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Abstract: The human body is an incredible and complex sensing system. Environmental factors
trigger a wide range of automatic neurophysiological responses. Biometric sensors can capture
these responses in real time, providing clues about the underlying biophysical mechanisms. In this
prototype study, we demonstrate an experimental paradigm to holistically capture and evaluate
the interactions between an environmental context and physiological markers of an individual
operating that environment. A cyclist equipped with a biometric sensing suite is followed by an
environmental survey vehicle during outdoor bike rides. The interactions between environment and
physiology are then evaluated though the development of empirical machine learning models, which
estimate particulate matter concentrations from biometric variables alone. Here, we show biometric
variables can be used to accurately estimate particulate matter concentrations at ultra-fine spatial
scales with high fidelity (r2 = 0.91) and that smaller particles are better estimated than larger ones.
Inferring environmental conditions solely from biometric measurements allows us to disentangle key
interactions between the environment and the body. This work sets the stage for future investigations
of these interactions for a larger number of factors, e.g., black carbon, CO2, NO/NO2/NOx, and
ozone. By tapping into our body’s ‘built-in’ sensing abilities, we can gain insights into how our
environment influences our physical health and cognitive performance.

Keywords: holistic sensing; particulate matter; physiology; machine learning

1. Introduction

Over four million premature deaths worldwide were attributed to outdoor air pol-
lution in 2016 [1]. In 2019, 99% of the global population resided in areas that fell short
of the World Health Organization (WHO) air quality guidelines [1]. There is mounting
evidence that poor air quality negatively impacts respiratory, cardiovascular, and cere-
brovascular health [2–7]. Further, there is emerging evidence on the impact of poor air
quality on neurological outcomes including chronic diseases (e.g., Alzheimer’s disease and
dementia) [2,8,9] and acute cognitive impairment [10–14].

Although several large-scale epidemiological studies show the negative effects of air
pollution on physical and cognitive health [2–7], these studies largely focused on coarse
spatial (∼10 miles) and temporal (∼1 day) scales. Much less research focuses on ultra-fine
spatial (∼1 m) and temporal (∼10 s) scales that make simultaneous environmental and
holistic biometric observations of the human physiological responses.

Before an extreme result such as a disease occurs, poor air quality already negatively
impacts human physical and cognitive performance [10–14]. Through this work, we
investigate how air pollution impacts human health and performance by examining the
relationship between environmental air quality measurements and automatic physiological
responses at ultra-fine scales. Additionally, this work establishes the groundwork for future
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investigations by developing an experimental paradigm based on two main ingredients:
holistic sensing and machine learning. Holistic sensing aims to capture all the relevant
information about a system of interest. Machine learning is a framework that allows
computers to learn by example and enables the development of high-fidelity empirical
models [15].

This pilot study extends past works that examined interactions of cardiovascular
variables such as heart rate (HR), heart rate variability (HRV), and blood pressure (BP) with
air quality on fine scales [16–18]. The main contribution of this prototype study is that we
augment cardiovascular markers with other biometrics, including electroencephalography
(EEG), pupillometry, galvanic skin response (GSR), body temperature, oxygen saturation
(SpO2), and respiration rate (RR). This extended set of variables captures both the car-
diovascular and cognitive status of the participant. A study of air quality and human
physiology at the ultra-fine level may shed light on the biophysical mechanisms that
underlie their interactions.

2. Materials and Methods
2.1. Holistic Sensing

The data in this pilot study are a subset of a holistic biometric and environmental
sensing paradigm. The goal of holistic sensing is to capture all relevant information
about a system of interest. The full sensor array includes biometric monitors such as
electroencephalography (EEG), eye tracking glasses, electrocardiography (ECG), galvanic
skin response (GSR), body temperature, blood oxygen saturation (SpO2), and heart rate
(HR), in addition to environmental factors such as particulate matter (PM), chemical
composition of air, temperature, pressure, humidity, visible light spectrum, and more. The
full array of biometric and environmental sensing systems are shown in Figures 1 and 2,
respectively. After processing raw sensor recordings, this full sensor array has a feature
space approaching 20,000 variables (∼16,500 biometric and ∼2000 environmental). In the
present study, we focus on a relatively small subset, consisting of 329 biometric and
51 environmental variables.

