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Abstract: Network Digital Twin (NDT) is a new technology that builds on the concept of Digital
Twins (DT) to create a virtual representation of the physical objects of a telecommunications network.
NDT bridges physical and virtual spaces to enable coordination and synchronization of physical parts
while eliminating the need to directly interact with them. There is broad consensus that Artificial
Intelligence (AI) and Machine Learning (ML) are among the key enablers to this technology. In this
work, we present B5GEMINI, which is an NDT for 5G and beyond networks that makes an extensive
use of AI and ML. First, we present the infrastructural and architectural components that support
B5GEMINI. Next, we explore four paradigmatic applications where AI/ML can leverage B5GEMINI
for building new AI-powered applications. In addition, we identify the main components of the AI
ecosystem of B5GEMINI, outlining emerging research trends and identifying the open challenges
that must be solved along the way. Finally, we present two relevant use cases in the application of
NDTs with an extensive use of ML. The first use case lays in the cybersecurity domain and proposes
the use of B5GEMINI to facilitate the design of ML-based attack detectors and the second addresses
the design of energy efficient ML components and introduces the modular development of NDTs
adopting the Digital Map concept as a novelty.

Keywords: digital twin; network digital twin; artificial intelligence; machine learning; telecommunications

1. Introduction

The concept and development of the Digital Twin (DT) was first formulated by Grieves
and Vickers [1]. According to that original definition, a DT is a virtual model that resembles
the characteristics and behavior of a physical asset or system, modeling its components
and properties, as well as the interactions of the entity with the environment. A DT can be
used to monitor and manage a physical asset or system in real-time or use it to recreate its
behavior in predefined virtual scenarios in order to define a better industrial process or
detect problems before the real implementation.

The application of the DT concept in the field of communication networks has also
recently gained attention in both the research community and the industrial sector, leading
to the emergence of the Network Digital Twin (NDT) concept. An NDT is a virtual represen-
tation of a telecommunications network that accurately models the devices, communication
links, operating environment, and applications running on the network. NDTs are a new
way of designing and managing networks, in which multiple physical assets and their
corresponding virtual twins are connected together to share information and collaborate
to complete a set of tasks [2]. In NDTs, network operators in coordination with service
providers and telecommunication equipment suppliers can validate new functionalities
prior to their incorporation into the network or emulate existing situations in the network
and analyze the effect of applying different policies in the network.
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By leveraging network data, NDTs can be used to build a virtual representation of a
network. The data should replicate the expected behavior of the network; for this reason,
the most common source are live feeds from the real network, although data collected from
testbeds or simulations that reflect the intended behavior can also be used.

By replicating different environments in a lab and running multiple scenarios, NDTs of-
fer a cost-effective way to assess performance, predict the impact of environmental changes
(such as cyber threats), and optimize network processes and decision making accordingly.

Although NDTs are still in their nascent stage, it is envisioned that they will have
a pervasive impact on the telecommunication industry, and they are pictured to be a
keystone technology for the fourth industrial revolution. The pursue of this interest has
led to an accelerated research effort in the last years, mainly because they can be used
to thoroughly dissect the response of a network under different conditions and test new
networking designs without compromising the safety of the physical network. Additionally,
by creating an NDT, the real time optimization of its corresponding physical equivalent is
also possible. Furthermore, NDTs can help secure traditional networks by enabling fast
identification and isolation of network failures to quickly respond to security threats.

An NDT can be interpreted as a black-box model of a network that can be parame-
terized in multiple ways to recreate different network scenarios (e.g., different topologies,
traffic volume, dynamic placement policies); by adjusting the parameter values, it is pos-
sible to observe the resulting changes in the NDT in real time and evaluate the situation
using different metrics defined according to the operator’s needs. More interestingly, the
above is possible without disrupting the real network or incurring the construction of costly
test environments.

In search of mechanisms to improve network intelligence, the use of artificial intel-
ligence (AI) for the creation and operation of NDTs has begun to be explored in recent
years. In fact, there is broad consensus that AI and ML are among the key enablers of the
NDT concept. AI methods can be used to improve the accuracy of NDT simulations and to
enable new services that ultimately improve user experience, such as self-healing networks,
autonomous network management and security monitoring. In addition, AI methods can
also be used to automatically learn and adapt to changes in real assets. This can help ensure
that nondestructive testing remains accurate over time.

Communication networks often work with large amounts of heterogeneous data that
differ greatly in format and content. For this reason, creating a model of the network
that accurately represents its behavior is a highly challenging task. Fortunately, Machine
Learning (ML) techniques can help to extract insight from the real network data and
construct the corresponding NDT of the network automatically [3]. Furthermore, the
increasing excitement generated by the NDT concept in the last few years has raised interest
in the NMRG IETF standardization group. The NMRG group has recently published a draft
that proposes a reference framework for NDTs and their possible applications [4]. Among
these applications, ML model training and validation is explicitly mentioned. It should
also be emphasized that one of the main concepts in this draft is the recommendation to
have an exchange of information between the real physical network and the DT to obtain
maximum benefit.

In order to achieve the goals proposed by the IETF draft, in this work, we make
the case of ML methods as a key enabler for the construction of an NDT that models
complex 5G and beyond networks. To that end, we present in this work B5GEMINI, a
proposal for an AI-based NDT architecture, whose main objective is to deploy a 5G/6G
NDT support platform capable of building a specific network configuration and generating
the necessary traffic to be subsequently used for different analysis activities focused on
advanced scenarios, such as cybersecurity and network management, which range from
resource optimization to security enforcement. It should be noted that B5GEMINI is an
acronym for “Beyond 5G GEMINI”, where the term “gemini” corresponds to the Latin
word for “twins”. Due to the inherent complexity of 5G/6G models, B5GEMINI aims to
make extensive use of AI to provide them with anticipatory and self-learning capabilities.
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B5GEMINI addresses several complementary objectives: the development of a 5G/6G
NDT infrastructure and the design and integration of advanced AI components and use
cases in the NDT for realistic experimentation. It is worth noting that current NDT proposals
tend to apply AI to add intelligence in different ways to network orchestration processes.
B5GEMINI goes one step beyond and also focuses on the use of NDT for training and
validating AI/ML components in a controlled scenario when potentially harmful situations
could occur if trained or tested in a real network. B5GEMINI will provide a virtualized
representation of the 5G/6G network meant to analyze, diagnose, emulate, and control the
physical network. The virtual system will start with a simple form of the real system and,
using AI self-learning capabilities and data updating, evolve gradually to a more realistic
image. With the support of AI, complex data sources and telemetry (e.g., IoT sensors,
network data) will be fed into sophisticated data interpretation processes to facilitate
the replica of 5G/6G network components. In addition, B5GEMINI will allow for the
deploying of complex network scenarios in a controlled way, launching clients and servers
and collecting the traffic generated by them even if they interact with clients and servers
outside the NDTs, typically on the wider Internet.

B5GEMINI will enable an extensive use of advanced AI mechanisms to realize sev-
eral valuable AI applications, such as (i) the training and testing of ML components to
deploy smart applications such as cybersecurity or network management in real-time
environments; (ii) the development of intelligent support to management, orchestration,
and dynamic control of the network components (e.g., Virtual Network Functions—VNFs,
Network Services—NS and Slices); (iii) the use of the NDT as a platform to perform dis-
tributed training and inference processes for ML and DL models using on-demand GPU
virtualization; (iv) ML as a service to deploy off-the-shelf pre-trained ML models in the
NDT allocated resources to perform ML tasks with a high degree of efficiency, avoiding
costly training and testing tasks; (v) the use of the NDT for network deployment planning.
In addition, B5GEMINI will allow one to realize several interesting use cases, such as (i) the
design of ML components for network cybersecurity capabilities and (ii) the leverage NDT
as a validation environment for energy consumption optimization of the ML/DL compo-
nents deployed in the real network. It is worth noting that other types of applications, such
as cyber-ranges or educational applications in general, could greatly benefit from the use of
a realistic and controlled 5G/6G network environment such as B5GEMINI, even if only the
virtual twin is used.

