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Abstract: The features of quasi-stationary signals (QSS) are considered to be in a direct position
determination (DPD) framework, and a real-valued DPD algorithm of QSS for nested arrays is
proposed. By stacking the vectorization form of the signal’s covariance for different frames and
further eliminating noise, a new noise-eliminated received signal matrix is obtained first. Then, the
combination of the Khatri–Rao subspace method and subspace data fusion method was performed
to form the cost function. High complexity can be reduced by matrix reconstruction, including the
modification of the dimension-reduced matrix and unitary transformation. Ultimately, the advantage
of lower complexity, compared with the previous algorithm, is verified by complexity analysis, and
the superiority over the existing algorithms, in terms of the maximum number of identifiable sources,
estimation accuracy, and resolution, are corroborated by some simulation results.

Keywords: quasi-stationary signals; direct position determination; nested array; Khatri–Rao subspace;
subspace data fusion; dimension-reduced; unitary transformation

1. Introduction

Source localization technology is an essential part of many fields, including rescue
operation, resource exploration, intelligent transportation, and underwater detection [1–4].
Initially, typical localization methods, such as time of arrival (TOA) [5,6], angle of arrival
(AOA) [7,8], and frequency difference of arrival (FDOA) [9,10] are always performed in
a two-step mechanism. The intermediate parameters containing information regarding
the source position are estimated first, such that the source position can be determined by
methods that are based on the geometric relationship between the parameters. Nevertheless,
the two-step algorithm cannot perform optimally, due to the inevitable information loss
between the two steps. Moreover, a sharp decline in accuracy will be caused if parameter
matching errors occur in multiple source scenarios.

To circumvent these problems in the two-step framework, a new one, called direct
position determination (DPD), is first proposed in [11]. As its name suggests, the DPD
algorithm is performed by processing the raw received signals to determine the source
position. Thus, it skips the step of intermediate parameter estimation and takes the cor-
relation among different received signals into account. The research results in [11] show
that much higher accuracy can be achieved by DPD algorithms, compared with two-step
algorithms, especially under low signal-to-noise ratio (SNR) conditions.

As the information associated with the source position cannot be completely ignored in
DPD, a series of DPD algorithms based on different information types have been proposed.
The information regarding TOA and AOA was considered in [11], where the maximum
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likelihood (ML) estimator was established, and multidimensional search was required
for the determination of the source position. Though superior performance can be ob-
tained, this algorithm is impractical, in the case of multiple sources, because of its high
complexity. To cope up with this, a decoupled algorithm was proposed in [12], and the
alternating projection algorithm was adopted in [13]. Besides, the subspace data fusion
(SDF) DPD algorithm was proposed in [14], which can handle the problems of multiple
sources better than the ML algorithm. It was actually an extension of the multiple signal
classification (MUSIC) [15] algorithm. Except for the information regarding TOA and AOA,
the information of FDOA can be also considered in the DPD algorithm. In [16], a ML
estimator that contained the time difference of arrival (TDOA) and FDOA was designed,
and its high computation load was avoided by the particle filter method. Different from
the situation of moving receivers in [16], a moving source was considered in [17]. The
delay and Doppler information were exploited in [17], and a new multiple particle filter
algorithm was proposed to cope with the difficulty of estimating multiple parameters.

The above DPD algorithms were all designed for general Gaussian signals, while some
research has demonstrated that an improved accuracy can be achieved if the specific proper-
ties of the source signals are considered. In [18,19], the DPD algorithms for the orthogonal
frequency division multiplexing (OFDM) signals were proposed, where the ML estimator
was exploited, and their superiority over the general algorithms was verified. Besides,
some attempts at the DPD algorithms for non-circular (NC) signals have also been made.
An improved SDF DPD algorithm for NC signals was proposed in [20], and its complexity
was reduced by devising a Newton-type iterative method. Hereafter, some sparse arrays,
such as nested array (NA) [21] and coprime array [22], were employed to obtain a larger
array aperture, higher degrees of freedom (DOF), and higher accuracy [23–25]. In addition
to the OFDM and NC signals, the properties of cyclo-stationary signals [26] can also be
considered in the DPD algorithm.

Signals in the real world are always nonstationary, but locally stationary, such as
speech and audio signals. These types of signals are called quasi-stationary signals (QSS),
and they have stable second-order statistical properties within a short period of time and
differ from any other frame [27]. To the best of our knowledge, none of the existing literature
on DPD algorithms has considered and exploited the features of QSS. In this paper, which
was inspired by related research regarding the direction of arrival (DOA) for QSS [27–29],
the SDF DPD algorithm of QSS (QSS-SDF-DPD) for NAs is derived first. Moreover, the
dimension-reduced matrix in the Khatri–Rao subspace method [29] is modified, and the
unitary transformation [30,31] is adopted, so that the real-valued QSS-SDF-DPD (R-QSS-
SDF-DPD) algorithm with a lower computational burden is proposed. We summarize the
following contributions of this paper:

1. The features of QSS are considered in the DPD model for NAs, where the cost function
is constructed by combining the Khatri–Rao subspace and SDF methods, and the
QSS-SDF-DPD algorithm is derived.

