
Citation: Xu, F.; Zhang, K.; Xu, X.

Development of Magnetically

Levitated Rotary Table

for Repetitive Trajectory Tracking.

Sensors 2022, 22, 4270. https://

doi.org/10.3390/s22114270

Academic Editors: Arkadiusz Gola,

Izabela Nielsen and Patrik Grznár

Received: 9 May 2022

Accepted: 1 June 2022

Published: 3 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Development of Magnetically Levitated Rotary Table
for Repetitive Trajectory Tracking
Fengqiu Xu † , Kaiyang Zhang † and Xianze Xu *

Electronic Infromation School, Wuhan University, Wuhan 430070, China; hncxu@whu.edu.cn (F.X.);
kyzhang@whu.edu.cn (K.Z.)
* Correspondence: xuxianze@whu.edu.cn
† These authors contributed equally to this work.

Abstract: The magnetic levitation system has been considered as a promising actuator in microma-
chining areas of study. In order to improve the tracking performance and disturbance rejection of
the magnetically levitated rotary table, an iterative learning PID control strategy with disturbance
compensation is proposed. The estimated disturbance compensates for the control signals to enhance
the active disturbance rejection ability. The iterative learning control is used as a feed-forward unit to
further reduce the trajectory tracking error. The convergence and stability of the iterative learning
PID with disturbance compensation are analysed. A series of comparative experiments are carried
out on the in-house, custom-made, magnetically levitated rotary table, and the experimental results
highlight the superiority of the proposed control strategy. The iterative learning PID with disturbance
compensation enables the magnetically levitated rotary table to realize good tracking performance
with complex external disturbance. The proposed control strategy strengthens the applicability of
magnetically levitated systems in the mechanism manufacturing area.

Keywords: magnetic levitation system; rotary table; disturbance compensation; iterative learning
control; trajectory tracking

1. Introduction

The advantages of no friction, high precision, and cleanliness make magnetic levita-
tion technology attractive in high-precision industrial applications, such as semiconductor
lithography, mechanical micromachining, and so on. Nowadays, considering that mecha-
nism manufacturing requires precision translational and rotational motion, different types
of magnetically levitated positioning systems have been developed [1–3]. The magnetically
levitated rotary table (MLRT) is a typical motion control equipment using a magnetically
levitated (maglev) actuator, which is suitable to produce the accurate multiaxis motion for
micro-machining [4]. However, the magnetic force and torque characteristics are difficult to
be described accurately [5,6], and the unmodeled dynamics in the system, such as the non-
uniform winding of the coils, the inaccurate magnetizing of the permanent magnet and the
measuring noise in the sensing system, inevitably exist in the system design. These adverse
factors degrade the motion performance of the maglev positioning system. It is necessary
to improve the active disturbance rejection ability for a certain maglev rotary table.

In the past few years, a variety of control strategies have been proposed for the maglev
system. Some researchers employ the classical control to design the controllers. Lu et al.,
employ the PID controller to realize the motion control of the maglev motor [7] and rotary
table [4]. Li et al., in [8], use the specified PD control for stabilizing the unstable maglev
system and the integral control for eliminating the steady-state error. Kim et al., obtain the
full state of the maglev positioning stage via the position sensors, and then employ the
state feedback control to realize the precision positioning [9]. Silva-Rivas et al., design a
planar maglev system [10], where the Kalman filter is employed for the state estimation
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and the linear quadratic regulator for the optimal control. Fallaha et al., use the sliding
mode control in the maglev system to inherent the measuring noise of the sensors [11].
These controllers are convenient for implementation with acceptable dynamic performance.
However, suffering from the model mismatch and external disturbance, the classical control
methods cannot realize the satisfactory motion profile. In order to improve the tracking
performance of the maglev system, researchers have attempted the advanced control
methods. Zhang et al. and Chen et al., propose the adaptive sliding mode controller to
deal with uncertainties and improve the robustness for the planar maglev system in [12]
and [13], respectively. Basovich et al. in [14], compensate the identified disturbance via an
iterative output feedback control strategy to improve the payload capability of the maglev
system. Intelligent control algorithms such as neural network and data-driven control can
also improve the disturbance rejection ability in a systematic fashion as discussed in [15–17].
Even if the various advanced control methods develop continuously, many of them need
enough computation resources to promise the real-time solution for the implementation of
the controller. Considering the simplicity structure, proportion-integral-derivative (PID) is
still the most popular control algorithm in practical engineering with good robustness and
high reliability [18]. It is meaningful to study the PID-based MLRT, which improves the
practicality of the magnetically levitated technology for industrial application.