Finally, and regarding that the time and cost of planning, designing, and implementing
a complete NDT system from scratch can be unaffordable, B5GEMINI includes in its
design a modular building approach based on the Digital Map concept, which is a novel
concept that has appeared in recent IETF discussions as a possible way to specifically solve
this problem.

The remainder of this work is organized as follows: Section 2 reviews the literature on
the application of AI methods in NDTs and presents the state-of-the-art in the field. Section 3
describes the B5GEMINI architecture, providing details of the underlaying infrastructure
and the integration of the 5G core capabilities in it. Section 4 details several interesting
applications that B5GEMINI can address, and Section 5 presents the main B5GEMINI AI
components jointly with the open challenges associated with their deployment. Section 6
presents two notable use cases related to cyber-security and energy efficiency. In addition,
the second use case depicts the application of the novel concept of Digital Maps for a
modular NDT construction. Finally, Section 7 summarizes the main findings of this work.

2. Related Work

The concept of DT as a virtual copy associated with a physical entity was introduced in
2003 by Michael Grieves at a Product Lifecycle Management (PLM) conference [5]. NASA
was an early adopter of the concept, starting to use DTs to monitor spacecraft health since
2010. However, the term “digital twin” was first coined in 2011 by John Vickers. In practical
terms, the first DT was developed by Tuegel et al. [6] to predict the structural integrity of
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next-generation fighter aircrafts over their lifetime. The concept began gaining traction in
2015 due to the falling costs of sensors, processors and data storage, and the increasing
availability of broadband wireless connectivity, leading to the so-called “IoT revolution” [7].

The exchange of information between a physical object and its DT is a crucial element
for the creation of a successful DT: the virtual twin must quickly adapt to changes in its
physical counterpart, just as the physical object must promptly respond to interventions
taking place in the virtual twin. This transfer of information from the physical environment
to its virtual twin is made possible using communication networks that connect the two
parties. NDT result from the virtualization of the communications infrastructure of a real
network, allowing the interconnection of DTs that are part of a complete system as well
as supporting the bidirectional data flow with the real network. Thanks to this two-way
communication, NDT is expected to enable a new wave of AI-powered applications that can
more accurately predict outcomes and make better decisions to support network operators
in the deployment and operation procedures involved in network management. In this
section, we review the most interesting applications that we discovered in our research.

At first, we observed considerable research effort leveraging this technology towards
the fulfillment of the expectations placed on 5G and beyond communications. The potential
of edge and cloud computing platforms to manage DT-related data should be considered.
In particular, edge computing allows for the leveraging of computing capabilities of the
distributed nodes at the edge of the network, allowing one to reduce the bandwidth and
dependency with the cloud gateway [8]. There is a large body of work focused on providing
solutions to further minimize network and data processing latency between end users and
edge servers to facilitate the adoption of intelligence-driven applications. In our research,
we have observed a particular interest in looking for the most optimal ways to place and
migrate DT in a network that combines these two paradigms [9], i.e., an NDT optimization
task in which ML and DL techniques emerge as the most attractive solution. They propose
a new approach based on DRL to find the optimal placement for DTs in order to reduce
system latency. This algorithm takes into account both the placement strategy and the
mobility of users. In addition, they suggest using transfer learning to migrate DTs to
new users.

On the same line, Lu et al. proposed to combine DT with edge computing to efficiently
connect IoT devices with CPS in an Industrial IoT scenario (IIoT) [9–11]. More specifically,
they propose to model DTs of the physical devices present in the user layer and place them
in the edge to allow their operation from the CPS to achieve a better optimization of the
manufacturing process. For this purpose, they propose an asynchronous federated learning
scheme to build the DT of those devices using ML techniques. In federated learning,
different devices in a network collaborate to train a shared model. This can be conducted
by dividing the dataset among the devices, and each device trains its own model. These
individual models can then be merged to create a single, more powerful model. Federated
learning allows data collected by different entities to be exploited, eliminating the need
for a large, centralized ML infrastructure. This can be important for organizations that
need to maintain the confidentiality of their data or have limited resources. Leveraging this
concept, Lu et al. build their architecture based on this scheme to alleviate privacy concerns
in NDT, while reducing data transfer overhead.

To minimize energy consumption and reduce data transfers in a Mobile Edge Com-
puting (MEC) scenario, Dong et al. propose an optimization of resource allocation and
data offloading probabilities to the cloud, as well as an efficient mapping of the association
between users and edge devices, by approximating these strategies using DL models in
a supervised manner [12]. For this purpose, an NDT of the communication network is
constructed and deployed on a central server, different configurations are evaluated in the
NDT, and the best ones are used to train a DNN model in an off-line fashion.

Groshev et al. describes the key technologies that will support the deployment and
operation of an NDT in an industrial setting, including edge and fog computing, and a
5G network [13]. Additionally, they determine the role of AI methods to address some
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of the challenges posed in this scenario. More interestingly, they identify AI as a tool to
optimally allocate and automatically scale computing resources for an NDT to satisfy key
performance indicators (KPIs) such as latency and security requirements. In addition,
they conduct an experimental evaluation as a proof-of-concept to predict the movement
of a robotic arm using data collected from a DT to train a variety of ML models that are
subsequently compared.

A vehicular network (VN) is a collection of nodes that are connected by links. Nodes
can be cars, trucks, buses, or other vehicles. The links can be streets, highways, or other
transportation infrastructure. A VN can be used to model the movement of vehicles in
a city. A software-defined vehicular network (SDVN) is a VN that uses the concept of
software-defined networking (SDN) to allow network administrators to manage network
traffic through software defined rules instead of hardware configurations [14]. This enables
large networks to be managed more efficiently and to respond quickly to changing network
conditions. Based on this concept, Zhao et al. propose to create an NDT of a SDVN as a
simulation environment to evaluate the quality and reliability of ML and DL models before
applying them in the physical network [15]. This simulations environment, which they call
the “Intelligent Digital Twin” (IDT), allows one to assess whether the models remain robust
to the intrinsic dynamic changes of a VN and retrains the models if needed.

A similar use case is presented in [3]. In this paper, the authors identify 5G as a
key technology to enable efficient inter-vehicle communication to satisfy the necessary
low latency and high throughput requirements that are critical requirements to achieve
autonomous driving. In this particular context, with the objective of improving road
safety and traffic management, the Spirent team proposes to achieve this goal by creating
a Digital Twin of a 5G SDVN to emulate all aspects of a 5G network and its interactions
with vehicles under different realistic scenarios (e.g., congestion and vehicle density) in
a controlled manner [16]. In this approach, AI methods can be introduced to understand
and evaluate vehicle behavior, optimize vehicle-to-vehicle communication, and enable
end-to-end validation of the entire 5G SDVN. In this way, the built NDT serves as a testbed
to verify vehicle performance prior to deployment in a real-world environment.

Similar to the above presented case, in 2016, General Electric filed a US patent for
a wind farm management solution that leverages the concept of NDT to facilitate the
operations and test diverse strategies in a simulation environment powered by AI [17].
The proposal is composed of two communication networks, a local network that connects
individual wind turbines with the control system, and a cloud-based communication
network that allows operators to configure and operate the wind farm remotely via the
Internet. The proposed solution includes ML models to analyze the data generated by
the DT to recommend actions and simulate them on the provided graphical user interface
(GUI) for continuous feedback. ML techniques are trained on real data and integrated in
the NDT. The developed models are then used to assist operators in the management of
the wind turbines through the GUI, offering automated suggestions and allowing one to
simulate the selected strategies in the NDT to quickly obtain feedback.

From a more creative point of view, there have been several interesting proposals that
attempt to determine other roles that ML can play within NDT. One of those interesting
use cases of ML in the operation of NDT is presented in [2]. As noted by the authors, the
behavior of the virtual twin is expected not to disturb the physical space. To that end,
ML techniques could be used to validate the next actions of the real system using data
generated from the NDT model to prevent unwanted actions in the physical environment.
In this scenario, which is also envisaged in [3,18], ML would serve as an anomaly detection
tool for network operators, enabling them to quickly anticipate abnormal situations and
mitigate further damage.