2. The original dimension-reduced matrix is modified, and the unitary transformation
method is exploited for the purpose of releasing the computational burden; then, the
R-QSS-SDF-DPD algorithm is proposed.

3. Apart from the given Cramer-Rao bound (CRB), the complexity analysis, summary of
advantages, superiority of the R-QSS-SDF-DPD algorithm in terms of computational
complexity, maximum number of identifiable sources, localization accuracy, and
sources resolution is confirmed by some simulation experiments.

The remaining parts of this paper are organized as follows. Section 2 presents the
system model of QSS-DPD for NAs. The proposed algorithm, which contains the Khatri–
Rao subspace method for NA and matrix reconstruction for complexity reduction, is
derived in Section 3, and a summary is given at the end. Section 4 provides the CRB,
complexity analysis, and advantages of the proposed algorithm. Then, some relevant
simulation results are shown in Section 5. The last section draws some conclusions on
the paper.
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Notation: Throughout the paper, the upper-case bold character and upper-case one
are used to represent a matrix and vector, respectively, and a variable is denoted with
a lower-case character. |·| and ‖·‖ represent the operation of taking the magnitude and
Euclidean norm of a vector, respectively. E{·}, vec(·), diag(·), blkdiag{·}, and Re(·) rep-
resent the operation of expectation, vectorization, diagonalization, block diagonalization,
and taking the real part, respectively. ⊗ and � represent the operation of the Kronecker
and Khatri–Rao products, respectively. CM×N and RM×N represent the complex number
set and real number set with dimension M× N, respectively. The operation of inverse,
conjugate, transpose, and conjugate transpose are represented by (·)−1, (·)∗, (·)T , and (·)H ,
respectively. arcsin(·) represents the operation of arcsine. In, Jn, 0N , and 1n represent the
n× n identity matrix, row-flipped form of the n× n identity matrix, n× 1 vector with all
zeros, and n× 1 vector with all ones.

2. System Model

Consider the two-dimension scenario presented in Figure 1, where the K (it is assumed
to be known, as it can be estimated by some methods [32–35]) far-field narrowband uncorre-
lated sources are intercepted by N base stations, which are equipped with a NA. As the loca-
tion of the base stations are known, assume they are located at vn = [xv

n, yv
n] (n = 1, 2, . . . , N),

and the sources are located at qk = [xk, yk] (k = 1, 2, . . . , K). The specific structure of the
M element NA that is exploited in this scenario is shown in Figure 2, where the first and
second levels consist of M1 and M2 elements (M = M1 + M2), respectively. The place of
all physical array elements can be included in a set Θ, given by [21]:

Θ = {di = id|i = 0, 1, . . . , M1 − 1} ∪
{

dj = j(M1 + 1)d + M1d
∣∣j = 0, 1, . . . , M2 − 1

}
(1)

where d denotes the unit adjacent spacing.

Figure 1. The localization scenario for multiple sources with multiple NAs.
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Figure 2. The structure of NA.

Assume the kth source is impinging on the nth base station from θn,k; then, the received
signal vector intercepted by the nth base station at the tth (t = 1, 2, . . . , T) sampling time
can be presented by [14]:

xn(t) =
K

∑
k=1

an(θn,k)sn,k(t) + nn(t) (2)

where an(θn,k) =
[
e−j2πd1 sin θn,k/λ, . . . , e−j2πdm sin θn,k/λ, . . . , e−j2πdM sin θn,k/λ

]T
denotes the

steering vector of θn,k = arcsin((xk − xv
n)/‖qk − vn‖), which is the DOA from the kth

source to the nth base station, dm ∈ Θ (m = 1, 2, . . . , M), λ is the signal wavelength, sn,k(t)
represents the envelope of kth source incident on the nth base station, and nl(t) is the
Gaussian white noise vector.

For the sake of derivation, rewrite Equation (2), in the form of matrix, as [13]:

Xn = AnSn + Nn (3)

where:
Xn = [xn(1), xn(2), . . . , xn(T)] ∈ CM×T (4)

An = [an(θn,1), an(θn,2), . . . , an(θn,K)] ∈ CM×K (5)

Sn = [sn,1, sn,2, · · · , sn,K]
T

=


sn,1(1) sn,1(2) · · · sn,1(T)
sn,2(1) sn,2(2) · · · sn,2(T)

...
...