In practice, the disturbances and uncertainties resulting from the measuring noise,
external contact, varied payload and so on, affect the motion performance of the maglev
positioning system for mechanism manufacturing equipment. Obviously, classical PID
controller lacks the sufficient disturbance rejection capacity, so the control loop should
take some reforms to overcome the shortcomings. It is noted that industrial machines
often perform the repetitive trajectory for planar contouring [19,20], such that the iterative
learning control (ILC) scheme is an effective feed-forward compensator [21–23] for this
type of motion task. Additionally, ILC is able to optimize the control signal independent of
the accurate system model, which is suitable for the maglev system because the accurate
dynamics of the maglev system are hard to model. Therefore, the ILC is employed in the
controller to improve the tracking performance for the repetitive trajectory. On the other
hand, the disturbance observer has been used successfully for the active disturbance rejec-
tion in the industrial applications [16,24], as the influences from the external disturbance
and system uncertainties are decreased with the control input signals compensated by the
estimated disturbance. Thus, the estimated disturbance is inserted into in the feedback
loop of the MLRT controller to inhibit the external disturbance in this work.

An iterative learning PID control strategy with disturbance compensation (LPIDDC)
is proposed, which integrates the ILC technique and disturbance compensation (DC)
strategy in a series structure. The model-based DC term quickly estimates the disturbances
in the system, whereas the data-driven ILC term reduces the impacts of the repetitive
uncertainties. This paper focuses on exploring and designing a motion control approach
with excellent robustness and tracking ability for the MLRT to meet the requirements of
precision industries. The main contributions of the paper are twofold. First, the control
strategy which contains a model-based disturbance estimation and a data-driven iterative
learning technique is presented to achieve excellent tracking performance. Secondly,
the asymptotic stability of the LPIDDC-based maglev system is discussed, and the principle
of the determination of control parameters is given.

The rest of the paper is organized as follows. The dynamic model of the maglev rotary
table is introduced in Section 2. Section 3 describes the proposed iterative learning PID
control method with disturbance compensation. In Section 4, the comparative experiments
are carried out to highlight the superiority of the proposed control method. Section 5 gives
the conclusions.
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2. Dynamic Model Description of the MLRT

In this section, the dynamics of the MLRT are analyzed. As shown in Figure 1,
the MLRT consists of a circular Halbach permanent magnet (PM) array and 8-phase coils
(3 coils for each phase) which can be divided into eight actuator units. Calculation of the
magnetic force and torque in an actuator unit is the basis for establishing the magnetic force
model of the MLRT. According to the calculation method stated in [25], the magnetic force
of an actuator unit is presented in the function related to the position of the table. With the
left superscript representing the vector or variable defined in the certain coordinate system,
including the magnet coordinate system {m} , the coil coordinate system {ci}, and stator
coordinate system {s}, the magnetic force is solved by

sfi = −
2

∑
qc=0

s
ci

R ·
N

∑
g1=1

N

∑
g2=1

N

∑
g3=1

wg1 · wg2 · wg3 · ci J× ci
mR · mB(sp), (1)

where sfi represents the force produced by each actuator unit with the subscript i ranging
from 1 to 8, wg1, wg2 and wg3 represents the weight of the Gaussian quadrature, N is
the number of Gauss nodes, ci J represents the current density in the i-th phase of coil,
mB is the magnetic flux density produced by the magnet array in the mover coordinate
system depending on the position of the stage sp, and qc is the index number of the coils.
Furthermore, R in Equation (1) represents the rotation transformation matrix between
different coordinate systems. Assume the azimuth of the first coil in the i-th coil phase is ϕi
related to the sx-axis in the sxsy plane, the s

ci
R is solved as

s
ci

R =

 cos
(

ϕi + qc · π
12
)

sin
(

ϕi + qc · π
12
)

0
− sin

(
ϕi + qc · π

12
)

cos
(

ϕi + qc · π
12
)

