ω angular frequency of the sine wave in the AC system
f1 line loss
f2 voltage deviation
Vi voltage amplitude of the ith node
Vj voltage amplitude of the jth node
θij phase angle difference between the ith and jth nodes
PGa active power of the ath generation node
QGa reactive power of the ath generation node
PDi active power demand of the ith node
QDi reactive power demand of the ith node
Qmin

Ga lower limits of reactive power regulation of the ath generator
Qmax

Ga upper limits of reactive power regulation of the ath generator
QGa reactive power currently input into the grid by the ath generator
Vmin

Ga lower limits of output voltage of the ath generator
Vmax

Ga upper limits of output voltage of the ath generator
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VGa current output voltage of the ath generator
Qmin

Cb lower limit of the capacity of the bth reactive power compensation device
Qmax

Cb upper limit of the capacity of the bth reactive power compensation device
Tmin

h lower limit of the regulation range of the hth transformer tap
Tmax

h upper limit of the regulation range of the hth transformer tap
Vmin

i lower voltage limits of the ith node
Vmax

i upper voltage limits of the ith node
Sl apparent power of the lth line
x̂∗nt approximate Pareto optimal solutions for the new task
∆Q reactive power regulation command of a new task

fd

(
xi
)

objective function value

f f it,d

(
xi
)

value of fitness function

Parameters
Pbase

pv total rated power of PV system
αpv temperature conversion coefficient
Tref reference temperature
Vs grid voltage
Vc charging piles voltage
Spv capacity of the inverter
Scar capacity of charging piles inverter
Lc simplified inductance
gij admittance between the ith and jth nodes
Ni total node set
NL all branch set
N0 node set except the balance node
NPQ PQ node set
V∗j rated voltage of the jth node
NG generator set
Nc set of reactive power compensation devices
NT set of transformer taps
bij susceptance between the ith and jth nodes
Smax

l transmission power limit of the lth line
gDDNN trained DDNN network
W weight set
B bias set
D set of objective functions
η penalty coefficient
Indices
i index of node
j index of node
a index of generator
b index of reactive power compensation device
h index of transformer tap
l index of bus
d index of the objective functions value
q index of the objective
Abbreviations
RES renewable energy sources
PV photovoltaic
DG distributed generations
DER distributed energy resources
V2G vehicle-to-grid
MOP multi-objective problem
MOEA multi-objective evolution algorithm
PF Pareto front
SQP sequential quadratic programming
DL deep learning
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DC direct current
AC alternative current
PSO particle swarm optimization
NSGA-II non-dominated sorting genetic algorithms II
NSGA-III non-dominated sorting genetic algorithms III
PREA promising-region-based evolutionary many-objective algorithm
SPEA2 strength Pareto evolutionary algorithm 2
ToP two-phase framework
DDNN deep deconvolutional neural network
DNN deep neural network
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