Nguyen et al. anticipated 5G-based NDT technology as a city management service
that can provide situational awareness and decision-making for city managers and first
responders [3]. In particular, they present the case for NDT as a ML-powered tool for the
prediction of infectious disease outbreaks. More specifically, they propose to create an NDT
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that represents the city infrastructure and the overlaying 5G network. With the increased
bandwidth and low latency that 5G networks provide, it will be possible to collect and
analyze data from a large number of sensors in real time to track people movement, activi-
ties and interactions. Combining this information with past and current epidemiological
data and using a combination of ML and conventional data analytic processes, it is possible
to predict the most likely outbreak scenarios to occur. In this way, public health officials
and other related professionals can be better prepared to develop strategies to respond
to these situations more effectively. Extending this idea, the combination of 5G-based DT
and ML can be applied to the development of more efficient and ambitious smart city
applications [19], such as intelligent transportation, smart energy, and intelligent security.

We have also identified some works where DT-based systems are developed with the
help of ML techniques [20,21]. ML and DL methods are also expected to play an important
role in NDT model building, as also anticipated in [18], but, to this day, there is a need for
further systematic research in this area to find the most suitable methods and models for
different types of data and to determine how these models will interoperate with the rest of
the elements and contribute to the NDT.

In summary, there is a lack of studies on the design and development of NDT and,
in particular, on the integration of ML and DL methods in such systems. The research
proposed in this article aims to fill this gap and contribute to the advancement of this
area by providing B5GEMINI, an architecture for NDTs that considers AI components
by design. Furthermore, all the articles we have collected for this research approach the
design and construction of NDTs from a holistic perspective, aiming to implement all their
components and interconnections in a complete development cycle to achieve the desired
functionality, which requires extensive and careful planning and implies high risk in the
development process to achieve a successful and sustainable outcome. As a novelty, we
introduce the Digital Map (DMap) concept in B5GEMINI, justified on the need to build
a complete NDT in a modular way and thus avoid the cost of planning, designing, and
implementing a complete NDT system from scratch. Furthermore, B5GEMINI proposes
as novelty the NDT-ready label to identify physical networks and NDTs that are fully
interoperable by means of a standardized communication channel. In addition, we also
provide fundamental AI solutions that can be integrated into an NDT and identify key
AI components that can be included in B5GEMINI architecture to provide an NDT with
intelligent capabilities that facilitate network operations or enable new use cases. Finally,
two interesting use cases are proposed to show the adequacy of the B5GEMINI proposal:
The design of a ML-based cryptomining detector for cyber-security solutions and the
optimization of AI/ML components reduces its energy consumption both in training and
inference phases.

3. B5GEMINI Network Digital Twin

In this section, we first describe Mouseworld Lab, the origin of B5GEMINI, as it
contains some of the core components of the DTN architecture that form the foundation
of B5GEMINI. Then, we explain the infrastructure of B5GEMINI and all its related com-
ponents, with special emphasis on the integration of the 5G Core in B5GEMINI. Last,
we introduce a novel approach for building modular NDT based on the Digital Map
(DMap) concept.

3.1. Mouseworld

One of the corner stones of B5GEMINI is the Mouseworld Lab [22], a controlled
environment set up in the Telefónica I+D premises for running experiments that allow
deploying complex network scenarios in a controlled way and generate realistic labeled data
sets for training supervised ML components and validate supervised and unsupervised
solutions. The Mouseworld Lab provides a way to launch clients and servers, and collects
the traffic generated by them even if they interact with clients and servers outside the
Mouseworld Lab on the Internet; finally, it adds labels to this traffic without operator
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intervention. This environment is deployed on an NFV-enabled architecture, under the
management of an orchestrator (NFVO), extending an ETSI NFV MANO stack as necessary
(Figure 1).
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AI and ML were included by design in the Mouseworld Lab to allow the deployment
of realistic network management and cybersecurity use cases where ML could be seamlessly
trained, tested, and deployed. Therefore, the Machine Learning Orchestration is part of
the Digital Twin Entity Management and is composed of a Topology Generator and an
Experiment Launcher. The first uses predefined templates, interacts with OSM (ETSI NFV
SOL-005 interface) and OpenStack (Glance Image service API) provisioning NSD (Network
Service Descriptors) and VNFD (VNF descriptors) compatible with OSM, detailing the
network functions, the links, and their day-1 configurations. The Experiment Launcher
makes day-2 configurations and triggers the emulations functions for dataset generation,
and it is described with OSM’s ProxyCharms or with dedicated scripts. The current version
uses a configuration file to define the statistical distribution of the traffic, the number of
intervals in which the experiment is divided and the duration, and the type of service that
it is emulating. Currently, there are defined three scenarios: traffic classification, crypto
mining malware detection, and DoH attacks.

3.2. Introduction to Network Digital Twinning

In the digital twinning context, two concepts with differentiated characteristics are
established [2]:

1. Digital Twin (DT): Treated as an intelligent system in charge of modeling all the
characteristics of a specific physical component. In the case of the DT, the communica-
tion performs a one-to-one mapping between the physical twin and its DT, allowing
bidirectional feedback between both. From this point of view, using a bidirectional
data flow between both worlds, the DT is able to continuously adapt to operational
changes based on real-time data and information coming from the physical twin,
being able, among other things, to monitor and even predict the future state of the
physical twin. In addition, the DT can also be manipulated, and changes made to it
can be automatically transferred to the physical twin.

2. NDT (Network Digital Twin): Treated as an intelligent system composed of multiple
individual DT systems that are able to model complex interactions. The DTs are inter-
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connected through an abstraction layer, which is in charge of the data flow between
the different DTs. The abstraction layer built on top of the actual network functions as
an interface capable of extracting and translating data from one DT to another, creating
a communication channel between them, and enabling the integration and interoper-
ability of each DT system. As such, the NDT also comprises the infrastructure of the
network and the data flow between the different DT systems. In this case, the data
flow follows a many-to-many method, interconnecting all DTs with each other within
the NDT. This facilitates the exchange of information between all the DTs included
in the NDT, achieving more accurate detections of the network state, enriching the
real-time analysis and improving decision making about the physical twins.

3.3. B5GEMINI Infrastructure

With the aim to design a modular and scalable system for the creation of NDT applied
to 5G networks that attempts to model each of the elements of the 5G networks in the form
of a DT, we propose B5GEMINI as an evolution of Mouseworld, establishing a complete
NDT model capable of accurately emulating the behavior of a 5G network in certain use
cases, which will make use of the NDT to be able to apply the task-based on AI. One
of the crucial elements that differentiates B5GEMINI from Mouseworld is the two-way
communication capability with the real network, which allows real-time synchronization
between the real and virtual networks. That is, the configuration of the real network can
be replicated in the virtual twin in real-time and the optimizations applied to the virtual
twin can be seamlessly deployed in the real network. Figure 2 shows the conceptual design
of this complete system. Next, each of the modules that make up the entire system will
be reviewed.
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3.3.1. System Input for DT Generation

In the phase of creation of the different DTs that will make up the NDT, two general
system inputs are stablished: automatic entry and manual entry.

1. Automatic Entry: This is defined with the aim of obtaining an exact replica of the
physical object to be modeled, the development of smart agents that can be deployed
in the target network, which are in charge of collecting all the information necessary
for the DT generation (topological information, hardware and software information,
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states, etc.). This information is introduced to the deployment module in the JSON or
XML format.

2. Manual Input: In the case of not having sufficient permissions to be able to deploy
the intelligent agents described in the previous point, an option for loading these files
manually by the operators is enabled, avoiding limiting the emulation capacity of
the system.