0
0 0 1

, (2)

and ci
mR is given as,

ci
mR =s

m R ·ci
s R =

 cos
(
γp
)

sin
(
γp
)

0
− sin

(
γp
)

cos
(
γp
)

0
0 0 1

 ·sci
R−1, (3)

where γp is the rotation angle of the stage. Additionally, as the pitch αp and roll βp are small
enough, the two angles are not considered in the rotation matrices. Then, the resultant
force sfi can be decomposed into s fix, s fiy, and s fiz in the global stator coordinate system.
Magnetic torque is the cross product of arm moment sri and magnetic force. It can be
written as

sti =
sri × sfi, (4)

where sti represents the resultant torque produced by each actuator unit and sri is the arm
moment. The resultant torque contains stix, stiy and stiz in the stator coordinate system.

Now the resultant force and resultant torque of the eight actuator units on each axis
can be written as sFx, sFy, sFz, sTx, sTy, sTz shown in Figure 1.

The dynamics of the MLRT can be regarded as six independent single input, single
output (SISO) systems as{

sF(t)− [0, 0, G]T = m ·
[
ẍp, ÿp, z̈p

]T
sT(t) = diag

(
Ix, Iy, Iz

)
·
[
α̈p, β̈p, γ̈p

]T , (5)

where sF is
[sFx, sFy, sFz

]T, sT is
[sTx, sTy, sTz

]T,
[
xp, yp, zp

]
represents the position of the

rotary table,
[
αp, βp, γp

]
means the rotation of the table along each axis, m denotes the

mass of the mover, G is the weight of the mover, and Ix, Iy and Iz are the inertia moment
of the levitated table related to the corresponding axis. If we obtain the desired force
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and torque from the control algorithm, the required exciting current in these coils can be
calculated via the following formula:

I = Γ+ ·
[sFx, sFy, sFz, sTx, sTy, sTz

]T. (6)

I is the current vector containing the current in each phase coil. Γ+ is the pseudoinverse
of current-wrench transformation matrix.

Figure 1. Exploded view of the proposed MLRT.

After the above analysis, we know that the control object of this article can be described
as follows.

θ · Ẍ = u + fd, (7)

where X is the position information of the maglev system and represents xp, yp, zp, αp,
βp or γp, θ means the normal mass m for translational motion or the inertia moment
Ix, Iy and Iz for rotation, u is the control variable which can represents sFx, sFy, sFz, sTx, sTy
or sTz, and fd is the lumped disturbance resulted from the uncertainty and disturbance.
Equation (7) can also be written as{

ẋ1 = x2 = Ẋ
ẋ2 = 1/θ · u + 1/θ · fd = 1/θ · u + D = Ẍ

. (8)

Rejecting the uncertainties and disturbances in the system and reducing the tracking
errors are our concerns.

3. LPIDDC Approach

To achieve remarkable tracking performance, a hybrid control structure LPIDDC is
proposed as shown in Figure 2. The LPIDDC control strategy consists of three parts: PID
term, DC term, and ILC term. In the LPIDDC framework, the PID term is responsible for
the stability of the maglev system. The DC term is designed based on the plant model,
which can effectively estimate and inhibit the disturbance. The ILC term generates the
optimal input to change the reference of PIDDC through previous control experience and
tracking error, so that the effect of unmodeled repetitive disturbance is reduced. Compared
with the conventional feed-forward–feedback control, for example LPID, the DC term not
only enhances the disturbance rejection capability, but also eliminates the system errors
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which cannot be totally removed by the ILC. The LPIDDC control framework offers an
effective motion control technology scheme for the industrial application of the maglev
system and also supplies a meaningful idea for control engineers.

Figure 2. Framework of the proposed LPIDDC control strategy.

In this framework, if the ILC term or the DC term is paused, the LPIDDC control
strategy becomes the PID with disturbance compensation (PIDDC) or the iterative learning
feed-forward PID (LPID) control scheme. If both of the ILC term and the DC term are
switched off, only the PID feedback controller works. This flexible control framework is
helpful for us to carry out the comparative experiments.