Figure 1. Biometric sensing systems. (Left) Tobii Pro Glasses 2 eye tracking system. This instrument
performs eye tracking data, pupillometry, and provides two videos streams of the participant’s POV and
eyes, respectively; (right) Cognionics Mobile-64 and AIM2 systems. Sensing suite includes 64-electrode
EEG, PPG which measures SpO2 and HR, respiration/ECG sensors, GSR, and temperature probe.



Sensors 2022, 22, 4240 3 of 12

Figure 2. Images of full environmental sensing suite. Fidas® Frog Fine Dust Monitoring Sys-
tem measures particulate matter concentrations at 100 different size bins. The AIRMAR 220WX
WeatherStation® Instrument samples barometric pressure, wind speed and direction, ambient temper-
ature, and more. The 2B Technologies Black Carbon Photometer measures atmospheric black carbon
particulates using long-path photometry. The 2B Technologies Model 205 Dual Beam Ozone sensor
is a UV-based ozone monitor. The Konica Minolta CL-500A Illuminance Spectrometer measures
the spectral irradiance from 360 to 780 nm at every nanometer. The portable mass spectrometer
was constructed by the UNT Laboratory of Imaging Mass Spectrometry and measures charge mass
ratios ranging 1–300 amu. The 2B Technologies Model 405 nm NO2/NO/NOx Monitor™ directly
measures atmospheric Nitrogen Dioxide (NO2) and Nitric Oxide (NO). The LI-COR LI-850 Gas
Analyzer measured CO2 and water vapor in the air.

The biometric sensing suite used in this research aims to comprehensively capture the
physiological and cognitive status of the participant without restricting the participant’s
actions, movements, or decision-making. The goal is to gather the maximum amount of
information with minimal interruption of normal behaviors. Biometric sensors are placed
on the participant in such a way to allow for unrestricted mobility (Figure 3). Sensor
recording units and other devices are organized in a backpack worn by the participant that
all together weighs less than 10 lbs (left panel in Figure 4).

Figure 3. Schematic of biometric sensor placement on participant. (Left) Cartoon of front participant
view. The 64-electrode EEG sits on the participant’s head. A temperature probe is placed under the
EEG cap on the right temple. Eye tracking glasses are carefully placed on participant, avoiding EEG
electrodes. PPG sensor is secured to left ear lobe. Respiration sensors are place near the top of the
chest. (Right) Cartoon of back participant view. GSR sensors are placed below the back of the neck.
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Figure 4. Data collection images. (Left) custom-made backpack to house biometric devices and
recording computer; (middle) participant and environmental survey vehicle riding in tandem during
data collection; (right) environmental sensors organized in trunk of electric survey vehicle.

Over 100 biometric markers are measured at sampling rates of 500 Hz and 100 Hz.
These quantities are processed to derive over 329 variables for the present analysis. This
holistic biometric sensing suite integrates two independent sensing systems which are
shown in Figure 1. Eye tracking is recorded 100 times a second using the Tobii Pro Glasses 2.
Data from the glasses produced average pupil diameter, the difference in pupil diameter
between left and right eyes, and the 3D spatial distance between pupil centers. All other
biometric data are measured 500 times a second using the Cognionics Mobile-64 and AIM2
systems. These systems include a 64-electrode EEG, temperature sensor, respiration sensor,
photoplethysmogram (PPG), and galvanic skin response (GSR) measurement. Heart rate
and SpO2 values are automatically computed by the AIM2 system using the PPG. Heart
rate variability (HRV) and respiration rate (RR) are derived from respiration sensor data
with a custom MATLAB script. All biometric data were down-sampled to 1/30 Hz (every
30 s) to match particulate matter recordings.