3.3.2. Deployment Module

Once the initial phase of collecting information for the generation of the DTs is finished,
the implementation module is used, which, through the Terraform IaaS (Infrastructure
as a Service) [23] tool, will oversee the implementation of the virtual infrastructure that
will host the DTs. This module allows, through different providers, one to deploy the
infrastructure in any available cloud (AWS, Google Cloud, Azure, IBM, etc.) or in its own
virtualization infrastructures, using managers such as vSphere for VCenter (VMWare).
Figure 3 shows an example of virtual machine provisioning associated with the 5G AMF
element through the Terraform software using the vSphere provider. The main advantage
of this technology is the abstraction and non-dependence on specific API for each cloud,
since once the Terraform deployment file is generated, it is easily portable to any other
cloud that offers a provider compatible with it. Added to the advantage of deployment
over any type of infrastructure, is the resource management offered by Terraform, allowing
the creation of multiple NDT deployments, isolated from each other, as well as their
subsequent elimination, both at the full deployment level and for specific resources within
a deployment. Finally, the deployment module makes use of a wide library of virtual
machines and Docker [24] containers, which will serve as the basis for the provisioning
and configuration of the different DTs to be implemented using technologies such as
Kubernetes [25], Docker Swarm [26] or Docker Compose [27].

The NFs of the 5G core network are implemented using Docker containers, being
able to deploy all the NFs in the same instance or deploy the NFs in a distributed manner,
using the Docker bridge network for internal communications between each module or
defining the Docker networks’ overlay, respectively. Additionally, in the deployment phase,
the docker interfaces are duplicated, allowing the capture of all traffic (signaling and user
traffic) that is shared outside and inside the core network.

Figure 4 shows the integration of the NDT 5G Core at Mouseworld Lab. In this case,
Mouseworld Lab is used to apply real context to the DT 5G Core, since it is made up of
several virtual devices that act as clients or servers for different types of traffic (streaming
video, web pages, etc.). It also has an orchestrator that communicates with all DT devices
within the NDT through a management network and the ability to monitor and capture
traffic for analysis, statistics, and data set generation. It additionally allows the connection
of the NDT to remote services through the Internet.

B5GEMINI devices added to existing infrastructure are marked in red in Figure 4.
As can be observed in the figure, the 5G core infrastructure has been integrated into
a single instance, using Docker containers, as explained above. However, B5GEMINI
allows one to establish an NDT with the different distributed 5G Core NFVs. To allow
communication between the different DTs, virtual links are established to communicate the
required containers (specifically the AMF and UPF) with other devices in the environment.
UPF is connected to an internal network that allows user traffic to reach local or remote
servers via the Internet.

On the other hand, the traffic injection module is implemented as a virtual element
within the NDT, which can communicate with the AMF through signaling traffic and can
receive traffic from client users in the Mouseworld Lab environment. The traffic is piped
and sent over the link connected to the UPF container in the dockerized 5G core.
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3.3.3. Digital Twin Configuration and Provisioning Module

After completing the infrastructure deployment phase, the configuration and provi-
sioning module is responsible, based on the information collected by the smart agents, for
modeling each of the DT and configuring the necessary interconnections to fully simulate
the target 5G network. The 5G infrastructure used in the Machine Learning Lab is based
on the virtualization of the 5G core network. The network functions (NF) that make up
the core interact in a virtual environment within the NDT B5GEMINI infrastructure. The
implementation of NFs, used in the NDT B5GEMINI, are based on the free5GC project [28].
This project offers an open implementation of the main NFs needed for core operation. The
implemented NFs are:

• Access and Mobility Function (AMF): Implements the control plane function in the core
network, including registration, reachability, connection, and mobility management.
It uses the NGAP protocol for signaling communication with the RAN nodes.

• Authentication Server Function (AUSF): Provides authentication support for 5G ser-
vices, handling identifiers, managing authentication, and maintaining session states.

• Non-3GPP Interworking Function (N3IWF): Adds the functionality required for inter-
working between untrusted non-3GPP networks and the core.
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• Network Repository Function (NRF): Is a centralized repository for the service discov-
ery broker for NFs.

• Network Slice Selection Function (NSSF): Used by AMF to select network slice in-
stances for particular services.

• Policy Control Function (PCF): In charge of controlling QoS and control plane policy
rules (slicing, roaming, mobility). It also provides the management of subscribers,
applications, and network resources.

• Session Management Function (SMF): Responsible for the interaction with the data
plane and managing Protocol Data Unit (PDU) sessions.

• Unified Data Management (UDM): Stores the authentication data and subscription
information and manages the authentication repository.

• Unified Data Repository (UDR): A database that stores and manages subscriber data,
identities, and service configurations.

• User Plane Function (UPF): Function that manages all the functionality related to the
user plane, enabling data forwarding and packet processing.
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The different NFs are implemented separately as stand-alone processes that interact
using the standard defined interfaces. This means that the NFs can be deployed sep-
arately using virtualization or container technology. Figure 5 shows an example of the
distributed deployment, using overlay networks, of the NFs associated with the free5GCore
implemented in Docker.

3.3.4. Network Monitoring Module

This module is responsible for monitoring the complete operation of all information
exchanged within the NDT. Once all the DTs are provisioned and configured, the mon-
itoring module will control the activation of port-mirroring functionalities within each
one of the subnets present in the resulting NDT, with the aim of being able to use this
information traffic for the generation of datasets that allow for the improvement of the
complete emulation of the NDT.



Sensors 2022, 22, 4106 12 of 30Sensors 2022, 22, x FOR PEER REVIEW  13  of  33 
 

 

 

Figure 5. Example of distributed provisioning 5G Core via Docker. 

3.3.4. Network Monitoring Module 

This module is responsible for monitoring the complete operation of all information 

exchanged within the NDT. Once all the DTs are provisioned and configured, the moni‐

toring module will control the activation of port‐mirroring functionalities within each one 

of the subnets present in the resulting NDT, with the aim of being able to use this infor‐

mation traffic for the generation of datasets that allow for the improvement of the com‐

plete emulation of the NDT. 

3.3.5. Traffic Generation and Injection Module 

This module offers the option of enabling the traffic generation, based on different 

5G traffic models over the NDT, and allows the validation and analysis of network per‐

formance. 

Figure 5. Example of distributed provisioning 5G Core via Docker.

3.3.5. Traffic Generation and Injection Module

This module offers the option of enabling the traffic generation, based on different 5G
traffic models over the NDT, and allows the validation and analysis of network performance.

The main goal of this module is to provide a way of injecting traffic in the 5G core
network-virtualized infrastructure without dealing with actual Radio Access Networks
and 5G-ready hardware. This module acts as a signaling NAS traffic generator that is
able to communicate with the AMF NF in the 5G core by emulating the operations of
User Equipment in a real environment. This module can perform session management,
UE registering and de-registering, etc. Additionally, it can maintain GTP tunnels with a
UPF in the core network and send data through them. The user data to be sent through
this module, which acts as a broker, is captured in a network interface, and can have any
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virtual appliance or hardware machine as a source, as long as they are connected to the
module interface.

Both the NAS signaling emulation (Signaling Traffic Generator—STG) and the users’
data broker (User Traffic Generator—UTG) are implemented in a single process, enabling
the possibility of registering UEs, establishing PDU sessions, and sending user traffic to
a data network from the same software tool, associating the information of the signaling
traffic to the tunnel generated for the users’ traffic.

3.3.6. Bidirectional Pipeline

Once the NDT infrastructure has been deployed and provisioned, it is necessary to
establish the different pipelines to be used in the complete system. Depending on the type
of elements interconnected and their communication necessities, two different pipelines
are distinguished: V2V (virtual to virtual) and P2V (physical to virtual). The former
is performed within the NDT, interconnecting each of the DTs that compose it. These
pipelines allow for reflecting of the behavior of the communication that takes place in the
physical world, without the time limitation present in the physical world, which allows
the communication of large data flows in reduced times, and facilitates the emulation task,
accelerating the obtention of results. The second supervises the interconnection between
the virtual world of the NDT and the physical world, allowing the continuous feedback
loop between the DT and its physical counterpart, providing the system with continuous
co-evolution and cooperation capabilities.

Focusing on the type of P2V communication, it is necessary to approach it from a
cybersecurity perspective due to the risks and threats associated with an environment of
this type, such as risks associated with data, risk to physical devices modeled through
DTs, to networks through those that are interconnected or to the network applications
that operate on them. As described by Chen et al. in [29], P2V communication in NDT
architectures must comply with the requirements of data confidentiality and integrity
and the stability of the authenticity of policies, as well as the unforgeability based on the
authenticity of both parties, physical and digital.