3.1. PID Term

When the dynamic decoupling unit works, the MLRT is equivalent to six independent
SISO second-order systems. Considering the second-order system is open-loop unstable,
a feedback compensator is necessary to stabilize the unstable maglev system. The classical
PID controller is employed because of the simple structure and reliable performance, mean-
while the PID method is also robust for the measuring noise and unmodeled dynamics. In
order to obtain the desired response, we solve the control parameters via a tool named PID
TUNER provided by MATLAB. This tool automatically calculates the control parameters
based on the required motion performance in the time domain. The designer describes
the time-domain performance by two parameters: response time and transient behavior.
The response time can be set directly, and a short value requires a large open-loop gain
but may result in the input saturation. The transient behavior is given by a ratio to rate
the weights of robustness and aggressiveness. The obtained transfer function is defined
in the s domain, and it will be converted into the discrete domain via the zero-order-hold
with the certain sampling frequency. Then, the transfer function can be implemented in
the controller, which calculates the control signal at each sampling cycle with the positions
and rotational angles from the sensing system being the inputs. The obtained control
signal, the uPID in Figure 2, represents the required force or torque for the motion control,
and it will be employed to solve the required excitation current for each coil phase via the
decoupling unit by Equation (6).

3.2. Disturbance Compensation Term

There are many uncertain factors, such as unmodeled nonlinear dynamics and external
disturbances in the actual industrial environment. A nonlinear disturbance observer is
designed to estimate these disturbances and provide the feed-forward compensation.
The nonlinear disturbance observer can be expressed as{

D̂ = r0 + p(x1, x2)

ṙ0 = −L(x1, x2) · r0 − L(x1, x2) ·
[

p(x1, x2) +
1
θ · u

] , (9)

where D̂ is the estimated disturbance, L(x1, x2) is the gain of disturbance observer, and p(x1, x2)
is a nonlinear function. Their relationship is given as

L(x1, x2)ẋ2 = ṗ(x1, x2). (10)
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In general, the actual disturbance D can be considered, which varies slowly at the
steady state,

Ḋ ≈ 0. (11)

Thus, the observation error is

ed = D− D̂. (12)

Substituting Equations (9)–(11) into Equation (12), we can get the dynamic equation
of observation error,

ėd = Ḋ− ˙̂D = −ṙ0 − ṗ(x1, x2)

= L(x1, x2) · [r0 + p(x1, x2)]− L(x1, x2) ·
(
ẋ2 −

u
θ

)
= −L(x1, x2) · ed .

(13)

By solving Equation (13), we get

ed = ed(0) · e−L(x1,x2)·t, (14)

where ed(0) is the observation error at the beginning instant of each repetitive trajectory.
If L(x1, x2) = σ(σ > 0), the observed error converges exponentially. Then, p(x1, x2) is
given as

p(x1, x2) = σ · x2. (15)

The output of the observer should be transmitted to the gain adjustment module so
that the observed disturbance can be converted into corresponding control variables,

ud = D̂ · θ. (16)

After implementing the disturbance observer, the net control input of the system
is uPID − ud as illustrated in Figure 2. Thus, the second equation in Equation (8) can be
expressed as

ẋ2 =
1
θ
(uPID − ud) + D =

1
θ

uPID + ed =
1
θ
(uPID + d), (17)

where d is the equivalent residual disturbance, which is considered to be acting on the con-
trol input signal and approaching to 0 at the steady state. It can be seen from Equation (17)
that the disturbance in the system is changed from D to ed when the disturbance observer
works. In practice, if a lot of high-frequency noise exists in the system, the signal observed
by the disturbance observer is required to be processed by a low-pass filter to obtain a more
accurate estimated value.

3.3. Iterative Learning Term

When the MLRT undertakes the repetitive trajectory tracking, the tracking perfor-
mance can be improved significantly by learning the tracking errors from the previous
iterations in the framework of ILC. ILC is a model-free feedforward control method, and it
directly compensates the control input with the existing feedback controller not modified.
The iterative learning control is expressed as

uILC,k = Q ·
(
uILC,k−1 + GILC · ek−1

)
, (18)

where uILC,k is the ILC signal at the k-th repetitive tracking, Q is a low-pass filter which
can suppress the system noise, and GILC is a s-domain transfer function which processes
the tracking error to realize the learning function. The following Theorem presents the
convergence of tracking errors with the MLRT regulated by the compound control method
containing the PID, disturbance compensation, and iterative learning control.
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Theorem 1. Considering the MLRT described by Equation (7), the proposed control strategy which
consists of the PID term, the DC term and the ILC term can guarantee the convergence of the
tracking error.