. . .
...

sn,K(1) sn,K(2) · · · sn,K(T)

 ∈ CK×T (6)

Nn = [nn(1), nn(2), . . . , nn(T)] ∈ CM×T (7)

Considering that the source signals conform to the properties of QSS [36–38], we
assume sn,k (k = 1, 2, . . . , K) contains F frames of signals, and each frame source signal
sn,k, f ( f = 1, 2, . . . , F) contains TF snapshots (T = FTF); then, sn,1, f satisfies [27]:

E
{∣∣∣sn,k, f

∣∣∣2} = gn,k, f (8)

Then, the f th frame received signals of the nth base station, which can be expressed as:

Xn, f =
[
xn(( f − 1)TF + 1), xn(( f − 1)TF + 2), . . . , xn

(
f Tf

)]
= AnSn, f + Nn, f

(9)

where Sn, f =
[
sn,1, f , sn,2, f , . . . , sn,K, f

]T
denotes the f th frame source signal matrix, and

Nn, f is the corresponding additive noise.
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According to Equations (8) and (9), a local covariance matrix can be defined by [27]:

Rn, f = E
{

Xn, f XH
n, f

}
= AnΛn, f AH

n + Cn (10)

where Λn, f = diag
{

gn,1, f , gn,2, f , . . . , gn,K, f

}
denotes the local source covariance matrix of

the f th frame, and Cn is the spatial noise covariance.
According to Property 1 in [27], the vectorization of Rn, f in Equation (10) can be

expressed as:

yn, f = vec
(

Rn, f

)
= vec

(
AnΛn, f AH

n + Cn

)
= (A∗n �An)gn, f + vec(Cn) (11)

where gn, f =
[

gn,1, f , gn,2, f , . . . , gn,K, f

]T
∈ RK×1 is a real-value vector consisting of the

diagonal elements in Λn, f .
Interestingly, a new received signal vector yn, f is obtained, whose steering matrix

is A∗n �An and noise vector is vec(Cn). By stacking the vectorization forms of all local
covariance matrices, the new received signal matrix Yn ∈ CM2×F is obtained:

Yn =
[
yn,1, yn,2, . . . , yn,F

]
= (A∗n �An)Gn + vec(Cn)1T

F (12)

where Gn =
[
gn,1, gn,2, . . . , gn,F

]
∈ RK×F is the new signal matrix.

Based on Assumption A4 in [27], the covariance of the source signal is time-varying.
Therefore, Gn can be treated as a new incoherent source signal matrix with F snapshots.
Note that this is different from the general case, where the virtualization of the received
signal makes the signals coherent, and some decoherence operations should be performed.
In contrast, that problem does not occur in this paper, and the advantages of high DOF
and large aperture can be fully preserved. As shown in Figure 3, we compare the DOF of
the general signal model (the spatial smoothing method in [21] is adopted to overcome
the coherent signal problem that is caused by the virtualization) and QSS model in this
paper. Obviously, the QSS model has approximately twice as many DOF as the general
signal model.

Figure 3. The DOF of the general signal model and QSS model.

Define an orthogonal projector matrix H⊥ = IF − (1/F)1F1T
F ∈ RF×F, when post-

multiplying Yn by it, the unknown noise in Equation (12) can be eliminated, and the new
noise-eliminated received signal matrix Ỹn ∈ CM2×F can be given by [27]:

Ỹn = YnH⊥ = (A∗n �An)GnH⊥ + vec(Cn)1T
F H⊥

= (A∗n �An)GnH⊥ + vec(Cn)1T
F
(
IM − (1/F)1F1T

F
)
= (A∗n �An)GnH⊥

(13)

According to Assumption A5 in [27], Gn is a full row-rank matrix if F ≥ K + 1,
which means rank

(
GT

n

)
= K. Note that H⊥ is non-singular, and GnH⊥ is a full row-rank

matrix. The noise subspace can be obtained after performing singular value decomposition
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(SVD) on Ỹn or eigenvalue decomposition (EVD) on its covariance matrix, so that the SDF
algorithm [14] can be exploited to estimate the source positions.

However, some direct processing on Ỹn is time-consuming. To avoid this problem, the
R-QSS-SDF-DPD will be proposed in the next section.

3. The Proposed Algorithm

In this section, the derivation process of the QSS-SDF-DPD and its modified real-
valued version (R-QSS-SDF-DPD) are given in detail, including the Khatri–Rao subspace
method for NA and matrix reconstruction for complexity reduction.

3.1. Khatri–Rao Subspace Method for NA

For a uniform linear array (ULA) with L elements, the new steering matrix A∗n �An
can be characterized as [27]:

A∗ �A = ΓB ∈ CL2×K (14)

where:

Γ =



0 · · · 0 1 0 · · · 0
0 · · · 0 0 1 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 1
0 · · · 1 0 0 · · · 0
0 · · · 0 1 0 · · · 0
...

. . .
...

...
. . .

...
...

0 · · · 0 0 · · · 1 0
...

