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Abstract: Two-dimensional (2D) multi-person pose estimation and three-dimensional (3D) root-
relative pose estimation from a monocular RGB camera have made significant progress recently. Yet,
real-world applications require depth estimations and the ability to determine the distances between
people in a scene. Therefore, it is necessary to recover the 3D absolute poses of several people.
However, this is still a challenge when using cameras from single points of view. Furthermore, the
previously proposed systems typically required a significant amount of resources and memory. To
overcome these restrictions, we herein propose a real-time framework for multi-person 3D absolute
pose estimation from a monocular camera, which integrates a human detector, a 2D pose estimator,
a 3D root-relative pose reconstructor, and a root depth estimator in a top-down manner. The proposed
system, called Root-GAST-Net, is based on modified versions of GAST-Net and RootNet networks.
The efficiency of the proposed Root-GAST-Net system is demonstrated through quantitative and
qualitative evaluations on two benchmark datasets, Human3.6M and MuPoTS-3D. On all evaluated
metrics, our experimental results on the MuPoTS-3D dataset outperform the current state-of-the-art
by a significant margin, and can run in real-time at 15 fps on the Nvidia GeForce GTX 1080.

Keywords: 3D multi-person pose estimation; absolute poses; camera-centric coordinates; computer
vision; artificial intelligence; deep-learning

1. Introduction

Human pose estimation (HPE) is a popular task in computer vision. It aims to predict
and track the location of joints (e.g., elbow, wrist) or body parts of one or more human
bodies; it associates them with segments in graphical form (from an image or sequence
of images) to represent the human’s orientation and it describe the actual posture. This is
an important process for understanding human behavior and human–computer interac-
tions. An example of a human posture skeleton is illustrated in Figure 1.

With human pose estimation, tracking a person or multiple people in real space can
be done at an incredibly granular level. This powerful capability unlocks a wide range of
industrial applications [1–8], including gaming, animation, motion transfer, augmented real-
ity, human–robot cooperation and training, biomechanical analysis for medical/healthcare,
sports fields, gesture control, autonomous driving, human fall detection, action prediction,
security and surveillance, etc.

Pose estimation can be performed in two ways: in a two-dimensional space to predict
XY image coordinates or in a three-dimensional space to predict the XYZ camera or world
coordinates. However, most real-life applications require depth estimation, which provides
informative knowledge since 2D poses are often confusing. They can appear identical when
in fact they represent completely distinct poses. This makes activity recognition difficult
and leads researchers to employ 3D pose estimation.
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Figure 1. 3D Skeleton model in MuPoTS-3D format and joints names.

Recently, 3D root-relative human pose estimation has shown remarkable progress.
Several methods [9–14] propose alleviating the problem by using multi-view images or
videos as input. However, multi-view observations are expensive to obtain in daily life
scenarios. Thus, the use of 3D human pose estimations from monocular images or videos
is in high demand. State-of-the-art approaches that use monocular data [15–22] usually
decouple the problem into two main phases: 2D pose estimation for joint detection and
localization in the image space, and then lifting of the 2D pixel coordinates to 3D keypoint-
position predictions in the camera space. In our research, we followed the same strategy
and focused on the second phase, i.e., the 3D pose reconstruction from a sequence of 2D
keypoints. Two-dimensional (2D) pose estimation is a popular vision problem that has
been studied in many works, e.g., [23–28] and has been greatly improved especially using
the deep learning paradigm.

Indeed, 3D pose estimation approaches show promising results on single-person
datasets, such as Human3.6M [29] and HumanEva-I [30]. However, they do not perform
well in multi-person scenarios, which are the most common cases in real-world applications
and surveillance systems. The distances between people can be crucial in the analysis and
recognition of their interactions. This introduces the absolute pose [31–33], which aims
to locate the root joint (key central point of the person) and estimate its distance from the
camera. At present, the 3D multi-person pose estimation still faces a great challenge. When
possible, stereo vision calibration is used to determine the exact position of a person from
images taken from different points of view. However, these kinds of data are not always
available, and they significantly raise the overall costs of the process procedures. Moreover,
acquiring such data is impractical in real-time system applications, as we seek to optimize
the amount of data that must be captured and processed. This shows the gap between
scientific literature and real-world requirements.

The purpose of this study was to present a framework that could accomplish more
accurate and robust 3D multi-person pose estimations from a monocular video, from
these circumstances and industrial constraints. Thus, we propose an integrated top-down
approach that combines GAST-Net for reconstructing 3D root-relative keypoints from
2D keypoints and RootNet for estimating root depth from human bounding boxes. It
generates an appropriate 3D multi-skeleton estimation result from a monocular video while
maintaining low computational costs and short execution times.

Basically, the system is the result of a series of improvements that boost accuracy by
more than 8.8 percentage points on 3D-PCKabs on the MuPoTS-3D [34] dataset, when
compared to the approaches in the literature [31–33,35,36].