Proof of Theorem 1. Noting the control block diagram in Figure 2 and the dynamics in
Equation (17), the dynamic of the maglev system can be described as

xk = Nr · xd + Nr · uILC,k + Nu · d, (19)

where xk, xd are output and reference, respectively. The transfer functions Nr and Nu are
expressed as

Nr =
G(s) · C(s)

1 + G(s) · C(s) , (20)

Nu =
G(s)

1 + G(s) · C(s) , (21)

where G(s) and C(s) represent transfer function of the maglev system and the PID controller,
respectively. The tracking error ek is equal to xd − xk, and substituting Equation (18) into
Equation (19), then ek is written as

ek = xd − xk = xd − Nr · xd −Q · Nr · uILC,k−1 −Q · Nr · GILC · ek−1 − Nu · d. (22)

Replacing the subscribe k in Equation (19) by k− 1, the following formula is obtained.

− Nr · uILC,k−1 = ek−1 + (Nr − 1) · xd + Nu · d. (23)

Substituting the term, −Nr · uILC,k−1, of Equation (23) into the right side of
Equation (22), the following equation is derived:

ek = Q · (1− Nr · GILC) · ek−1 + (1− Nr) · (1−Q) · xd + (Q− 1) · Nu · d. (24)

The xd is the constant reference, and the residual disturbance d can be 0 with an
appropriate disturbance observation gain. Therefore, we have

ek+1 − ek = Q · (1− Nr · GILC) · (ek − ek−1). (25)

With the reasonable transfer functions Q and GILC, ‖Q · (1− Nr · GILC)‖∞ < 1. In this
case, the system error approaches to 0 with the iteration times increasing.

In this work, a general PD-type tunable ILC learning function is employed.
The ‖Q · (1− Nr · GILC)‖∞ can be less than 1 by tuning the control parameter, which
promises the convergence of the tracking errors. Furthermore, the experimental results
highlight that the obtained controller makes the tracking errors of the repetitive reference
converge into a bounded range.

3.4. Summary of LPIDDC Control Strategy

The control strategy proposed in this paper can be regarded as a feed-forward–
feedback composite controller. The controller includes a PID feedback term with dis-
turbance compensation and iterative learning feedforward term. The feedforward and
feedback terms can complement each other and work together. For the industrial fields
which have adopted the PID controller, we only need to add DC and ILC terms into the
controller without redesigning the existing equipment.

The feedback controller is responsible for the stabilization of the system, whereas
the disturbance compensation realizes the active disturbance rejection and the ILC unit
improves the tracking performance for the repetitive motion tasks. Therefore, the MLRT
can carry out the the precision repetitive tracking task when the system suffers from the
external complex disturbance.
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4. Experimental Studies
4.1. Hardware Setup

In order to test the performance of the proposed control algorithm, including distur-
bance rejection and trajectory tracking performance, a series of comparative experiments are
carried out on the MLRT given in Figure 3. Six laser-displacement sensors are employed to
obtain the position and rotation informations of the rotary table. To reduce the impact of
measuring noise on the system, the median filter algorithm processes the raw data from the
sensors. The currents exciting the coils are provided by eight independent power amplifiers
with current limitation of 4 A. The control strategies for the MLRT are implemented on the
data processing platform NI PXIe-8880 and a reconfigurable I/O module NI PXIe-7856R,
which are manufactured by National Instrument. Six channels of PXIe-7856R are configured
as analog input to collect the sensors’ signals and the other eight channels are configured as
analog output to drive these power amplifiers. The NI PXIe-8880 realizes the certain control
algorithm when it receives the operation commands from the PC. Additionally, the sampling
frequency of the control algorithms running on NI PXIe-8880 is 1 kHz.

Figure 3. Experimental setup.

To verify the effectiveness of the proposed control strategy, the PID controller, PIDDC
controller, LPID controller and the proposed LPIDDC controller regulate the MLRT to
undertake the same trajectory tracking tasks.