3.3.7. AI/ML Module to Drive Smart Actions

This module will provide AI components, which are AI/ML models built (or imported)
into the platform and deployed as smart agents. These smart agents can perform a variety
of downstream tasks, such as optimizing network policies (e.g., traffic routing, resource
deployment strategies, etc.) or predicting network failures. To that end, this platform will
continuously monitor the NDT, providing the collected information to the smart agents
in order to take appropriate actions to perform some arbitrary tasks. These changes can
be replicated in the physical world through the P2V pipeline. It should be noted that
the changes are not necessarily always replicated in the physical world, which is a more
complex process that involves human verification to ensure that the changes are safe can be
also considered. In Sections 4–6, we provide further details that expand the internals of this
AI/ML module. More precisely, we will discuss the main AI components and applications
that can be deployed in an NDT scenario.

3.4. Digital Maps: Preparing the Way towards an NDT-Ready Architecture

In order to tackle specific problems in the NDT scenario without requiring planning,
designing, and implementing a complete NDT system from scratch, which would be very
costly and time-consuming, the research community has begun to consider the possibility
of building NDTs in a modular fashion. In this context, we propose to adopt the term
Digital Map (emerged in recent IETF discussions) to describe a DMap as a subset of an
NDT that focuses on a single specific dimension of the NDT functionality exposing its
services through an API that other DMaps can easily consume to interact with it. The
scope of application of a DMap is purposedly limited in nature; hence, it targets a narrow
set of tasks, such as fault test simulation or energy optimization of the real network. The
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bidirectional flow of information between the virtual network and the physical system,
formatted in JSON or another similar data exchange format, can synchronize the state of
both networks. In this way, DMap can be incrementally developed, and the interconnection
of several DMaps can lead to a complete NDT system.

In our proposal for a DMap-based NDT solution, which is illustrated in Figure 6, the
following elements can be identified: (1) the physical network, (2) the Digital Twins (DTs)
of the physical components of the network, (3) the NDT that represents the interconnection
of DTs and comprises the virtualization of the network, the data flows between DTs and
the DTs that conform it, and (4) several Digital Maps (DMap) that represent a set of
functionalities build upon one or more DT, thus serving as a concrete view or dimension of
the NDT. The rationale behind the Digital Map concept, which we propose as a novelty, is
justified on the need to build a complete NDT in a modular manner and thus avoid the
cost of planning, designing, and implementing a complete NDT system from scratch. In
this way, DMaps considerably reduces the complexity of building a fully featured NDT
system that completely replicates the physical system.
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In particular, we propose a minimal NDT architecture that allows the connection of
new DMap modules to an existing network to incrementally build an NDT system. The
minimal architecture consists of an NDT connector, which is responsible for the commu-
nication between the NDT and the physical network, and an NDT orchestrator, which
is responsible for managing and coordinating the orchestration of the different network
elements that compose the NDT. In particular, the NDT connector serves as a bridge that
enables data exchange between the virtual and physical networks. In this way, the data flow
between the network components of the physical system and the corresponding replicas
of these components (DTs) in the NDT are constantly synchronized. On the other hand,
the NDT orchestrator will be responsible for replicating and provisioning the required
network configuration of the physical system (network elements, interconnections, traffic
routing, etc.). Based on this minimal NDT architecture, new DMaps can be developed
and included in the NDT at any time to enrich it with new functionalities. It should be
noted that multiple DMaps can share some of the underlaying components that conform
the minimal NDT architecture (e.g., a subset of replicated network elements, the NDT
connector, and the NDT orchestrator).

In addition, the deployment of a DMap-based NDT allows for selectively limiting the
scope and visibility of the network according to the operator needs. Thus, a DMap can be
deployed to cover a specific set of network components, or a specific range of IP addresses
based on the specific service provider requirements. In contrast, a monolithic approach to
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the development of a DMap does not allow such flexibility and the NDT will always have
full network visibility in all situations. That is, if a specific subnet must be excluded for
some reason during network operation, it will be necessary to create a new NDT for that
purpose or, alternatively, to mask it from the rest of the NDT, which may not be trivial and
may require additional operational overhead.

We envision that a DMap-based architecture design can pave the way towards a
complete NDT architecture, providing a cost-sensitive approach to incrementally build an
NDT and delivering a flexible design to quickly adapt to the changing needs of the network.
To that end, in order to make it easier for an NDT infrastructure to interact with the diverse
ecosystem of 5G networks, standardization efforts are the first prerequisite to any successful
implementation of such a system. We suggest that a standardization working group should
focus on (i) providing a detailed description of the DMap architecture and the mechanism
for DMap interconnection, (ii) define the DMap functionalities that need to be exposed
through the DMap API, (iii) specify the structure of the messages exchanged between
DMaps and the physical system, and (iv) determine the message exchange mechanism
(protocols) between DMaps and the physical system. As a second prerequisite, we propose
to consider the creation of a working group to develop a reference implementation of
an NDT-ready architecture based on DMaps. To that end, the architecture proposed in
Section 3 of this work can serve as the basis for the working group’s initial proposal.

Based on the normalization of these interconnections, we propose the establishment
of the term “NDT-ready” to refer to a real system applying these standards. In this way,
an NDT-ready label on a physical system implies that it could be connected to different
NDTs that conform to the interconnection standard. Vice versa, an NDT that conforms
the interconnection standard could be directly connected to any physical system with the
NDT-ready label.

Moreover, an effortless integration of any DMap into the NDT-ready system can be
achieved using the aforementioned interconnection standards. In this regard, we envision
that task-specific DMaps can be offered as a service and seamlessly integrated into an
NDT-ready system. In this way, a new disruptive business model can be created for
the development, distribution and deployment of DMaps that extend the capabilities
of commercial and industrial 5G networks to support the creation and deployment of
emerging vertical services.

In Section 6.2, we will discuss the application of this innovative concept in a practical
use case related to energy consumption optimization. In particular, we will emphasize the
benefits of approaching this specific problem with our proposed architecture instead of the
traditional way.

4. AI Applications in B5GEMINI

In the following subsections, we describe the innovative AI applications that B5GEMINI,
as an NDT platform, will enable to deploy. In particular, we will discuss the potential of
B5GEMINI as a platform to provide data for ML/DL model training. In addition, we will
describe interesting applications related to network exploitation, where B5GEMINI has the
potential to revolutionize the network management landscape, providing greater value
and capability to network operators and service providers over traditional approaches.
Next, we will explore the capabilities of B5GEMINI as a platform for distributed training of
ML/DL models and inference tasks over the network. In the same vein, we will discuss the
possibility of deploying pre-trained models over the NDT to perform arbitrary downstream
tasks in an off-the-self fashion, which has the potential to improve convenience and enable
cost reduction and flexibility for network managers and other stakeholders.

4.1. NDT for Smart and Robust-by-Design AI/ML-Based Applications

As it is well known, most ML algorithms need large amounts of real data to be trained.
One of the major potential applications of an NDT is that it could serve as a platform for data
collection that can be later used to train algorithms when the real network does not provide
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enough data, or it is too complex or expensive to gather. Moreover, there is an increasing
need to design realistic virtual network scenarios in which different types of traffic can be
generated in a controlled way and ML models can be trained and validated. B5GEMINI
provides these capabilities, allowing the generation and capture of network traffic in a
controlled manner to be used for training and testing ML components with realistic data. It
should be noted that since the collected traffic is generated in a controlled environment,
data labeling, which is required for training and testing supervised ML components, can be
conducted without human intervention. This capability facilitates the labeling of data sets
in the big data regime that are required to train and validate complex Deep Learning (DL)
models. In addition, B5GEMINI replicates physical network elements and therefore, ML
and DL components can be deployed and validated in real-time scenarios. Furthermore,
using these approaches, different problems and faulty behaviors that rarely occur during
the real network operation can be easily replicated now without negatively affecting the
network. In this way, this approach allows one to train ML components for those situations
in a more cost-effective and safe manner in order to ensure that they operate accordingly
when they occur in real-world situations.