Examples of results from our whole framework are illustrated in Figure 2.
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Figure 2. Examples of 3D absolute poses resulting from our whole framework.

The main contributions of this work can be summarized as follows:

• The proposal of an integrated top-down framework based on a modified GAST-Net
and RootNet networks for multi-person 3D pose estimation from a monocular RGB
video in a short execution time.

• Outperforming existing 3D multi-person absolute pose estimation methods in a MuPoTS-
3D dataset by more than 8.8 percentage points on 3D-PCKabs and by more than
12.6 percentage points on AProot

25 .

The paper is organized as follows. Section 2 illustrates the review of conventional
literature on 3D pose estimation based on different levels: the input type (video), the
number of instances (multi-person), and the approach following the 3D root-relative pose
estimation (two-stage approach). Section 3 demonstrates the proposed framework method-
ology. Section 4 explains the implementation details, the results and discussion. Section 5
provides a conclusion of the work.

2. Related Works
2.1. Two-Stage Pose Estimation

Several works [22,37–43] apply deep neural networks on 3D pose estimation tasks
to learn the direct mapping between RGB images and their corresponding 3D poses in
one stage. However, this needs labeled data for supervised training, usually impractical
out of MoCap labs. Unsupervised learning algorithms require sophisticated architectures
with high computation costs, which are impractical too in realistic applications. To this
end, Martinez et al. [44] introduced a two-stage prediction approach. They first predicted
the 2D pose from the image and then lifted 2D joint coordinates to the 3D space via
a fully connected residual network. Fang et al. [45] introduced a model to encode the
mapping function of the human pose from 2D to 3D by explicitly encoding the human
body configuration with pose grammar. To improve the generalization of the trained 2D-to-
3D pose estimator, Gong et al. [46] proposed a pose augmentation framework (PoseAug)
exploiting a differentiable augmentation module based on a neural network. In Ref. [47],
the authors created a shape dictionary by collecting all 3D poses in the training set to
be aligned by the Procrustes method, to concisely summarize the variability in training
data and enable a sparse representation. A convex approach was then proposed to jointly
estimate the coefficients of the sparse representation. The same authors [48] predicted the
uncertainty heatmaps of the 2D joint locations, then combined these maps with a sparse
model of a 3D human pose to retrieve the 3D pose via an EM algorithm. Ref. [49] adopted
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a large library of 2D keypoints and their 3D representations to match the depths of the
2D poses estimated by the k-nearest neighbor algorithm. Hossain et al. [50] proposed
two 2-layered normalized LSTM networks with residual connections to leverage temporal
information for lifting 2D joint locations to 3D positions.

2.2. Video Pose Estimation

Although 3D coordinates can be determined from a single image, temporal algorithms
used in videos have better accuracies than simple frame-by-frame approaches. Most works
deploy recurrent neural networks (RNNs) [50,51] to exploit temporal information. Long
short-term memory networks (LSTMs) [52] are the most widely used RNN architectures
for learning long-term dependencies in pose estimation problems because of their ability
to preserve information over time. In [51], propagating LSTM networks (p-LSTMs) were
proposed to estimate depth information from 2D keypoints. Ref. [53] presented a two-part
spatial–temporal convolutional LSTM model (ST-CLSTM) to capture spatial features and
temporal consistency between frames. The authors used ST-CLSTM as the generator and
a 3D CNN as the discriminator to output the temporal loss from the estimated and ground
truth depth sequences. AnimePose [54] used Scene-LSTM to estimate the person’s temporal
trajectory and track overlapping postures in obscure frames based on their predictions in
prior frames. Temporal convolutional networks (TCNs) [55], on the other hand, give addi-
tional benefits, such as convolution sharing and low memory requirements for training; this
is very advantageous when dealing with extended input sequences. TCN evaluation and
training are hence faster than with RNN. As a result, they are becoming increasingly em-
ployed in pose estimation [35,37–39,56], especially in real-time systems [57,58]. Moreover,
Ref. [39] proposed employing dilated temporal convolutions in a fully convolutional model;
moreover, [59] used it as an automatic framework for semantic motion segmentation.
Li et al. [60] captured long-range dependencies using transformer-based architecture.