...
...

...
...

...
...

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · 0



∈ RL2×(2L−1) (15)

B = [b(θ1), b(θ2), . . . , b(θK)] ∈ C(2L−1)×K denotes the dimension-reduced virtual ar-
ray steering matrix, and b(θk) = [ej2π(L−1)d sin θk/λ, . . . , ej2πd sin θk/λ, 1, e−j2πd sin θk/λ, . . . ,
e−j2π(L−1)d sin θk/λ]T denotes the virtual steering vector of θk, which is the DOA of the
kth source.

However, due to the discontinuity between the two-level elements of the NA, Equation (14)
cannot be directly applied to it. To overcome this difficulty, a transformation should be
applied to the original array steering matrix An.

For the two-level NA exploited in this paper, a total of 2RNA− 1 (RNA = M2(M1 + 1))
consecutive distinct elements can be obtained after the operation of Khatri–Rao product
A∗n �An. If we take the non-negative part of them as the virtual ULA, then the original NA
can be treated as a subset of the virtual ULA, and their array steering matrices scarify [29]:

An = PB̄n (16)

where P =
[
pd1

, pd2
, . . . , pdM

]T
∈ RM×RNA is the selection matrix, and pdm

∈ RRNA×1 is a

vector with 1 at the jth (j = 1 + dm/d) entry and 0 elsewhere [29]. B̄n =
[
b̄n,1, b̄n,2, . . . , b̄n,K

]
∈ CRNA×K represents the array steering matrix of the virtual ULA, and b̄n,k = [1, e−j2πd sin θn,k/λ,
. . . , e−j2π(RNA−1)d sin θn,k/λ]T ∈ CRNA×1 represents the corresponding steering vector of the
kth source.

Substitute Equations (16) and (14) into Equation (13); then, Ỹn can be rewritten as [29]:

Ỹn = (A∗n �An)GnH⊥ =
(
(PB̄n)

∗ � (PB̄n)
)
GnH⊥

= (P⊗ P)
(
B̄∗n � B̄n

)
GnH⊥ = (P⊗ P)

(
Γ̃B̃n

)
GnH⊥

(17)
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where Γ̃ ∈ RRNA
2×(2RNA−1) is the dimension-reduced matrix with the form of Equation

(15), B̃n =
[
b̃n(θn,1), b̃n(θn,2), . . . , b̃n(θn,K)

]
∈ C(2RNA−1)×K denotes the dimension-reduced

virtual array steering matrix with the form of B in Equation (14), and its kth column vector
b̃n(θn,k) ∈ C(2RNA−1)×1 represents the corresponding steering vector with the form of b(θk)
in B.

According to the definition of Γ̃ and P, they are both column orthogonal, so (P⊗ P)Γ̃
is also column orthogonal, which is easy to verify [29]. Define Ṽ =

(
(P⊗ P)Γ̃

)T
(P⊗ P)Γ̃ ∈

R(2RNA−1)×(2RNA−1), and the dimension of Ỹn can be reduced after a linear transformation,
which is given by [29]:

^
Yn = W̃Ỹn = Ṽ−1/2(

(P⊗ P)Γ̃
)TỸn = Ṽ−1/2(

(P⊗ P)Γ̃
)T

(P⊗ P)
(
Γ̃B̃n

)
GnH⊥

= Ṽ1/2B̃nGnH⊥ ∈ C(2RNA−1)×F
(18)

where
^
Yn is the dimension-reduced, noise-eliminated received signal matrix, and W̃ =

Ṽ−1/2(
(P⊗ P)Γ̃

)T is the dimension-reduced matrix. As presented in Equation (18), the
dimension of the original received signal matrix is reduced from R2

NA to 2RNA − 1.
It can be seen from Equation (18) that a virtual noise-eliminated received signal

matrix
^
Yn is obtained, whose array steering matrix is Ṽ1/2B̃n and source signal matrix

is GnH⊥ ∈ CK×F. Therefore, the covariance matrix of the dimension-reduced, noise-
eliminated received signal matrix

^
Rn ∈ C(2RNA−1)×(2RNA−1) can be calculated by:

R̂n =
^
Yn

^
Y

H

n /F (19)

After the eigenvalue decomposition of R̂n, we obtain the corresponding signal sub-
space ÊS

n and noise subspace ÊN
n , which are given by:

R̂n = ÊS
nΛ̂S

n

(
ÊS

n

)H
+ ÊN

n Λ̂N
n

(
ÊN

n

)H
(20)

where Λ̂S
n = diag

{
σ2

n,1, σ2
n,2, . . . , σ2

n,K

}
and Λ̂N

n = diag
{

σ2
n,K+1, σ2

n,K+2, . . . , σ2
n,2RNA−1

}
(

σ2
n,1 > σ2

n,2, . . . , σ2
n,K > σ2

n,K+1 ≥ . . . ≥ σ2
n,2RNA−1

)
denote the diagonal matrices made up

of the maximum K eigenvalues and remaining ones, respectively. The corresponding
eigenvectors form ÊS

n and ÊN
n , respectively.