Moreover, recent applications of General Data Protection Regulation (GDPR) imply
new challenges for the design of robust AI systems in the context of automated decision-
making systems [30]. In this regard, interpretability is the key metric for providing reliable
explanations of results, which is critical to avoid negative consequences of their use that
may harm data subjects. To this end, these systems must provide not only a clear and
intelligible explanation of their results, but also a way to assess the reliability of the results.
At the network level, this interpretation capability must be technically accurate with respect
to this domain to provide meaningful insight that can successfully explain the underlying
decision-making process of the AI/ML system to network operators.

On the other hand, ML models are known to be vulnerable to adversarial attacks,
which are attacks performed by adding small perturbations to the input data in a way
that is unperceivable to humans but can trick a machine learning model into predicting
an incorrect label, even with high confidence. To address this problem, ML resilience
has emerged as a new research area that introduces mechanisms that make ML models
more robust to adversarial attacks. In order to adopt a robustness-by-design approach,
both Explainable AI and ML Resilience are two methodologies that should be carefully
considered from the early stages of the ML/DL model design and development pipeline.
Both are described in detail in Section 6.2.

4.2. ML for NDT Deployment, Configuration, and Monitoring

The dynamism of an NDT allows one to represent multiple realistic situations in a
network: network connection topologies variability (e.g., ring or star architectures, redun-
dant paths), location of specific functions (e.g., content caching, traffic filtering, hardware
accelerators), network links capacity or technologies used, nodes and links status change
(congestion, drop, or capacity variation), etc. Taking advantage of the NDT software
configuration flexibility, different problems can be simulated and changes in the NDT
instantiation introduced.

In this context, B5GEMINI ambition is to be able to use AI-based management for
orchestration and dynamic control of the deployment of instances and components of the
NDTs, which allow us to obtain the best results regarding the problem posed. In this regard,
B5GEMINI can be used to verify SLA requirements in advance and adjust the strategy in
time to reduce cost and uncover potential problems before the establishment of the service.
For example, a 5G network slice can first be verified in an NDT by simulating the effects of
user equipment, traffic, and network functionalities to uncover potential issues that may
affect QoS. With this end-to-end verification process, the NDT can be used to ensure that
the 5G service can be provided to the user with the expected quality and obtain the optimal
strategy to optimize the resource to guarantee the QoS of the network slice throughout
its lifecycle.
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On the other hand, networking solutions have also evolved toward more software-
oriented, cloud-based deployment. Software-defined networking (SDN), network functions’
virtualization (NFV), and cloud-based network management are being used by service
providers to deploy new services faster, automate network management and operations,
and improve network security. However, this has led to an increase in the number of
software components and the dependencies between them, which in turn has increased
the complexity of networks, making it difficult for network operators to get an accurate
picture of the network. To provide network administrators with a clear understanding
of the physical and virtual aspects of the network, B5GEMINI can be used to monitor in
a dashboard the network in order to quickly identify and diagnose problems and take
corrective action to improve network security and performance.

Finally, network operators can also use B5GEMINI as a platform to monitor and assess
the impact of different 5G implementation strategies in highly dense and dynamic environ-
ments, while providing automated recommendations to improve network performance.
Exploiting the data collected from the NDT, ML algorithms can be used to fine-tune these
strategies to maximize utilization and optimize operational costs, thus serving as a valuable
tool for network providers to accelerate 5G network rollout. Traditionally, this task has been
performed by using simulation tools such as OMNET++, NS3, and NS2. However, these
simulators require significant effort to create a realistic product environment and are only
able to reproduce the 5G environment with a low degree of accuracy. In addition, these tools
are only capable of one-way communications and therefore cannot take into account the
dynamic nature of the real environment. This can lead to a significant desynchronization
with the gathered data and the current situation of the real network. Moreover, simulation
tools present a trade-off between complexity and fast response, reducing the potential for
rapid iteration, which can severely affect the time to market. In contrast, B5GEMINI can
provide a real-time assessment of the 5G network with little overhead, allowing for faster
and more accurate assessment. In addition, with this approach, AI methods can be more
easily integrated to gain feedback from the network configuration, provide suggestions
to optimize it and enforce the configuration automatically in the live environment. In this
way, B5GEMINI can serve as a key tool for network operators to manage the deployment
of 5G networks in a closed loop fashion to ensure timely and efficient network operations.

Some other representative use cases in B5GEMINI are network path optimization for
a service, network growth or reconfiguration based on traffic growth patterns, network
problem root cause identification, or optimal mitigation of a network attack.

The metrics collected and the data generated in the three scenarios described within
the NDT can then be used to train ML models. In addition, for some cases, such as
Reinforcement Learning (RL), the ML model proposes changes to the NDT and once
completed the result can be evaluated. In addition, the integration of ML can be used to
forecast the future behavior of the network in order to identify early signs of problems
ahead of time, which allow for better proactive network management. However, although
what we described are the most prominent uses of NDT, it should be noted that these are
not mandatory, i.e., network operators can use this technology to monitor NDT without
considering the integration of ML for end-to-end optimization if it is not deemed necessary.
In any case, the flexibility of the proposed architecture will make it possible to empower
any NDT component with intelligent capabilities very easily at any time.

4.3. Distributed Training and Inference on Demand

We propose to use B5GEMINI as a platform to perform distributed training and infer-
ence processes for ML and DL models. The approach consists in virtualizing, instantiating,
and allocating virtual GPUs on demand within the NDT to provision all the required
resources to train and evaluate the models. The proposed approach can facilitate feder-
ated learning schemes and provide increased capabilities for the next-generation edge
computing paradigm. It should be noted that to this day the virtualization process relies
heavily on proprietary technology (see the case of NVIDIA and its industrial-grade GPUs).
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We consider this situation as the major challenge that may hinder the adoption of this
technology at scale, and, for this reason, we look forward to the development of more open
solutions to eventually materialize this concept.

4.4. NDT for ML as a Service

In the proposed architecture, it will also be possible to deploy off-the-shelf ML models
in the allocated resources that are prepared to perform a specific task with a high degree
of efficiency. We propose to realize this idea providing a catalog of pre-trained models
for a wide variety of tasks, the users may select one of these models depending on their
requirements to perform some downstream task on the NDT. For example, this approach
will allow classification models to be deployed at specific locations in the network (routers,
terminals, etc.) to filter traffic coming from certain subnets where congestion has been
detected according to certain rules; thus, it will be possible to improve network performance
by minimizing resource usage. In addition, once deployed, the models can be periodically
retrained in a self-learning fashion to improve their overall performance and robustness
over time. It is worth noting that this approach can be naturally extended to DMap as a
Service by deploying off-the-shelf DMaps (e.g., Energy optimization for AI components
or Synthetic Data Generators) instead of plain ML models to provide a more complete
solution for network management.

5. B5GEMINI AI Components

The key role of the integration of AI components in B5GEMINI is to enable the
deployment of smart applications at scale. In this section, we describe the most promising
research opportunities that could help to achieve this goal. Additionally, we discuss the
most important challenges that need to be addressed in order to realize the potential of AI
in B5GEMINI.

5.1. Synthetic Data Generation

The generation of synthetic network and user data using Generative Adversarial Net-
works (GANs) will avoid the privacy violations that can be incurred in an NDT when using
data collected from a real user and the lack of publicly available data for ML training and
testing purposes. Moreover, in a current scenario where communications are increasingly
encrypted, there is a tendency towards a situation where most real data cannot be used
for ML training and NDT tasks because their content cannot be accessed. In this context,
GANs will make it possible to generate synthetic data of sufficient quality to completely
replace real data, improving security and avoiding privacy leakage.

Although recent works [31,32] demonstrate that it is possible to replicate the statistical
distribution of real data features with high quality, future work should investigate new
metrics that can (i) guide the convergence of the GAN during training toward high-fidelity
data generation and (ii) measure data quality not only from a statistical perspective, but
also considering to what extent synthetic data can completely replace real data in different
tasks (e.g., to train ML without using real data). Using these distances, efficient stopping
criteria for GAN training can also be investigated.