2.3. Spatial–Temporal Graph Convolution Network

Despite the acquired temporal information’s ability to anticipate smoother poses, the
depths and self-occlusions remain ambiguous. A graph convolutional network (GCN) was
used to exploit the spatiotemporal information that allowed to lower these ambiguities.
GCNs have greatly improved 3D human pose estimations by representing the human
skeleton as an undirected graph. The spatial–temporal graph convolutional network (ST-
GCN) [61] was the first approach to use graph CNNs for skeleton-based action recognition.
Zhou et al. [22] developed the semantic graph convolutional network (SemGCN) for the
3D human pose regression challenge. The SemGCN aims to learn by capturing semantic
information, such as local and global node relationships through end-to-end training. The
graph attention spatiotemporal convolutional network (GAST-Net) [57] also combines
common convolutional networks to integrate the spatiotemporal information. GAST-Net
comprises two types of graph attention blocks: a local spatial attention network (to model
the hierarchical and symmetrical structures of the human skeleton) and a global spatial
attention network (to extract global semantic information and better encode the human
body’s spatial characteristics). Cai et al. [62] developed an undirected graph to model the
spatial–temporal connections between distinct joints for 3D single-person pose estimation
from video data. In Ref. [32], the authors utilized a graphical neural network (GNN) to
efficiently aggregate the features corresponding to the different types of articulation, where
each type was represented by a graph node. The GCNs based on directed graphs were also
adopted by Cheng et al. [35] to model human joint GCNs that refine potentially imperfect
poses obtained from 2D pose heatmaps, and human bone GCNs, to model bone connections.
The authors also used two TCNs to estimate the 3D root-relative pose and the absolute root
depth. Finally, the dynamic graph convolutional module (DGCM) [63] applied GCN for
a multi-person 2D pose estimation framework.
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2.4. Multi-Person 3D Pose Estimation

Only a few studies were conducted on 3D multi-person pose estimation from a single
RGB image. Generally, existing methods can be divided into two categories: top-down and
bottom-up approaches.

Top-down 3D human pose estimation methods [64–66] commonly use human de-
tection as an essential part to crop each person in a bounding box and then estimate
person-centric 3D full-body joints [31,39,58]. These methods show promising performances,
but their main drawbacks still involve the independent detection and process of each
person. Hence, they are likely to suffer from inter-person occlusions and close interactions.
Rogez et al. [65,67] introduced LCR-Net, which classified bounding boxes generated into
a set of K-poses, refined using a regressor. The architecture contains three stages that
share the convolutional feature layers and are jointly trained. Likewise, Benzine et al. [68]
proposed the pose estimation and detection anchor-based network (PandaNet), an anchor-
based single-shot approach. The network predicts the 2D/3D pose regression into a single
forward pass for each bounding box detected in a given image.

To predict camera-centric, Moon et al. [31] processed each cropped person’s image
independently. They produced root-relative 3D joints using PoseNet [21] and estimated the
pelvis keypoint localization of each person using the RootNet model. Similarly, hierarchical
multi-person ordinal relations (HMOR) [69] is a coarse-to-fine architecture that hierar-
chically estimates multi-person ordinal relations through instance-level, part-level, and
joint-level. The end-to-end HDNet architecture [32] follows the same pipeline, extract pose,
and depth data using a pyramidal feature network [70] as the backbone. Features are then
propagated and aggregated using GNN for target depth estimation. In [35], after obtaining
the 2D poses from the 2D pose estimator, the poses were normalized to be centered on
the root point. Then, the authors used three temporal models—joint-TCN, root-TCN, and
velocity-TCN—to obtain absolute 3D human poses, but on monocular videos instead of
single images.

On the other hand, bottom-up approaches [34,71,72] first produced all body joint
locations and depth maps, then associated body parts to each person according to the root
depth and part relative depth. Mehta et al. [34] proposed a single forward pass regardless of
the number of people in the scene. The authors applied temporal and kinematic constraints
in three steps to predict occlusion-robust PoseMaps (ORPM) and part affinity fields [27].
Another bottom-up multi-stage framework was proposed by Zanfir et al. [73], which first
estimated the volumetric heatmaps to determine the 3D keypoint locations and limbs using
the confidence scores of all possible connections, and then conducted skeleton grouping in
order to assign limbs to various people. Likewise, Fabbri et al. [71] proposed estimating
the volumetric heatmaps in an encoder–decoder manner. They first produced compressed
volumetric heatmaps, which were used as ground truth, and then decompressed at test
time to re-obtain the original representation. Zhen et al. [33] proposed estimating 2.5D
representations of body parts first and then reconstructed the 3D human pose in a single-
shot bottom-up framework. Wang et al. [74] also proposed distribution-aware single-stage
models to represent 3D poses with a 2.5D human center, together with 3D center-relative
joint offsets in a one pass solution.

TDBU_Net framework [36] combined top-down and bottom-up pipelines to accom-
plish the multi-person camera-centric 3D human pose estimation.

In this article, we were inspired by all of these proposals in building a top-down
framework that could be used in real-world applications. We used monocular video as
input, as in [35,36]. Thus, to deal with long-term models, we chose dilated temporal
convolutional networks which only required the next images to produce real-time outputs.
To respect this constraint, we also needed a system that integrated as few models as possible,
unlike [35,36], while maintaining the highest possible accuracy.
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3. Framework Overview

The first part of this section presents the basic architectures used in our framework,
consisting of four phases: the human detector using Yolo-v3 architecture [75], the 2D human
pose estimator employing HrNet network [23], the 3D root-relative pose estimator using
the GAST-Net model [76], and the depth root estimator with the RootNet model [31]. The
second part describes the overall pipeline of the framework. The last part details the series
of enhancements of our framework on the 3D absolute pose estimator and their impacts on
the final result.