M1: PID: With the response time given as 15 ms and the ratio between the robustness
and aggressiveness set as 9:1, the PID parameters can be solved automatically. Utilizing
the obtained control parameters, the system has a phase margin of 68.5◦ at a crossover
frequency of 21 Hz.

M2: PIDDC: Based on the PID method, this controller employs the DC terms to
compensate the control input signal. The DC term enhances the disturbance rejection
capability. In the DC term, the value of observation gain σ should be determined carefully.
A larger σ amplifies the noise in the system, whereas a small one decreases the estimation
accuracy. In this paper, σ is chosen as 1000.

M3: LPID: Based on the PID method, the ILC term is employed as the feed-forward
unit. The Q-filter in the ILC term is set as the typical second-order low-pass filter whose cut-
off frequency is 60 Hz and damping ratio is 0.707. In the learning function GILC, kip = 0.05
and kid = 0.001.

M4: LPIDDC: The proposed controller is presented in Section 2. For a fair comparison,
the control parameters of the PID term, DC term, and ILC term are the same in the
four controllers.

The MLRT is equivalent to six independent SISO systems, and the performance of
translation and rotation on each axis are similar. In the following test, we choose the
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vertical motion and rotation around the vertical axis to present the performance of different
control methods.

(1) Track1: the MLRT is controlled to track the sinusoidal trajectory in sz-axis below with
the unit being mm,

zd = 3 + 0.5 sin(πt), (26)

which has an an angular speed of ω = 3.14 rad/s and a velocity of v = 1.57 cos(πt)mm/s.
(2) Track2: the MLRT is controlled to track the sinusoidal trajectory in sγ-axis below with

unit being rad,
γd = 0.1 sin(πt), (27)

which has an angular speed of ω = 3.14 rad/s and a velocity of v = 0.314 cos(πt)rad/s.

For the following quantitative analysis, the related indexes are employed.

(1) eRMS =
√

1
T
∫ T

0 |xd(t)− xk(t)|2dt, the root-mean-square value of the trajectory track-
ing error, where T is the period of tracking trajectory.

(2) eM = max{|xd(t)− xk(t)|}, the maximal absolute value of the trajectory tracking
error.

It is noted that all performance indices are obtained by calculating the trajectory
tracking error of the last cycle, which is from the time instant 22 s to 24 s.

4.2. Trajectory Tracking without External Disturbance

To test the feasibility of these control strategies, the MLRT is controlled to track the
trajectory without external disturbance. Because the mover of the rotary table is suspended,
the mechanical friction does not exist. The MLRT can be regarded as working in an
ideal environment.

The trajectory tracking errors of Track1 and Track2 are plotted in Figure 4a and Figure 4b
respectively. The motion indices are listed in Table 1. As seen in Figure 4, we conclude that
all control strategies are effectively implemented. In this case, the eRMS of M1 and M2 are
almost same due to the fact that the DC term does not play a significant role when there is no
external disturbance. M3 and M4 perform better than M1 benefiting from the feed-forward
compensation of the ILC term. In Track1, eRMS of M3 and M4 decrease 37.82% and 39.15%
referring to M1, whereas eM of M3 and M4 are 63.61% and 61.92% of M1. In Track2 eRMS of M3
and M4 decrease 34.60% and 34.74% referring to M1, while eM of M3 and M4 are 45.71% and
43.83% of M1 respectively. In summary, all control strategies are feasible for the maglev rotary
table, but the proposed LPIDDC control performs better without the external disturbance.

Table 1. Tracking performance of the MLRT without external disturbance.

Trajectory Track1 Track1 Track2 Track2

Index eRMS (µm) eM (µm) eRMS (mrad) eM (mrad)

M1 3.083 6.996 2.159 4.999
M2 3.076 6.984 2.161 3.611
M3 1.917 4.450 1.412 2.285
M4 1.876 4.332 1.409 2.191
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Figure 4. Tracking errors of the MLRT without external disturbance. (a) Tracking error of Track1.
(b) Tracking error of Track2.