Hence, according to the SDF algorithm in [14], the spectrum function of the QSS-SDF-
DPD algorithm for NAs spQSS−SDF(p) can be constructed by:

spQSS−SDF(p) =
1

N
∑

n=1
b̃n(θ(p))

HṼ1/2ÊN
n

(
ÊN

n

)H
Ṽ1/2b̃n(θ(p))

(21)

where p is the position of search grid point in the search area Ξ, and b̃n(θ(p)) ∈ C(2RNA−1)×1

represents the steering vector of p for the nth base station, which has the same form as
b(θk) in B. After finding the maximum K points of Equation (21), all source positions can
be estimated.

3.2. Matrix Reconstruction for Complexity Reduction

Note that high complexity cannot be avoided during the peak search process of
spSDF(p), due to the existence of Ṽ1/2 and lots of complex-valued multiplications. For
the purpose of releasing the computational burden, the dimension-reduced matrix will be
modified, and the unitary transformation method [30,31] will be adopted.

It can be observed from Equation (18) that, if we pre-multiply
^
Yn by Ṽ−1/2, we

can obtain:
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^
Y

M

n = Ṽ−1/2^Yn = B̃nGnH⊥ = Ṽ−1ṼB̃nGnH⊥ = Ṽ−1(
(P⊗ P)Γ̃

)T
(P⊗ P)Γ̃B̃nGnH⊥

= Ṽ−1(
(P⊗ P)Γ̃

)TỸn = W̃MỸn

(22)

where
^
Y

M

n is the modified, dimension-reduced, noise-eliminated received signal matrix,
and W̃M

= Ṽ−1(
(P⊗ P)Γ̃

)T ∈ R(2RNA−1)×M2
is the modified dimension-reduced matrix.

Interestingly and coincidentally, for the NA, W̃M is equal to the Equation (9) in [39],
which is expressed by:

[
W̃M

]
r,j+(k−1)M

=


1

ω(∆j,k)
, ∆j,k = r− RNA

0, otherwise

r = 1, 2, . . . , 2RNA − 1, j, k = 1, 2, . . . , M,

(23)

where ∆j,k =
(
dj − dk

)
/d
(
dj, dk ∈ Θ

)
represents the position difference between dj and dk,

and ω
(

∆j,k

)
represents the number of pairs

(
dj, dk

)
, whose difference

(
dj − dk

)
/d is equal

to ∆j,k.

According to Equation (22),
^
Y

M

n can be treated as a modified noise-eliminated received
signal matrix, whose array steering matrix is B̃n and source signal matrix is GnH⊥ ∈ RK×F.
Note that, compared with the virtual array steering matrix Ṽ1/2B̃n before modification,
Ṽ1/2 is eliminated, which means the matrix Ṽ1/2 would be removed from spSDF(p). Thus,
it partially reduces the computational burden.

As the virtual array configuration forming B̃n is centrosymmetric, the unitary transfor-
mation method [30,31] can be directly adopted.

Define the unitary matrix by [30]:

U2RNA−1 =
1√
2

IRNA−1 0RNA−1 jJRNA−1
0T

RNA−1

√
2 0T

RNA−1
JRNA−1 0RNA−1 −jIRNA−1

 (24)

Then, a real-valued matrix
^
Y

MR

n ∈ R(2RNA−1)×F can be obtained by the unitary trans-
formation given by:

^
Y

MR

n = UH
2RNA−1

^
Y

M

n (25)

Correspondingly, a real-valued covariance matrix R̂MR
n ∈ R(2RNA−1)×(2RNA−1) can be

expressed by:

R̂MR
n =

^
Y

MR

n

(
^
Y

MR

n

)H

/F (26)

Hence, after performing eigenvalue decomposition on R̂MR
n , we obtain:

R̂MR
n = ÊMRS

n Λ̂RS
n

(
ÊMRS

n

)H
+ ÊMRN

n Λ̂RN
n

(
ÊMRN

n

)H
(27)

where ÊMRS
n is the real-valued signal subspace made up of eigenvectors corresponding to

the largest K eigenvalues, ÊMRN
n is the real-valued noise subspace made up of the remain-

ing eigenvectors, and
(

σR
n,1

)2
>
(

σR
n,2

)2
, . . . ,

(
σR

n,K

)2
>
(

σR
n,K+1

)2
≥ . . . ≥

(
σR

n,2RNA−1

)2

are eigenvalues of R̂MR
n ; the first K ones form the diagonal matrix Λ̂RS

n , and the last
2RNA − K− 1 ones form the diagonal matrix Λ̂RN

n .
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Finally, fuse all the real-value noise subspace of all base stations, and the spectrum
function of R-QSS-SDF-DPD algorithm for NAs spR−QSS−SDF(p) can be expressed by:

spR−QSS−SDF(p) =
1

N
∑

n=1
b̃R

n (θ(p))
HÊMRN

n

(
ÊMRN

n

)H
b̃R

n (θ(p))
(28)

where b̃R
n (θ(p)) = UH

2RNA−1b̃n(θ(p)) =
√

2[cos(2π(RNA − 1)d sin θ(p)/λ), . . . ,
cos(2πd sin θ(p)/λ), 1/

√
2 , sin(2πd sin θ(p)/λ), . . . , sin(2π(RNA − 1)d sin θ(p)/λ)] ∈

R(2RNA−1)×1 is the real-valued peak search steering vector. Then, find the maximum
K points of spMR−QSS−SDF(p), and take the corresponding coordinate positions as the
estimates of all source positions.

3.3. Summary of The Proposed Algorithm

As a summary, the main steps of the QSS-SDF-DPD and R-QSS-SDF-DPD algorithms
are listed below, where the first six steps belong to the former, and the last four ones belong
to the latter.

Step 1: Calculate the covariance matrix of the received signal for each frame Rn, f by
Equation (10).

Step 2: Construct the vectorization forms of all Rn, f , and stack them together to obtain
the new received signal matrix Yn by Equation (12).

Step 3: Eliminate the unknown noise, according to Equation (13).
Step 4: Obtain the original dimension-reduced, noise-eliminated received signal matrix

^
Yn by Equation (18).

Step 5: Calculate the covariance matrix of
^
Yn by Equation (19), and obtain the noise

subspace matrix ÊN
n by Equation (20).

Step 6: Construct the original spectrum function of QSS-SDF-DPD spQSS−SDF(p) by
Equation (21), and estimate all source positions by finding the maximum K points.

Step 7: Modify the dimension-reduced matrix to obtain the modified noise-eliminated

received signal matrix
^
Y

M

n according to Equation (22).

Step 8: Obtain the real-valued matrix
^
Y

MR

n , according to Equation (25).
Step 9: Calculate the real-valued covariance matrix R̂MR

n by Equation (26), and obtain
the real-valued noise subspace matrix ÊMRN

n by Equation (27).
Step 10: Construct the spectrum function of R-QSS-SDF-DPD spR−QSS−SDF(p) by

Equation (28), and estimate all source positions by finding the maximum K points.

4. Performance Analysis
4.1. CRB

Based on the derivation results in [24,40], the CRB of DPD for NAs can be expressed by:

CRB(q) =
σ2

2

{
T

∑
t=1

Re
[
SH

t DHΠ⊥ADSt

]}−1

(29)

where σ2 is the variance of the noise, and:

q = [q1, q2, . . . , qK]
T (30)

St = I2K ⊗ st (31)

st =
[
sT

1,t, sT
2,t, . . . , sT

N,t

]T
(32)

Π⊥A = I−A
(

AHA
)−1

AH (33)
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A = blkdiag{A1, A2, . . . , AN} (34)

D =

[
∂A
∂x1

,
∂A
∂y1

,
∂A
∂x2

,
∂A
∂y2

, . . . ,
∂A
∂xK

,
∂A
∂yK

]
(35)

Where ∂A
∂xk

and ∂A
∂yk

denote the partial derivatives of A, with respect to xk and yk, respectively.

4.2. Complexity Analysis

In this subsection, the complexity of the SDF-DPD, QSS-SDF-DPD, and R-QSS-SDF-
DPD algorithms are compared. For the sake of fairness, the two-level NA is employed in
all algorithms, and the spatial smoothing method [21] is adopted in SDF-DPD algorithm.
Moreover, we count the number of real-valued multiplication operations, instead of the
complex-valued multiplication operations, which are equivalent to four real-valued multi-
plication operations. Table 1 presents the results of the comparison, and the corresponding
intuitive form is depicted in Figure 4, where the search area is assumed to be divided into
Nx × Ny grids, M = M1 + M2, and RNA = M2(M1 + 1).

It can be concluded that the proposed R-QSS-SDF-DPD algorithm has a much lower
complexity than the QSS-SDF-DPD algorithm, and it is slightly higher than the SDF-DPD
algorithm, which confirms the effectiveness of the dimension-reduced matrix modification
and unitary transformation. This means that the R-QSS-SDF-DPD algorithm is more
practical in engineering applications.

Table 1. Complexity of algorithms.