A holistic evaluation of an environmental setting is the ultimate goal of the sensing
suite used in this study. This suite brings together several sensing packages, including fine
dust monitoring from the Fidas® Frog, temperature, humidity, pressure, and wind speed
and direction recorded with the AIRMAR Weatherstation 220WX; the full spectrum of
visible light (360–780 nm) captured by the Konica Minolta Illuminance Spectrophotometer;
dedicated gas monitors for black carbon, ozone, NO/NO2/NOx, and CO2/H2O; as well as
a portable mass spectrometer (Figure 2). However, due to its significant societal relevance,
for this pilot study, we focus on particulate matter (PM) concentrations recorded using
the Fidas® Frog fine dust monitoring system. This instrument simultaneously measures
PM mass fractions of PM1, PM2.5, PM4, PM10, and a distribution within a size range of
0.18–100 micrometers, as well as the total particle count density (dCn). PM data were
recorded at sampling rate of 1 Hz and down-sampled to 1/30 Hz (every 30 s).

2.2. Data Collection

Biometric data collection was restricted to a single participant due to logistical constraints
arising from the COVID-19 pandemic. However, future works will include data from multiple
participants. The small population size in the present study is mitigated by two factors. First,
data were collected over three separate days, providing a range of contexts. Additionally, the
participant circled the same trail multiple times, offering multiple observations of identical
positions and 360-degree changes in wind-direction angles.

Data were collected while the participant rode a bicycle in a dynamic outdoor setting.
An electric survey vehicle equipped with a suite of environmental sensors followed safely
behind the participant during all rides (middle image in Figure 4). Although several
dimensions of the environmental context were sampled (e.g., ambient light, temperature,
pressure, mass spectra, etc.), here, we focus on the relationship between particulate matter
values and biometric variables. Additional relationship will be explored in future works.

Data collection took place in May and June of 2021 at Breckenridge Park located in
Richardson, TX over three separate days, which included four to five trials per day. The first
two trials consisted of two minutes of eyes closed and eyes open baseline biometric measure-
ments, respectively. The third trial consisted of a “warm-up” ride, where the participant cycled
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to a public bike trail in tandem with the electric survey vehicle. Additional trials consisted of
the participant repeatedly cycling a one-mile loop on a public bike trail. The participant was
free to stop cycling at their discretion. Data collection was halted whenever cycling stopped.
If the participant chose to continue, a new data collection trial was initiated.

The complete dataset consists of 188 data records collected every 30 s (total time of
about 1.5 h) with 329 biometric predictor variables and 51 PM target variables. Biometric
predictor variables include: delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–25 Hz),
and gamma (25–70 Hz) band power densities for each of the 64 EEG electrodes, body
temperature, GSR, HR, HRV, RR, SpO2, average pupil diameter, difference between left
and right pupil diameters, and the 3D spatial distance between left and right pupil cen-
ters. Environmental PM target variables include: PM1, PM2.5, PM4, PM10, PMTotal, and
45 different PM size bins ranging of 0.18–10 µm measured in µg/m3, as well as particle
count density (dCn) measured in P/cm3. The data are publicly available at the Zenodo
datastore: https://zenodo.org/record/6326357#.Yieu4RPMJb8, accessed on 29 May 2022
(see Supplementary Materials).

Ethical approval declarations: All experimental protocols were approved by The
University of Texas at Dallas Institutional Review Board and informed consent was obtained
from the study participant.

2.3. Model Development

All models of PM concentration are obtained by an ensemble of decision trees for
regression with a hyperparameter optimization process [19–24]. Ninety percent of the data
is used for training, while 10% is assists as an independent validation dataset. Scripts for
model training are freely available at the GitHub repository: https://github.com/mi3nts/
DUEDARE, accessed on 29 May 2022 (see Supplementary Materials).

3. Results and Discussions

In this work, we used a data-driven experimental paradigm to develop and explore
several empirical machine learning models which describe the connection between ambient
air particulate matter (PM) concentrations and the biometric variables of an individual
breathing that air. Due to logistical constraints imposed by the COVID-19 pandemic,
we were only able to collect data from one participant. Additional participants will be
included in future research. Two factors, however, mitigate the limited population size
in this pilot study. First, the data collection took place over three days, which allowed
for contextual variability. Furthermore, the participant repeatedly circled the same trail,
allowing for multiple observations of identical spatial positions and 360-degree changes in
wind-direction angles.