4.3. Trajectory Tracking with External Disturbance
4.3.1. Step Disturbance

In industrial applications, the maglev rotary table may suffer from the sudden distur-
bance because of some unexpected events, which increases the tracking error of the MLRT.
In order to simulate this situation, the external force and torque disturbances are added to
the obtained control signal, the u in Figure 2, before it enters into the maglev system. Then,
the four different control methods can be evaluated by comparing the different tracking
performances. When the MLRT undertakes Track1, a force of 1.5 N is added to the obtained
control signal on z-axis at 5-th second and removed at 6-th seconds. Similarly, to test the
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robustness of the controllers in sγ-axis, a torque of 1450 N ·mm is added and removed at
the same time in the sγ direction when the MLRT undertakes Track2.

The tracking errors are shown in Figure 5. These figures obviously demonstrate that
M1 and M3 cannot suppress the sudden disturbance. The peak values of M1 and M3 are
about 85 µm in Track1 and 22 mrad in Track2. With the DC term, M2 and M4 are robust to
the disturbance as the peak error of M2 and M4 are about 21 µm in Track1 and 6 mrad in
Track2. It is concluded that the DC term in the proposed control strategy can effectively
deal with this step disturbance.

Figure 5. Tracking results of Track1 and Track2 with step disturbance. (a) Tracking error in sz-axis.
(b) Tracking error in sγ-axis.

4.3.2. Complex Disturbance

To further test the disturbance rejection capability of the proposed control strategy,
the complex external disturbances given below are imposed on the maglev system in the
form of force or torque.

Fdis = sin
(
2zp
)
+ sin(4πt) + arccot

(
zp
)
+ e−zp(N), (28)

Tdis = [sin(2πt + π/2) + cos
(
3γp + π/2

)
+ e−10γp + arctan

(
20γp

)
+ 30γ2

p + sin(πt) + 1.5
]
× 600(N ·mm), (29)

where Fdis is the disturbance in sz direction when the MLRT moves along Track1, and Tdis
is the disturbance in sγ direction when the MLRT rotates along Track2. These disturbances
can be regarded as the nonlinear function related to the system state and time.

The tracking errors of the MLRT in Track1 and Track2 are shown in Figure 6a and
Figure 7a respectively. In order to facilitate the quantitative analysis, the related tracking
indices under different controllers at the 11th iteration are also listed in Table 2. These results
show that the classical PID controller can not deal with the complex external disturbance.
Figures 6b and 7b present that the disturbance observer works well so that the active
disturbance rejection of the MLRT is improved. Although the final tracking error of the
LPID controller decreases after several iterations, its initial tracking error does not meet the
requirements as illustrated in Figures 6c and 7c. Furthermore, if the complex disturbances
are not periodic, the LPID controller cannot reduce the tracking error of the system via the
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ILC term. Benefiting from the DC term, LPIDDC can overcome the shortcomings of LPID.
In Track1, eRMS of M4 is 2.001 µm, which decrease 82.98% and 10.59% referring to M2 and
M3. In Track2, eRMS of M4 is 1.587 mrad, which decreases 22.01% and 12.75% referring
to M2 and M3. In Track1 and Track2, eM of M4 are smallest compared with that of other
controllers. The above results highlight that the proposed control strategy improves the
tracking performance when the MLRT suffers from complex external disturbances, and this
improvement make the maglev more suitable for the precision manufacture area.

Figure 6. Tracking results of Track1 with complex disturbance. (a) Tracking error in sz-axis.
(b) Disturbance quantity and its estimated value. (c) Convergence rate of eRMS in sz-axis.
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Figure 7. Tracking results of Track2 with complex disturbance. (a) Tracking error in sγ-axis.
(b) Disturbance quantity and its estimated value. (c) Convergence rate of eRMS in sγ-axis.

Table 2. Tracking performance of the MLRT with complex disturbance.

Trajectory Track1 Track1 Track2 Track2

Index eRMS (µm) eM (µm) eRMS (mrad) eM (mrad)