Algorithm Major Steps Complexity (Real-Valued Multiplication Operation)

The SDF-DPD

Obtain covariance matrix O
{

4NM2T
}

Spatial smoothing O
{

4NR3
NA
}

EVD O
{

4NR3
NA
}

Spectral peak search O
{

4N(R2
NA(RNA − K) + Nx NyRNA(RNA + 1))

}
Total O

{
4N(M2T + 3R3

NA − KR2
NA + Nx NyRNA(RNA + 1))

}

The proposed
QSS-SDF-DPD

Obtain Rn, f O
{

4NM2T
}

Obtain Ỹn O
{

2NM2F2}
Obtain

^
Yn O

{
2NM2F(2RNA − 1)

}
Obtain R̂n O

{
4NF(2RNA − 1)2

}
EVD O

{
4N(2RNA − 1)3

}
Spectral peak search O

{
2N(3(2RNA − 1)2(2RNA − K− 1) + 4Nx NyRNA(2RNA − 1))

}
Total

O
{

2N(2M2T + M2F2 + M2F(2RNA − 1) + (2F− 3K)

(2RNA − 1)2 + 5(2RNA − 1)3 + 4Nx NyRNA(2RNA − 1))
}

The proposed
R-QSS-SDF-DPD

Obtain Rn, f O
{

4NM2T
}

Obtain Ỹn O
{

2NM2F2}
Obtain

^
Y

M

n
O
{

2NM2F(2RNA − 1)
}

Obtain
^
Y

MR

n O
{

4NF(2RNA − 1)2
}

Obtain R̂MR
n O

{
NF(2RNA − 1)2

}
EVD O

{
N(2RNA − 1)3

}
Spectral peak search O

{
N((2RNA − 1)2(2RNA − K− 1) + 2Nx NyRNA(2RNA − 1))

}
Total

O
{

N(4M2T + 2M2F2 + 2M2F(2RNA − 1) + (5F− K)

(2RNA − 1)2 + 2(2RNA − 1)3 + 2Nx NyRNA(2RNA − 1))
}
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Figure 4. Comparison of complexity.

4.3. Advantages

Due to the utilization of the QSS features, modification of the dimension-reduced
matrix, and unitary transformation, the proposed R-QSS-SDF-DPD algorithm possesses
the following advantages, when compared to the existing algorithms.

1. More sources can be estimated than the traditional SDF-DPD algorithm, even when
K > RNA− 1 (K is the actual number of sources, and RNA− 1 is the maximum number
of identifiable sources for two-level NA exploiting spatial smoothing method);

2. Larger array aperture, lower localization error, and higher resolution can be obtained,
compared to the SDF-DPD algorithm;

3. Less computational burden than the QSS-SDF-DPD algorithm, before dimension-
reduced matrix modification and unitary transformation.

5. Simulation Results

We compare the estimated performance of the SDF-DPD, QSS-SDF-DPD, and R-QSS-
SDF-DPD algorithms by calculating the root mean square error (RMSE), as defined by:

RMSE =
1
K

K

∑
k=1

√√√√ 1
NE

NE

∑
ne=1

[
(x̂k,ne − xk)

2 + (ŷk,ne − yk)
2
]

(36)

where NE denotes the number of Monte Carlo simulation experiments, and [x̂k,ne, ŷk,ne]
denotes the estimate of [xk, yk] in the neth simulation experiment. NE is set to be 1000 in all
the following simulation experiments, unless a special statement is given.

Besides, in order to compare the resolution of algorithms, the resolving probability
Pr [41] is defined by:

Pr =
Ns

NE
× 100% (37)

where Ns is the number of simulation experiments in which the two sources are successfully
distinguished. In this section, two sources are placed parallel to the x-axis, one of them
is fixed at q1 = [x1, y1]m, while the abscissa of the other q2 = [x1 + ∆x, y2]m is adjusted,
where ∆x denotes the distance of the two sources. For each simulation experiment, if the
locations of two sources are estimated and satisfy |x̂1 − x1| < ∆x/2, |x̂2 − x2| < ∆x/2
(x̂1 and x̂2 are the estimated abscissa of the two sources), then this simulation experiment
passes; otherwise, it fails.

Simulation 1: To verify the feasibility of the proposed R-QSS-SDF-DPD algorithm,
the scatter plot is shown in Figure 5. In this simulation, the number of sources is K = 7,
and they are located at q1 = [−800, 400]m, q2 = [−200,−600]m, q3 = [−400, 1000]m,
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q4 = [700, 1300]m, q5 = [1200, 0]m, q6 = [1600, 400]m, and q7 = [800, 500]m; the number
of base stations is N = 4, and they are located at v1 = [0, 2000]m, v2 = [−700,−1600]m,
v3 = [1100,−1200]m, and v4 = [2000, 2100]m. The structure of NA is M1 = 2, M2 = 2, SNR
is 5 dB, and the number of frames is F = 200; each frame consists of TF = 600 snapshots,
and the number of Monte Carlo simulation experiments is 500. As demonstrated in Figure 5,
the proposed algorithm can estimate all source positions, even when K = 7 > RNA − 1 = 5,
which proves the first advantage that was mentioned in Section 4.3. Besides, the feasibility
of the R-QSS-SDF-DPD algorithm, in regard to estimate accuracy, is also confirmed.