The estimated PM values included: PM1, PM2.5, PM4, PM10, PMTotal, and 45 different
PM size bins ranging of 0.18–10 µm measured in µg/m3, as well as particle count den-
sity (dCn) measured in particles per m3. For model development, 329 biometric predictor
variables were available. Each machine learning model used was a trained ensemble of deci-
sion trees for multi-variate, non-linear, non-parametric regression with full hyperparameter
optimization [19–24]. The empirical models are evaluated using two key metrics. First, the
model accuracy was assessed using the squared correlation coefficient (r2) between the model
prediction and the true PM values. Second, a ranking of predictor variable importance was
obtained as the weighted average importance of each predictor across the ensemble.

We first evaluated six machine learning models for particulate matter (PM) values,
which estimated the particle count density (dCn), PM1, PM2.5, PM4, PM10, and PMTotal.
Three hundred and twenty-nine biometric predictor variables were used as model inputs,
including delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–25 Hz), and gamma
(25–70 Hz) band power densities for each of the 64 EEG electrodes, body temperature,
galvanic skin response (GSR), heart rate (HR), heart rate variability (HRV), respiration rate
(RR), blood oxygen saturation (SpO2), average pupil diameter, the difference between the
left and right pupil diameters (anisocoria), and the 3D spatial distance between the left
and right pupil centers (vergence eye movement). Then, using an Occam’s razor principle,
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the top nine important biometric predictor variables were used to train an additional six
models for the same PM variables.

Two subsets of nine biometric predictor variables were used to train two different sets
of empirical machine-learning models. The first subset includes EEG variables, and the
second subset does not. This first subset was obtained via the Occam’s razor principle
mentioned previously, while the second included all nine non-EEG biometric variables
from the 329 available biometric predictors. The cognitive effects of air quality can be
identified by evaluating predictive models with and without EEG quantities.

The best performing model using the top nine EEG and non-EEG biometric predictors
was for PM1. This model had the highest accuracy with a validation dataset r2 = 0.91.
Comparison plots between estimated and ground truth PM1 values are given in Figure 5.
In the top-left plot, the estimated and true PM1 concentrations in both the training (blue
circles) and validation (red pluses) datasets closely following the perfect fit (black) line. In
the top-right plot, the quantile–quantile comparison shows the distribution of measured
PM1 values closely resembles the distribution of estimated PM1 values. Finally, in the
bottom plot, the time series of the estimated PM1 values (dashed red line) tracks very closely
to the true values (solid black line) over seven different trials spanning three separate days.

Figure 5. Top performing model (PM1) plots comparing predicted and ground truth values.
(a) Scatter plot of true versus predicted PM1 values. A perfect fit is indicated by the 1:1 line
shown in black. Training data are shown as blue circles and validation data are plotted as red pluses.
(b) Quantile–quantile plot of true versus predict PM1 values. Identical true and predicted distribu-
tions would results in a perfect y = x line. (c) Time-series plot of true PM1 values (solid black line)
and predicted PM1 values (dashed red line). Background color indicates the trial number associated
with each time period. Trials 1–3 were collected on 26 May 2021; trials 4–5 were collected on 9 June
2021; and trials 6–7 were collected on 10 June 2021.

The performances of the PM1 and five other PM models in this cohort are ranked in
the left panel of Figure 6. The training and independent validation dataset performances
are plotted in blue and orange, respectively, and sorted in descending order of independent
validation performance. As previously discussed, PM1 measured in µg/m3 was best
reproduced by the nine biometric predictors (validation r2 = 0.91). The empirical models
based on the same biometric predictors were less able to accurately estimate the larger PM10
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(validation r2 = 0.67) values and PMTotal (validation r2 = 0.72), which are dominated by
PM10 due to the larger masses. The poor performance of these models could be explained
by the fact that there are significantly fewer large particles than small particles, and thus
the larger particles are not as well mixed as the far more numerous and well-mixed smaller
particles. Because of their greater bulk, larger particles settle more quickly. As a result, the
concentrations of large particles collected by the survey vehicle and those inhaled by the
subject a few meters away are likely to differ more than for the smaller particles. Second,
it is possible that the larger particles have less of an impact on the participant’s physical
and cognitive state because they are less likely to penetrate deeply into the respiratory and
circulatory systems [25].