M1 34.058 59.915 2.918 5.418
M2 11.759 21.527 2.035 2.883
M3 2.238 9.373 1.819 2.379
M4 2.001 7.445 1.587 1.907

4.3.3. Disturbance Caused by Polyfoam

In order to simulate the unknown disturbances in the industrial field, a polyfoam
is fixed above the magnetic suspension rotary table as shown in Figure 8. When the
MLRT tracks the sinusoidal trajectory in the sz-direction like Track1, the polyfoam pro-
duces the random force acting on the rotary table, which is considered as the unknown
disturbance. This test can investigate the performance of the proposed controller for this
unknown disturbance.
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The tracking errors plotted in Figure 9a illustrate that M4 has a smaller tracking error
compared with the other three controllers. Meanwhile, the tracking indexes of the different
controller given in Table 3 demonstrate that the (eRMS and eM) of M2 and M3 are smaller
than M1, and M4 outperforms the other three controllers. The eRMS of M4 is 92.80% smaller
than M1, 72.22% smaller than M2, and 65.59% smaller than M3. Figure 9b also shows that
LPID and LPIDDC controller reduce the error with the iteration number increasing, and the
introduction of the DC term accelerates the convergence speed of the system error. We
conclude that these results demonstrate that the proposed LPIDDC controller has excellent
disturbance rejection capability for unknown external disturbances.

Table 3. Tracking performance of the MLRT with polyfoam disturbance for Track1.

Index eRMS(µm) eM(µm)

M1 52.034 97.302
M2 13.496 36.248
M3 10.896 31.637
M4 3.749 17.547

Figure 8. Photo of the MLRT with polyfoam producing unknown disturbance. Experimental video is
found in the Supplementary Video S1.
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Figure 9. Tracking results of Track1 with polyfoam disturbance. (a) Tracking error in sz-axis.
(b) Convergence rate of eRMS in sz-axis.

4.3.4. Circle Trajectory Tracking

In this case study, the MLRT is controlled to track a circular trajectory in the horizontal
plane shown in Figure 10 . The circular contour is formed by making the MLRT track a co-
sine trajectory in sx-axis and a sinusoidal trajectory in sy-axis simultaneously. The trajectory
is given as: {

xd = 0.6 · cos(5πt) (mm)

yd = 0.6 · sin(5πt) (mm)
. (30)

The radius of the circular profile is 0.6 mm and the angular velocity is 15.71 rad/s.
The tracking error is the shortest distance from the actual position to the desired position
in the contour. The MLRT undertakes the repetitive circular trajectory, and Figure 10 and
Table 4 are the tracking performances and working indexes of the rotary table the in the
period of 4.4 s∼4.8 s from the start time point.

Table 4. Tracking performance of the MLRT for circular trajectory.

Index eRMS (µm) eM (µm)

M1 59.869 96.935
M2 35.142 83.218
M3 29.511 94.900
M4 20.135 62.428

The tracking error of M1 is large due to the fact that the PID controller cannot reject
the motion coupling of the multiple axes tracking effectively. Although M2, M3, and M4
all achieve smaller tracking errors than M1, M4 still has the best trajectory tracking perfor-
mance as the eRMS of M4 is 40.38%, 57.30%, and 68.23% of M1, M2, and M3, respectively,
wheresa that of eM is 64.40%, 75.02%, and 65.78%. From the partial view in Figure 10,
the LPIDDC contour is more closed to the desired circle than others. Based on the above
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experimental results, we can conclude that the proposed control strategy is effective for the
planar motion of the magnetic levitation rotary table.

Figure 10. Circular trajectory tracking of the MLRT.

5. Conclusions

In order to develop the practicality of MLRT, an iterative learning PID control method
with disturbance compensation is proposed. The proposed LPIDDC consists of a PID term,
a DC term, and an ILC term. The PID term guarantees the stability of the maglev system.
The DC term estimates the disturbance in the system and corrects the control signal to
suppress the impact of disturbance. The ILC term compensates for the unknown repetitive
disturbances and uncertainties in the system to improve the repetitive trajectory tracking
performance. Comparative experiments between four controllers are carried out on the
MLRT, and these experimental results indicate that the proposed control algorithm improve
the tracking performance for the repetitive trajectory with complex disturbance, which
promotes the application of magnetically levitated technology in the area of micro milling,
microgrinding, etc.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22114270/s1, Video S1 is a supporting video for Figure 8.
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The following abbreviations are used in this manuscript:

MLRT Magnetically levitated rotary table
PID Proportion-integral-derivative
ILC Iterative learning control
DC Disturbance compensation
LPIDDC Iterative learning PID control strategy with disturbance compensation
PM Permanent magnet
PIDDC PID with Disturbance compensation
LPID Iterative learning feed-forwad PID
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