To demonstrate the benefits of this idea, in Section 6.2, we describe a use case that
realizes this concept to implement and integrate a DMap in the NDT that provides an envi-
ronment for generating synthetic telemetry data (e.g., VM logs, network traffic connections,
etc.). This environment can be used as a data augmentation technique to increase the data
available for training ML/DL models that are integrated into the network to improve their
generalization and performance. This reduces reliance on real data, which can be expensive
or difficult to obtain. In addition, it allows data to be exported securely to third parties
without compromising the privacy of the data subject. Finally, this environment allows
the creation of traffic models to better understand network behavior without the need to
use real data, which may be susceptible to security issues and/or privacy regulations that
prevent its use for this purpose.
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5.2. Model Optimization

Deep Neural Networks (DNNs) training is often performed on very expensive hard-
ware accelerators that lead to high energy consumption and carbon emissions [33]. This
issue has been a growing concern in the AI community in recent years and has motivated the
development of more efficient algorithms to reduce the environmental impact of ML/DL
models. This set of techniques, which have been commonly referred to as Green AI, aims to
fulfil this promise by reducing the energy required in the training and inference of ML/DL
models. On this line, several Green AI techniques have been proposed, such as NAS,
Quantization, Pruning, Low-rank Factorization (LF), and Knowledge Distillation (KD).

The development of novel Automated ML (AutoML) techniques in the context of
NDTs will provide a mechanism to generate optimized AI and ML components that can be
considered sustainable from an energy consumption point of view (Green AI principles).
For example, to generate compact ML-based attack detectors to be deployed in resource-
limited edge nodes.

Recently there has been an explosion of research interest in AutoML, with special
attention on Neural Architecture Search (NAS) [34] that aims to generate a compact but
robust and well-performing neural architecture by selecting and combining different ba-
sic components from a predefined search space. Furthermore, Google Brain introduced
AutoML-Zero, an evolutionary meta-algorithm that generates a wide variety of compact
machine learning algorithms for data classification [35]. This algorithm overcomes a well-
known limitation of NAS, which greatly restricts its search algorithm (by selecting only
neural networks).

Nevertheless, the application of this technology is still in its infancy and several open
problems [36,37] might limit its adoption in NDTs: (i) the majority of the techniques have
been developed for computer vision and natural language tasks, (ii) it is not possible to
interpret why an AutoML-generated model is better than its human-generated counterpart,
(iii) robustness against adversarial data that can fool the model, and (iv) the lack of a com-
plete AutoML pipeline to integrate these techniques in current ML development pipelines.

In addition to AutoML, another effective approach to realize Green AI is to use algo-
rithms that allow for more power efficient ML/DL model development and deployment,
either reducing the number of computations required for model training, compressing
model representations using more efficient data structures, or finding ways to reuse com-
putations. On this line, Pruning is a technique to reduce the size of a DNN by removing
unnecessary weights [38]. Pruning can be performed manually (using a manually designed
heuristic approach to remove unnecessary weights) [39] or automatically (using algorithms
to automatically remove unnecessary weights from a DNN) [38] or a combination of
both [40].

Moreover, Quantization is a technique that allows for DNN models to be trained with
lower precision, which can lead to improved efficiency [41]. Stochastic Quantization has
been successfully applied to convert gradients to lower bit width representations during
the backward pass; this enables the use of bit convolution kernels during the backward and
forward passes, which further accelerates training times and speeds up inference times [42].
In addition, Quantization has also been applied in the form of a differentiable non-linear
activation function to reduce training times [43]. In this way, the Quantization is learned in
a lossless and end-to-end fashion during the training. This method is suitable for arbitrary
bit width Quantization and can be applied to both weights and activations of the DNN.

On the other hand, LF is a technique for representing a matrix with a smaller number
of parameters. This can be conducted by decomposing the matrix into a product of two
lower-rank matrices. Taking advantage of this concept, LF has been applied to reduce
weight matrices that represent ML/DL model parameters [44]. LF has also been applied
to training dataset compression [45,46]. In NN, the number of neurons in the input layer
depends on the size of the feature space. Reducing the dimensionality of the feature space,
the size of the DNN is also reduced. To achieve this reduction in dimensionality, input
data in the form of matrices are factorized into low-rank matrices to adjust to the hardware
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characteristics in an automated fashion. In this way, both the in-memory size of the DNN
and the inference time are reduced, while the accuracy is preserved.

On the other hand, KD is a technique for transferring the knowledge learned by a
large DNN into a smaller one. This can be conducted by training the smaller DNN to mimic
the predictions of the larger one [47]. KD, which was first introduced by [48], has been
successfully applied to compress large transformer models such as BERT (distilBERT) [49].

Prior to ML/DL model optimization, it is imperative to first establish accurate methods
to estimate the energy cost associated with training or inference tasks. Several studies
have focused on optimizing ML-specific models by adopting general estimation models
that characterize energy consumption (either at the software or hardware level) to the
ML domain.

In the use case shown in Section 6.2, we apply these techniques to automatically search
for an optimal model configuration from an energy consumption perspective. Specifically,
we propose to introduce the energy consumption factor of the model during the NAS
procedure. For this purpose, we propose to design a model that allows estimating the
energy consumption of each model during the inference operations. Thus, by introducing
this variable in the NAS procedure, it is possible to automatically find DNN architectures
that satisfy arbitrary metrics that jointly consider model performance and energy efficiency.
Furthermore, in the presented use case, the application of Quantization, Prunning, LF, or
KD techniques is also possible in order to compress the model representation with the
ultimate goal of reducing its memory footprint and power consumption while minimizing
accuracy loss.

5.3. Model Robustness: Resilient and Explainable AI

To achieve a robustness-by-design approach to build safe and reliable ML/DL models
for production-ready applications that we described in Section 4.1, in this section, we
present the concept of explainable AI, which encompasses a series of methods to achieve
interpretable models or post-hoc explanations that ensure transparency and accountability
of the system in its decision-making process. Furthermore, we describe some of the ML
resilience libraries and toolboxes that have been proposed in the literature to secure ML
models against adversarial attacks and how they can be applied to B5GEMINI to achieve
robust ML models.

5.3.1. Resilient ML

Recent findings have demonstrated that ML models, DNNs in particular, are vul-
nerable to malicious inputs, called adversarial examples, that are modified to spoof the
ML algorithms and cause them to yield erroneous outputs [50]. Therefore, it is crucial
that resilience to these sophisticated attacks is added to ML algorithms to minimize the
current resistance to the adoption of ML components in industrial environments. For this
purpose, B5GEMINI will integrate existing adversarial libraries and toolboxes (e.g., Clever-
Hans [51], DeepRobust [52], Adversarial Robustness Toolbox [53]) to provide resilience to
ML components within the NDT.

Nevertheless, the existing defense mechanisms are limited because robustness against
specific attacks needs to be provided in specific settings. The design of a robust machine
learning model against all types of adversarial examples is still an open research problem.

5.3.2. Explainable ML

Another key aspect of network operation is the necessity to understand the intentions
and guarantees of the applied policies and the possibility to extract knowledge about failure
cases when they occur. For this reason, network policy explainability also needs to be
considered in order to help with stakeholder buy-in for real-world applications. Moreover,
the ML model interpretability is of extreme significance to explain the results obtained from
the envisioned models and help to distinguish adversarial from legitimate inputs.

Several state-of-the-art solutions have been proposed to achieve explainability in ML:
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1. Local Interpretable Model-agnostic Explanations (LIME): is a technique proposed
by Ribeiro et al. to provide local explanations to the predictions made by black-box
models [54]. This is performed by approximating the model prediction with a simpler
surrogate model that behaves in a way that is easier to interpret. This technique has
proven effective for a variety of ML models, including DNN.

2. Shapley Values: is a technique that can be used to explain the contribution of each
individual input to the final prediction of a ML model [55]. They were first proposed
by Lloyd Shapley in 1953 as a way of calculating the contribution of each player to
the success of a game [56]. In this way, Shapley Values can be used to calculate the
contribution of each input to the prediction of a ML model, as well as the contribution
of each layer in a DNN.

3. Partial Dependency Plots (PDG): is a technique, first proposed by Friedman et al.
in 1990 [57], that can be used to visualize the relationship between the inputs and
output of a ML model. PDP can be used to visualize the impact of each input on the
prediction of a ML model, as well as the impact of the interactions between inputs.
PDP has been later extended by the technique of Individual Conditional Expectation
(ICE), proposed by Goldstein et al. [58].