3.1. Basic Models Architectures

Human detector (Yolo-v3): This architecture [75] predicts bounding boxes using
dimension clusters as anchor boxes. The network predicts four coordinates for each
bounding box (bbox): the 2D image coordinates of the top-left pixel of the bbox, the width
and height of the bbox, and the confidence score. Darknet-53 was used for feature extraction.

2D pose estimator (HrNet): The high-resolution network [23] starts from a high-
resolution subnetwork and gradually adds high-to-low resolution subnetworks one by
one, by decreasing the resolution to half and increasing the width to double in separate
branches that connect in parallel. In that way, high-resolution representation is maintained
throughout the process. The input image size is 256 × 192 or 384 × 288, which produces
17 heatmaps (heatmap per each keypoint) of size 64 × 48 or 96 × 72 respectively. The
authors proposed a small network (HRNet-W32) with 32 channels and a large one (HRNet-
W48) with 48 channels.

3D root-relative pose estimator (GAST-Net): The majority of models that recently
analyzed and interpreted input video were based on temporal convolutional networks
(TCNs), which were initially introduced to action segmentation by Lea et al. [55]. The
GAST-Net (graph attention spatiotemporal network) [76] is inspired by VideoPose3D [39].
The network predicts 3D poses from 2D keypoints. It is designed from dilated temporal
convolutional networks (TCNs) to tackle long-term patterns and exhibit extended memory,
and from a graph attention block that consists of two spatial attention networks. The
local spatial attention network models the hierarchical and symmetrical structures of the
human skeleton. The global spatial attention network adaptively extracts global semantic
information to better encode the spatial characteristics of the human body.

Depth estimator (RootNet): Moon et al. [31] proposed a top-down system to estimate
3D multi-person poses from a single RGB image, consisting of human detection by the
DetectNet model, absolute 3D human root localization by the RootNet model, and root-
relative 3D single-person pose estimation by the PoseNet model. Both models adopt
ResNet-50 pre-trained on the ImageNet dataset as a backbone to extract the global data.
We are particularly interested in the RootNet model, which generates two outputs: the
2D image coordinates of the root’s keypoint (x, y) estimated using soft-argmax on the
root-heatmap (the central point of the individual), and the root depth absolute determined
using a scalar value k, computed using focal lengths divided by the per-pixel distance
factors and the human area ratio between the real-world and the image.

3.2. Taxonomy of the Framework

Given a sequence of bounding boxes from monocular RGB videos of a person or
a group of people in real-time, the goal was to produce a sequence of 3D camera-centric
coordinates of everyone in the scene. First, for each person, we assigned a unique ID i to
be tracked through the successive frames. Then, we applied a high-resolution network
(HRNet) [23] on each frame to produce 17 heatmaps. Each heatmap predicts 2D human
joint locations in MS-COCO format P2D for each detected individual.

The 2D-poses Pi
2D in 27 frames were collected and given thereafter to a 3D single-pose

estimator, GAST-Net, for direct 2D-to-3D mapping and recovering of the 3D root-relative
pose Pi

3Drel, where all produced joints were represented by their distances from the pelvis
keypoints. GAST-Net was applied (as much as the number of people in the frame).
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GAST-Net was chosen since it provides the best compromise between the number
of frames required to process and the estimation precision. In fact, the methods with the
best accuracies on monocular videos from Human3.6M (the largest database of 3D human
pose estimation) are: temporal convolution [39] trained in semi-supervision learning, the
Attention 3D Human Pose [77], which identifies significant frames and tensor outputs
from each layer using the attention mechanism, the RIE paper [43], which improves the
accuracy by relative information encoding that yields positional and temporal-enhanced
representations, and Anatomy3D [78], which estimates the 3D skeleton by predicting
bone orientation and length. These methods reached the MPJPEs (defined in Section 4)
of 44.1, 43.3, 45.1, and 46.8 mm, respectively, but required 243 frames as input. This is
very costly in terms of memory and processing time; moreover, this increases the delay
between the image display and the result, which is not favorable for real-time processing.
Furthermore, tracking several individuals on large time scales is more complicated and
error-prone. On the other hand, approaches that employ few frames have higher errors.
For example, VIBE [79] only used 16 frames but attained an MPJPE error of 65.6 mm, as
well as TP-Net [80] which required 20 frames but had an average error of 52.1. Trajectory
space factorization [41] scored an error of 46.6 mm from 50 frames; GAST-Net achieved
an MPJPE of 46.2 mm using 27 frames. Thus, it presents a good compromise for use in
real-world contexts.

For absolute depth estimation of the pelvis keypoint, we employed the RootNet
network proposed in [31], due to its adaptability to any 3D root-relative estimator.