Figure 6. Summary of empirical PM concentration models estimated from 9 EEG and non-EEG
biometric predictor variables. (Left) Ranking of model performance defined as squared correlation
coefficient between predicted and true PM values. Training and validation dataset performances for
each model are shown in blue and orange, respectively. Sorting is based on validation dataset perfor-
mance. Overlaid graphics indicate the deposition of the respective PM size bins in the airways [25].
(Right) Predictor importance ranking aggregated across all 6 models.

Each of the six empirical machine learning models has an associated predictor impor-
tance ranking, which quantifies the role of individual input predictor variables in estimating
the respective PM target variable. The aggregated ranking of top predictors, shown in the
right plot in Figure 6, elucidates which biometric variables are most helpful to the empirical
models in discerning PM values. The most important predictor variable in estimating PM
values was the body temperature measured at the participant’s right temple. Surprisingly,
the cardiovascular variable, HRV, played less of a role. Other important biometrics included
GSR and the distance between the pupil centers of the eyes. GSR is a strong correlate of
body temperature. The distance between the pupil centers is a proxy for vergence eye
movements, which have been associated with attentional load and are a strong predictor of
cognitive status [26,27]. The delta band (1–3 Hz) power densities for the FC6, T8, and Oz
electrodes were found to play an important role in estimating PM values. FC6 is above the
frontal cortex on the right side of the head, T8 corresponds to the right temporal lobe, and
Oz sits on top of the primary visual cortex.

Correlations between predictor and target variables are visualized as a color-filled
correlation plot in Figure 7. Strong positive correlations are indicated by dark red squares,
strong negative correlations are shown by dark blue squares, and the lack of correlation is
indicated by green squares. From this plot, we can see HRV, GSR, body temperature, and
the delta band power densities of the Oz and PO7 electrode signals have strong positive
correlations with all target variables except PMTotal. In other words, as these predictor
variables increase, so do the corresponding PM target variables. PM target variables show
the greatest negative correlation with the 3D spatial distance between left and right pupil
centers, suggesting that the pupils tend to converge with an increase in PM concentrations.
Lastly, of all the target variables, PMTotal is most strongly correlated with PM10 values,
which reflects the strong contribution of PM10 particles to PMTotal.
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Figure 7. Correlation plot of top 9 EEG and non-EEG biometric predictor variables, along with
6 target PM variables. Positively correlated variable pairs are indicated by a red box, negatively
correlated pairs are shown by blue boxes, and non-correlated pairs have green boxes.

Histograms for both predictor and target variables are displayed in Figure 8. Plots are
titled by the variable name and its respective physical units. From the target PM variable
histograms in the right plot of Figure 8, the mass scales of different particle sizes are evident.
Namely, the larger-sized PM10 particles vary over a much larger range (0–40 µg/m3) than
the smaller PM4 (0–20 µg/m3), PM2.5 (0–15 µg/m3), and PM1 particles (0–8 µg/m3). This
further explains the strong influence of PM10 values on PMTotal.

Next, an additional set of six empirical machine learning models for the same set of
PM targets (dCn, PM1, PM2.5, PM4, PM10, and PMTotal) were evaluated, except this time
the PM targets were estimated from nine non-EEG biometric predictor variables (body
temperature, GSR, HR, HRV, RR, SpO2, average pupil diameter, difference between left and
right pupil diameters, and the 3D spatial distance between left and right pupil centers).

Figure 8. (Left) Histograms of 9 EEG and non-EEG predictor variables. Plots are titled by variable
name and its physical units. (Right) Histograms of 6 different PM target variables variables. Plots
are titled by variable name and its physical units.

The model performance ranking for the six empirical PM models estimated from the
nine non-EEG biometric predictor variables is shown in the left panel of Figure 9. We see
that the smaller particles are better estimated by the non-EEG biometrics. Again, this result
may be due to better mixing of smaller particles or to deeper penetration of those particles
into the respiratory system or both.
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Figure 9. Summary of empirical PM concentration models estimated from 9 non-EEG biometric pre-
dictor variables including eye tracking, respiratory, and other physiological variables. (Left) Ranking
of model performance defined as squared correlation coefficient between predicted and true PM
values. Training and validation dataset performances for each model are shown in blue and orange,
respectively. Sorting is based on validation dataset performance. Overlaid graphics indicate the
deposition of the respective PM size bins in the airways [25]. (Right) Predictor importance ranking
aggregated across all 6 models.