Figure 5. Scatter plots of the R-QSS-SDF-DPD algorithm for NAs.

Simulation 2: Figure 6 depicts the RMSE performance of algorithms versus SNR, where
the R-QSS-SDF-DPD algorithm is compared to its version before matrix reconstruction
(QSS-SDF-DPD). Here, we consider two conditions, where ULA and NA are deployed. The
number of sources is set to K = 2, q1 = [0, 390]m, and q2 = [250, 560]m; the number of
base stations is N = 3, v1 = [−700,−300]m, v2 = [200,−500]m, and v3 = [600,−200]m.
The structure of array is M = 4 for ULA, and M1 = 2, M2 = 2 for NA. The number of
frames is F = 80, each frame consists of TF = 500 snapshots, and the SNR varies from
−6 dB to 18 dB. Figure 6 presents the results, in which the R-QSS-SDF-DPD algorithm
performs almost the same as the QSS-SDF-DPD algorithm, but its complexity is much
lower (as shown in Figure 4). It means the proposed algorithm is more efficient, and more
suitable for practical scenarios.

Figure 6. Comparison of QSS-SDF-DPD and R-QSS-SDF-DPD algorithms by RMSE versus SNR.
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Simulation 3: Figure 7 depicts the RMSE performance of algorithms versus SNR,
where the R-QSS-SDF-DPD algorithm is compared with the SDF-DPD algorithm which
ignores the features of QSS. In this simulation experiment, the number of sources is
K = 2, q1 = [0, 390]m, and q2 = [60, 580]m; the number of base stations is N = 3,
v1 = [−700,−300]m, v2 = [200,−500]m, and v3 = [600,−200]m. The structure of the
array is M = 4 for ULA and M1 = 2, M2 = 2 for NA; the number of frames is F = 400, each
frame consists of TF = 300 snapshots, and the SNR varies from −3 dB to 15 dB. The results,
depicted in Figure 7, corroborate that the R-QSS-SDF-DPD algorithm outperforms the
SDF-DPD algorithm, whether ULA or NA is deployed. In particular, the R-QSS-SDF-DPD
algorithm for NAs is the closest to the CRB, which benefits from the utilization of the QSS
features, though a slightly higher complexity has been brought (according to Figure 4).

Figure 7. Comparison of SDF-DPD and R-QSS-SDF-DPD algorithms by RMSE versus SNR.

Simulation 4: Different from the last simulation, the function of RMSE versus the
number of frames F is adopted in this simulation experiment. Except for the SNR, which is
set to be 5 dB and with F varying from 50 to 400, the other parameters are the same as in
simulation 3. As presented in Figure 8, it can be found that all algorithms are positively
affected by the number of frames, and the R-QSS-SDF-DPD algorithm always outperforms
the SDF-DPD algorithm, which is consistent with the results in simulation 3.

Figure 8. Comparison of SDF-DPD and R-QSS-SDF-DPD algorithms by RMSE versus the number
of frames.
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Simulation 5: Figure 9 evaluates the resolving probability versus the distance between
the two sources (∆x). The SNR is assumed to be 0 dB, and the number of frames is F = 200,
each frame consists of TF = 600 snapshots; source 1 is located at q1 = [0, 520]m, and
the other one is located at q2 = [∆x, 520]m, where ∆x varies from 30 m to 150 m. The
other parameters are the same as in simulation 3. The result in Figure 9 demonstrates that
the resolving probability of the R-QSS-SDF-DPD algorithm for NAs reaches 100% when
∆x is only 50 m, while the SDF-DPD algorithm for NAs reaches 100% when ∆x is 90 m.
Obviously, the advantage of the R-QSS-SDF-DPD algorithm, in terms of sources resolution,
has been verified.

Figure 9. Comparison of SDF-DPD and R-QSS-SDF-DPD algorithms by resolving probability ver-
sus ∆x.

6. Conclusions

In this paper, the R-QSS-SDF-DPD algorithm for NAs is proposed. According to
the features of QSS, the new noise-eliminated received signal matrix can be obtained by
stacking the vectorized form of the signal covariance matrix for each frame and eliminating
the unknown noise. Then, the Khatri–Rao subspace method is adopted to reduce the
dimension of the cost function. Thereafter, the dimension-reduced matrix is modified, and
the unitary transformation method is employed to release the computational burden. It
has been verified by some theorical analysis and simulations that the R-QSS-SDF-DPD
algorithm owns a lower complexity than the QSS-SDF-DPD algorithm and performs better
than the general SDF-DPD algorithm, in terms of the maximum number of identifiable
sources, localization accuracy, and source resolutions.
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