The proposed overall pipeline for estimating the absolute camera-centered coordinates
of multi-person keypoints from a monocular camera is depicted in Figure 3. The pipeline
comprises three boxes. Person detection and 2D keypoint estimation are included in the
first box (green). The second box (orange) contains the 2D to 3D lift, and the last box (blue)
contains the depth estimation.

3.3. 3D Absolute Pose Estimator

The purpose of this work was to develop a 3D multi-person camera-centric pose
estimation system under industrial and real-world settings. Therefore, we started with
a hybridization of well-chosen models, GAST-Net for predicting 3D root-relative keypoints
and a RootNet network proposed in [31] for predicting absolute root depth (i.e., the depth
of pelvis keypoint), obtained by multiplying k (defined above) by the scalar value of the
network output. Then, the XY camera coordinates of the root were determined using the
camera-intrinsic parameters, the image coordinates of the root, and the predicted absolute
root depth. Finally, the absolute coordinates of the rest of the joints were estimated from
these two predictions. We call this hybridization the GR method. On the MuPoTS-3D
dataset, the system adopting the GR method outperformed previous methods by more
than 12.1 percentage points on AProot

25 , contributing to more than 6.7 percentage points
on 3D-PCKabs. However, we observed that the root-relative keypoints were less good by
25.8 percentage points on PCK, which sparked the idea to upgrade the GAST-Net. While
the original GAST-Net was trained on single-person databases [29], we chose to retrain our
model on both a single-person video database (MPII-3DHP [81]) and a multi-person video
database (MuCo-Temp [56]) with the required processing, following [56], to produce direct
absolute keypoint coordinates. The TCN-based approaches evaluated on MuPoTS-3D
were trained on the MPII-3DHP database, containing videos of a single person recorded
in a green-screen studio and/or on the MuCo-3DHP database, composed of MPII-3DHP
frames, containing multiple positions copied into a single frame. For this, in order to train
the temporal networks, such as GAST-NETABS, [56] proposed MuCo-Temp, a temporal
extension of MuCo-3DHP that was generated, such as MuCo-3DHP, but it is composed
of videos instead of frames. As a result, the relative keypoint precision enhanced from
63.8% with the basic GAST-Net to 82.5% on PCK with our modified GAST-Net, which
contributes to 1.6 percentage points in absolute points on 3D-PCKabs when compared to
the first methodology of hybridization. Note that in the following we name the upgraded
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GAST-Net by GAST-NETABS, and this methodology by the GA method. We noticed that
although AProot

25 of GAST-NETABS (measuring the root depth estimation) has improved
compared to the state-of-the-art, it is still not as good as the first hybridization methodology
. This pushed us to compute the root-relative keypoints from the absolute keypoints
obtained by GAST-NETABS and employ the RootNet for root depth estimation, generating
final absolute joints. We call this methodology the GAR method. In this way, we increased
the accuracy (compared to the literature approaches) by more than 8.8 percentage points
on 3D-PCKabs. Figure 4 presents the structural diagram of the various types of networks
used in the framework.

All these experimental results will be presented, detailed, and analyzed in the next
section (Section 4).

Figure 3. The pipeline of the Root-GAST-Net framework.
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Figure 4. The structural diagram of the various types of networks used in the framework.

4. Experimentation and Results Discussion

This section deals with the experimental details and results of the proposed system.
Results are discussed and evaluated using MPJPE, MRPE, 3D-PCK, AProot

25 , 3D-PCKabs
metrics and response times. The proposed Root-GAST-Net system and its three variants
(GR, GA, GAR), 3D pose absolute methodologies, were compared to the existing methods
grouped in papers_With_Code link of 3D multi-person pose estimations (absolutes) on the
MuPoTS-3D page ( https://paperswithcode.com/sota/3d-multi-person-pose-estimation-
absolute-on, accessed on 1 April 2022). The compared methods are 3D MPPE PoseNet [31],
HDNet [32], SMAP [33], HMOR [69], GnTCN [35], and TDBU_Net [36]. The goal of
evaluating the three methodologies was to measure the impact of each adjustment.

4.1. Datasets and Evaluation Metrics

Human3.6M is the most popular and biggest dataset/benchmark for 3D human pose
estimation [29]. It contains 3.6 million single-person indoor video frames and the corre-
sponding poses of 11 professional actors (6 males, 5 females) captured by the MoCap system
from 4 camera viewpoints. Camera extrinsic (rotation and translation with respect to world
coordinates) and intrinsic parameters (focal length and principal point) are also available.
This could be used to evaluate the single-person-centric pose estimate [39,41,43,57,77–80]
as well as the camera-centered coordinate prediction [31–33,35,36,69]. Only subjects 9 and
11 were used for testing, as in prior studies.