Comparing the performance rankings in Figures 6 and 9, there are clear changes in
model accuracies. All models with the exception of PM4 exhibit a drop in performance. The
largest drop occurs for the already poorly performing PMTotal (drop in validation r2 = 0.47)
and PM10 (drop in validation r2 = 0.28) models.

There is overlap between the importance rankings of Figures 6 and 9. In both cases, body
temperature is the most significant predictor of the PM values. Additionally, GSR maintains
its order in the ranking as the 2nd most important non-EEG predictors. Although respiratory
variables such as HRV and HR appear in the top six of the importance ranking, these variables
trail behind temperature, GSR, and the distance between the eye pupil centers.

The observation that smaller particles are better estimated than larger-sized particles
is explored further by evaluating model performances for a finer particulate size reso-
lution. Here, 45 models were trained to estimate different PM size bins ranging from
0.18 to 10 micrometers using the nine non-EEG biometrics listed above. Model accuracy
is plotted against bin size in Figure 10. Training and validation accuracies are plotted
as blue and orange lines, respectively. The regional depositions of each particle size bin
are indicated by a label and background shading [25,28]. The smallest particles (PM1) are
classified as respirable and can penetrate to the alveoli. The next smallest size bin is thoracic
(PM2.5) which consists of particle penetrating into the bronchioles. The largest size bin are
the inhalable particles (PM10) which can enter into the nose, mouth, and trachea.

There is a clear drop in both training and validation dataset accuracies for size bins
between 2 and 3 micrometers, corresponding to thoracic and inhalable particles. For particle
size bins above this drop, there is large degree of variation in model performances; however,
most have a poor performance with a validation r2 below 0.4. While the results may imply
that smaller particles have a greater impact on physiological systems due to their deeper
deposition, that conclusion cannot be reached based upon the present data. The drop
in performance for larger particles may be explained in part or completely by the fact
that smaller particles are more plentiful and better mixed. An evaluation of the relative
contributions of each of these factors requires further investigation.
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Figure 10. Model accuracies plotted against bin size. Forty-five separate PM models were trained for size
bins ranging from 0.18 to 10 micrometers. PM values were estimated solely from 9 non-EEG biometric
variables. Training dataset performance is plotted as a blue line and validation dataset performance is
plotted in orange. A clear drop in model performance is observed between 2–3 micrometers. Overlaid
graphics indicate the deposition of the respective PM size bins in the airways [25,28].

4. Conclusions

The human body and its environment form a complex ecosystem. An important
aspect of this system is air quality and the impact it has on the human body. Environmental
factors trigger physiological responses that can be detected by holistic biometric sensing. In
this prototype study, we used an ultra-fine holistic sensing paradigm to demonstrate how
particulate matter concentrations in the ambient environment can be accurately estimated
using only nine biometric variables. In addition, smaller particles were found to be more
accurately estimated. Two potential causes may explain this result. First, smaller particles
are much more abundant and well mixed in the ambient environment than larger ones, thus
resulting in a greater similarity between particles inhaled by the participant and collected by
the survey vehicle. Secondly, smaller particles can deposit into the respiratory system more
deeply, and may have a greater impact on the body. Further investigation is needed to assess
the relative contributions, if any, of these two factors, since they are not mutually exclusive.

The largest limitation of this work is that data collection was restricted to a single
participant. While it is not clear if the observations from this pilot study will extend to a
broader population, we have laid a foundation for future investigations of environmental
impacts on human physiology on ultra-fine scales. Future research will include data from
multiple participants. Additionally, several other environmental variables were collected
(e.g., ambient light, temperature, black carbon, ozone, NO/NO2/NOx, etc.) and will
be evaluated for their physiological interactions. By understanding the key interactions
between the environment and the human body, health and performance can be improved
across a variety of domains.

Supplementary Materials: The data and code have been made publicly available. The full data set is
available at the Zenodo data store: https://zenodo.org/record/6326357#.Yieu4RPMJb8 (accessed on
29 May 2022) and code is available at the GitHub: https://github.com/mi3nts/DUEDARE (accessed
on 29 May 2022).
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