For evaluation, we computed the mean per joint position error metric (MPJPE), which
is the mean Euclidean error averaged over all joints and all poses, calculated after aligning
the human root of the estimated and ground truth 3D poses, calculated on relative poses,
as shown in the formula below:

MPJPE =
1
T

1
N

T

∑
t=1

N

∑
i=1

∥∥∥∥J(t)i − Ji
∗(t)

∥∥∥∥
2
, (1)

where T denotes the total number of test samples and N denotes the number of joints. J
and J∗ denote the predicted joint and the ground truth joint, respectively.

Another evaluation metric used in this database, proposed in [31], is the mean root
position error (MRPE), which is the average error of the absolute root joint (the hip)
localization, as follows:

https://paperswithcode.com/sota/3d-multi-person-pose-estimation-absolute-on
https://paperswithcode.com/sota/3d-multi-person-pose-estimation-absolute-on
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MRPE =
1
T

T

∑
t=1

∥∥∥(R(t) − R∗(t))
∥∥∥

2
, (2)

where R and R∗ denote the predicted root joint and the ground truth root joint respectively.
MuCo-3DHP and MuPoTS-3D MuCo-3DHP and MuPoTS-3D are two datasets pro-

posed by Mehta et al. [34] for 3D multi-person pose estimation evaluation. MuCo-3DHP
is the training dataset that merges randomly sampled 3D poses from a single-person 3D
human pose dataset MPI-INF-3DHP [81] to form realistic multi-person scenes. MuPoTS-3D
is a dataset used for testing 3D multi-person estimation. It contains 20 videos in both
indoor and outdoor scenes. Ground truth is obtained with a multi-view markerless motion
capture system.

In order to evaluate person-centric pose estimations, we used the percentage of a cor-
rect 3D keypoint (3D-PCK), which treats an estimated joint as correct if it is within a fixed
threshold distance from the matched ground truth joint. In the literature, the threshold is
set to 15 cm. We also used AUCrel , which is the area under the 3D-PCK curve computed
from various thresholds.

We followed [31] to evaluate the absolute camera-centered coordinate estimations.
We used average precision AProot

25 to measure the 3D human root location prediction
error, which considers the prediction as correct when the Euclidean distance between the
estimated and the ground truth coordinates is smaller than 25 cm. Moreover, we used
3D-PCKabs, which is PCK without the root alignment used to evaluate the absolute poses.

MuCo-Temp This dataset was proposed by [56]. It is generated in the same way as
MuCo-3DHP. Both use images composited from the MPI-INF-3DHP dataset. The difference
is that MuCo-Temp consists of videos instead of frames. So we can use it for temporal
network training.

4.2. Implementation Details

We adopted Yolo-v3 architecture [75], which is based on the Darknet-53 model as
a backbone and is pre-trained on the COCO dataset [82]. The input resolution is 608 × 608.

The cropped image of the bounding box was transformed to 384 × 288 to be used as
input for the 2D pose estimator. The transformation applied was an affine transformation
that preserves collinearity, parallelism, and the ratio of distances between the points, as
in [23]. A unique ID was assigned to each person using the tracking method [83] based
on the Hungarian optimization algorithm. Then, we used the small architecture of HrNet
(HRNet-w32) pre-trained on the COCO dataset [82], implemented in PyTorch. The output
was 17 heatmaps (resolution: 96 × 72). Cropping was resized to 256 × 256 to be processed
by RootNet for depth root prediction Zroot

abs . A unique ID was affected for each person using
the tracking method based on the Hungarian optimization algorithm. The 27 consecutive
2D coordinates were collected for each person, to be given to GAST-NET.

All networks, except GAST-NET, were optimized to TensorRT ( https://developer.
nvidia.com/tensorrt, accessed on 1 April 2022), a Nvidia library allowing to optimize
computations on the GPU in order to reach lower computation times. This library also offers
lower precision arithmetic but in our experiments, we kept models in the FP32 precision.

For GAST-NETABS training, we used the Adam optimizer with a learning rate of
1 × 10−3 and a batch size of 32. We trained the model for 80 epochs on MPII-3DHP [81]
and MuCo-Temp [56] datasets. Computations were performed at the supercomputer
facilities at Mésocentre Clermont Auvergne University for one week.

Finally, the detected bounding box was resized to 256 × 256 to be processed by RootNet
for depth root prediction Zroot

abs .

4.3. Results
4.3.1. Evaluation of Multi-Person Dataset MuPoTS

The results of our system with the three improvements are listed in Table 1, which can
be compared to the literature results. We evaluated using the MuPoTS-3D dataset since it

https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
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has been used to analyze 3D multi-person poses in both person-centric and camera-centric
coordinates. Following [31,35], the performance of person-centric 3D pose estimation was
evaluated using AUCrel and PCK metrics, while camera-centric 3D pose estimation was
evaluated using AProot

25 and PCKabs metrics. The detailed PCKabs results per sequence are
shown in Table 2. We observed an improvement in the estimation accuracy in most of
the sequences.

According to both tables, all our strategies outperformed previous 3D multi-person
absolute pose estimation approaches by a significant margin, even if the relative poses
were weaker.

Table 1. Person-centric and camera-centric evaluations on the MuPoTS-3D dataset. The best is in
bold, the second best is underlined.

Method Year PCK AUCrel 3D-PCKabs AProot
25

3D MPPE PoseNet [31] 2019 81.8 39.8 31.5 31.0

HDNet [32] 2020 83.7 - 35.2 39.4

SMAP [33] 2020 80.5 45.5 38.7 45.5

HMOR [69] 2020 82.0 43.5 43.8 -

GnTCN [35] 2021 87.5 48.9 45.7 45.2

TDBU_Net [36] 2021 89.6 50.6 48.0 46.3

DAS [74] 2022 82.7 - 39.2 -

Root-GAST with GR - 63.8 30.6 54.7 58.4

Root-GAST with GA - 82.5 45.3 56.1 56.8

Root-GAST with GAR - 82.5 45.3 56.8 58.9

Table 2. Sequence-wise 3D-PCKabs comparison with the state-of-the-art on the MuPoTS-3D dataset.
(*) The accuracies of methods are measured on matched ground truths. The best is in bold, the second
best is underlined.

Method S1 S2 S3 S4 S5 S6 S7

3D MPPE PoseNet (*) [31] 59.5 45.3 51.4 46.2 53.0 27.4 23.7

HDNet [32] 21.4 22.7 58.3 27.5 37.3 12.2 49.2

SMAP (*) [33] 42.1 41.4 46.5 16.3 53.0 26.4 47.5

GnTCN (*) [35] 64.7 59.3 59.4 63.1 52.6 42.7 31.9

TDBU_Net [36] 69.2 57.1 49.3 68.9 55.1 36.1 49.4

Root-GAST with GAR (*) 89.8 77.0 73.4 77.0 81.0 54.3 68.4

Method S8 S9 S10 S11 S12 S13 S14

3D MPPE PoseNet (*) [31] 26.4 39.1 23.6 8.3 14.9 38.2 29.5

HDNet [32] 40.8 53.1 43.9 43.2 43.6 39.7 28.3

SMAP (*) [33] 18.7 36.7 73.5 46.0 22.7 24.3 38.9

GnTCN (*) [35] 35.2 53.0 28.3 37.6 26.7 46.3 44.5

TDBU_Net [36] 33.0 43.5 52.8 48.8 36.5 51.2 37.1

Root-GAST with GAR (*) 60.5 71.3 65.4 33.5 26.1 67.3 46.9
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Table 2. Cont.

Method S15 S16 S17 S18 S19 S20 Avg

3D MPPE PoseNet (*) [31] 36.8 23.6 14.4 20.0 18.8 25.4 31.8

HDNet [32] 49.5 23.8 18.0 26.9 25.0 38.8 35.2

SMAP (*) [33] 47.5 34.2 35.0 20.0 38.7 64.8 38.7

GnTCN (*) [35] 50.2 47.9 39.4 23.5 61.0 56.1 46.3

TDBU_Net [36] 47.3 52.0 20.3 43.7 57.5 50.4 48.0

Root-GAST with GAR (*) 66.9 35.7 40.1 38.5 26.0 35.3 56.8

The average precisions throughout the entire dataset were then examined using
various threshold settings ranging from 25 to 10 cm. AP measured the accuracy of the
root key point; we only evaluated the Root-GAST system’s performance using the GA
approach since GR and GAR methodologies employed RootNet to predict the root joint.
They produced the same result as the original paper. Table 3 displays the results. When
compared to the state-of-the-art methodology, our method significantly achieves greater
AP across all levels of thresholds. We deduce that our method estimates many more correct
root keypoints even with a low distance threshold.

Table 3. Average precision of the root keypoint evaluation by different distances on the MuPoTS-
3D dataset.

Method AProot
25 AProot

20 AProot
15 AProot

10

3D MPPE PoseNet [31] 31.0 21.5 10.2 2.3

HDNet [32] 39.4 28.0 14.6 4.1

Root-GAST with GA 56.8 47.1 36.8 22.4

To compare with most of the existing methods that evaluate person-centric 3D pose
estimations on MuPoTS-3D using MPJPE , we report our results using the same metric in
Table 4. Our result was 101.9 mm, the result of [34] was 132 mm, the result of [84] was 120
mm, the result of [56] when adding the pose refinement model was 103 mm. Our method
also outperforms the existing methods on this metric.

Table 4. MPJPE of the relative poses on the MuPoTS-3D dataset. The best is in bold, the second best
is underlined.

Method Year MPJPE (mm)

Temporal smoothing [56] 2020 107

Temporal smoothing + Pose refinement [56] 2020 103

Depth Prediction Network [84] 2019 120

LCR-Net [67] 2017 146

Mehta et al. [34] 2018 132

GAST-NetABS - 101.9

4.3.2. Evaluation on Single-Person Dataset Human3.6M

In order to validate the system, we chose Human3.6M, which contains only single-
person videos. Since we compared the results through the mean root position error (MRPE)
metric, which measured the accuracy error of the root key point, we only evaluated the
Root-GAST system’s performance using the GA approach. GR and GAR methodologies
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employed RootNet to predict the root joint; they produced the same result as the origi-
nal paper.

The root localization results of our GAST-NetABS and the RootNet model are shown
in Table 5. Even though the evaluation was performed on the Human3.6M dataset, we
employed the GA model that was retrained on MPII and the MuCo-Temp dataset, and
we compared it to the RootNet model that was trained on the MuCo dataset to make
a fair comparison. Our measurement error amounted to 158 mm, while that of [31] was
289.28 mm. However, we could expect greater improvement if we train our model in the
Human3.6M dataset.

Table 5. MRPE results comparison with RootNet [31] on the Human3.6M dataset. MRPEx, MRPEy,
and MRPEz are the average MRPE errors in the x, y, and z axes, respectively.

Method MRPE (mm) MRPEx (mm) MRPEy (mm) MRPEz (mm)

3D MPPE PoseNet [31] 289.28 35.95 58.65 268.49

Root-GAST with GA 178 33 41.9 158

4.3.3. Response Time

The response time is the processing time taken by the algorithm to process its input; it
depends on the material configurations. The Root-GAST-Net pipeline was implemented
in C++ and executed on a machine equipped with Intel Core i5-9500, with a dedicated
memory of 32GB, and the Nvidia GeForce GTX 1080, with a dedicated memory of 8GB.

A comparative analysis of the response times of each network is shown in Table 6.
The processing time was measured on batches of monocular images from the Human3.6M
dataset, each containing one person. Note that the processing time of the tracking step
is negligible.

Table 6. Response time per model.

Model Min Response Time
(ms)

Max Response Time
(ms)

Average Response
Time (ms)

Yolo-v3 24 30 28
HrNet 9 12 10

GAST-Net 27 33 29
GAST-NetABS 23 29 26

RootNet 4 8 5

Finally, the frame rate of the whole pipeline with each strategy is given in Table 7. The
proposed Root-GAST-Net system can run at about 15 frames per second, which is suitable
for real-time scenarios. Therefore, improving the metrics does not impact the real-time
aspect of the pipeline.

Table 7. Frame rate per strategy.

Strategy Average Frame Rate (fps)

Root-GAST with GR 13
Root-GAST with GA 16

Root-GAST with GAR 15

4.3.4. Qualitative Results

As the system follows a top-down approach, the final result depends on all previous
outputs. If the detection is not correctly done, the 2D keypoints and depths will be wrongly
estimated, which will impact the absolute pose. If there are numerous people inside the
box or body parts that are partially outside the box’s bounds, the full-body joint calculation
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is likely to be incorrect, as shown in Figure 5. The confusion stems from erroneous 2D point
estimations, which have negative impacts on the 3D-lifted process.

Figure 5. Erroneous 3D multi-person pose estimation. The first two images represent two similar
poses of different people because one is completely occluded. In the right two images, one pose is
incorrect because the body parts are partially outside of the boxes.

5. Conclusions

In this work, we propose a top-down framework for 3D multi-person absolute pose
estimation, reconstructed from 2D poses from a monocular camera. Our framework Root-
GAST-Net can combine different models in three strategies. The GR strategy and GAR
strategy, which integrate human detection, 2D pose estimation, 3D human root-relative
single-person pose estimation, and root depth estimation. Moreover, the GA strategy
integrates human detection, 2D pose estimation, and 3D absolute pose estimation.

Experimental results on multiple datasets showed that our framework significantly
outperforms the recent approaches in 3D absolute multi-pose estimation. In addition, the
system can be used in real-time, as the execution time of each frame containing one person
takes around 60 milliseconds using the Nvidia GeForce GTX 1080. This can be reduced
using high-performance materials and FP16 precision.

In future works, we plan to retrain the model on the Human3.6M dataset to improve
the evaluation accuracy of this database. We also plan to develop a fall detection application
based on the absolute and relative 3D postures predicted by the Root-GAST-Net system.
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Abbreviations

The following abbreviations are used in this manuscript:

HPE human pose estimation
LSTM long short-term memory
GNN graph neural network
GCN graph convolution network
TCN temporal convolutional network
RNN recurrent neural network
MPJPE mean per joint position error
MRPE mean of the root position error
AUC area under the curve
3D-PCK percentage of correct key-points in 3D space
AProot average precision of the root keypoint
GPU graphics processing unit
GR first 3D absolute pose methodology: GAST-Net + RootNet
GA second 3D absolute pose methodology: GAST-NetABS trained on MuCo-Temp
GAR third 3D absolute pose methodology: GAST-NetABS trained on MuCo-Temp + RootNet
Root-GAST the whole pipeline: human detector + 2D pose estimator + 3D absolute pose estimator
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