However, what all these methods have in common is that they are computationally ex-
pensive and are not applicable to all models. Explainability remains as a difficult challenge,
severely compounded by the need for these algorithms to also be accurate and unbiased.
Overall, this is an exciting area of research that will undoubtedly receive increased attention
in the coming years.

5.4. Novel Deep Learning Architectures

Graph Neural Networks (GNN) are neural network architectures able to process
graphs as inputs to produce useful embeddings exploiting the concept of message passing
between nodes in the graph [59]. GNNs have yielded groundbreaking results in many
fields where data is fundamentally structured as graphs, such as the field of communication
networks, where this innovative type of neural networks is deemed as a key technology
to model complex graphs (e.g., traffic routing optimization, resource allocation, anomaly
detection). Due to their unique capabilities over traditional neural networks, we envision
GNN as a key player in the construction of NDT for communication network modeling.
Several studies have demonstrated that GNNs are able to remain robust to changes in
network topology, routing policies and traffic distribution [60], a key advantage over alter-
natives such as traditional neural networks (e.g., recurrent neural networks, convolutional
neural networks, variational autoencoders) or Deep Reinforcement Learning techniques
that are severely deprived of this capacity [61]. However, GNNs present a limiting factor
due to weak scalability, which inevitably must come as a trade-off that sacrifices graph
completeness, either losing node neighbors when using a graph sample strategy or struc-
tural information when opting for a graph clustering method [59], ultimately resulting in
lower performance in either form. On the other hand, in convolutional graph networks
(GCN), one of the most successful GNN architectures, the graph convolution operation
can be interpreted as a Laplacian smoothing. It has been demonstrated that repeated
application of Laplacian smoothing on the same graph leads to the convergence of all
node embeddings to the same value [62]. This result leads to the conclusion that stacking
multiple convolutional layers will not always result in a more powerful model; in fact,
it has been demonstrated that the performance of GCNs significantly decreases as more
layers are added [62]. This finding makes scalability of GNNs an even more concerning
problem. For the above reasons, we consider this issue as the most important challenge to
be solved for the adoption of building NDTs.

In the field of communication networks, DRL has recently received more attention
because it is emerging as a natural candidate to effectively address various problems and
challenges intrinsic of this domain. Network devices need to make autonomous decisions
to achieve different objectives or meet QoS requirements. Most of the decision-making
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problems in network optimization scenarios can be formulated using Markov Decision
Processes (MDP). Reinforcement Learning (RL) techniques have been widely adopted to
solve MDP problems [63]. However, RL techniques are not always applicable, especially
when the problem is too complex, or the state and action spaces are too large. Deep
Reinforcement Learning (DRL) has been demonstrated to be promising in these cases. DRL
is a subfield of RL that uses DL techniques to allow machines to learn how to achieve a
certain goal by trial and error, without the need of labeled data. More precisely, a DRL
agent is trained by interacting with an environment, and the environment returns a state
and a reward after each action. The first phase of the training process is composed of two
main parts: first, the DRL agent collects all the states and rewards from the environment,
and second, the DRL agent’s past experiences are used to train the weights of a Deep
Neural Network (DNN) in a supervised manner. Similar to GNNs, DRL-based algorithms
often suffer from poor scalability. The reason is that, as stated above, the DRL agent
learns from sequential interactions with the environment. For that reason, when DRL is
applied to large networks or complex optimization problems when the interaction with the
environment occurs slowly, the problem becomes computationally expensive. Solutions
have been proposed to accelerate the DNN weight update stage using Evolution Strategies
(ES) [64]. Nonetheless, solutions to accelerate the interaction with the environment remain
unclear. Some proposals, such as Distributed RL or asynchronous methods, try to reduce
the number of interactions between the agent and the environment in order to speed up
the learning process, but the problem with these approaches is that the agent might not
learn as efficiently as with a more traditional synchronous approach.

From a more pragmatic perspective, we describe below some interesting use cases of
GNN in the networking landscape, which can be leveraged to facilitate the deployment and
management of 5G and beyond networks. To being with, some proposals have focused on
modeling complex topological relationships that allow for generating useful representations
to predict latency parameters such as delay, jitter, and packet loss for the different potential
routes that can be considered in the transmission of data from one node of the network to
another [60,65]. The objective is to use this information to apply an optimization process
that allows for the automatic planning of the routing of traffic in a network considering
the different qualities of the service. Furthermore, this technology can also be applied to
find the optimal links that should be placed between the different nodes of the network to
reduce those latency and loss metrics.

In addition, one study has used a combination of RDL and GNN to predict the optimal
policy for the placement of VNFs in a dynamic network topology (i.e., nodes and links
that can appear and disappear at any time), based on the resources required by the VNFs
(e.g., memory and CPU) and certain QoS constraints (e.g., latency, bandwidth, packet loss,
etc.) imposed for each packet flow [66]. In this context, due to the intrinsic dependence on
the specific network structure of RDL-based methods, the incorporation of GNN helps to
achieve generalization across network topologies, which is crucial to address the dynamic
and heterogenous nature of 5G and beyond networks.

On the other hand, another study proposed to use a Spatio-Temporal Graph Convolu-
tional Network (ST-GCN) over the data plane of an SDN to map the network into a graph
structure [67]. In this way, the ST-GCN can learn from certain features of the packet flows
to generate a network representation that is fed to a DNN to obtain a classification by flow
(normal or attack). The method can also provide information about the path that DDoS
attacks follow through the network, facilitating DDoS mitigation.

In another study, a GCN with Gated Recurrent Unit (GRU) cells was used to predict
the state of links in a network [68]. In particular, the GCN was used to learn features of the
network topology, while the GRU was used to model the temporal dependencies between
link states. The model was trained with a dataset of link state characteristics (bandwidth,
delay, and packet loss rate) and was able to predict the state of links in the network with
lower error rates than other state-of-the-art methods such as LSTM-based models.
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Finally, the deployment and chaining of VNFs is a highly complex problem that can
be formulated as a graph optimization problem. Some studies have proposed using a
GNN to model the problem as a graph and find the optimal deployment of VNFs and the
optimal sequence of VNFs for a given service request chain (SRC), while also considering
the energy consumption of VNFs in the problem formulation [69–73]. In fact, the complex
management and orchestration processes involved in 5G/6G networks are susceptible to
being represented as graphs, opening up the possibility of applying GNNs to provide a
high degree of intelligence to automate these processes.

5.5. Uncertainty Estimation

In a general sense, Neural Networks (NN) decisions are inherently unreliable because
they lack expressiveness and transparency. A NN is a stack of continuous geometric
transformations that are learned to map one vector space into another to minimize some
objective functions. In simple terms, a NN cannot understand or resonate about the content
of the data being trained on, which leads to their inability to explain its decisions, as well
as their sensitivity to small changes in the data distribution, making it difficult to rely
on their predictions. Additionally, NN are often overconfident in their predictions and
vulnerable to adversarial attacks [74]. To address network problems, reliable solutions are
a fundamental need for network operators, as they can have a significant impact on service
quality and customer satisfaction. There have been some proposals based on ensembling
and Bayesian learning to endow this capacity to NN. Using these techniques, probabilistic
confidence values can be associated with the NN output. In this way, the reliability of NN
predictions can be estimated to provide end users with more realistic decision making. A
comprehensive review of these methods is provided by Gawlikowski et al. [74].

5.6. Intent-Based Networking

Intent-based networking is an approach to network operation that focuses on user
intent rather than network details. In an intent-based network (IBN), operators can define
the desired objectives or outcomes in a declarative manner and then rely on the network
to automatically provision all the required resources and configure itself to achieve those
objectives, ideally, in an optimal manner. This contrasts with the more traditional approach
of configuring a network by manually specifying all the required configuration parameters.

Intent-based networking is particularly well suited to manage large, complex net-
works because it greatly simplifies operation tasks by automating highly specialized and
time-consuming processes such as network configuration and troubleshooting, ultimately
reducing the time and resources required to manage the network and making it easier and
quicker to deploy new applications. In addition, by reducing manual interactions with the
network, IBNs can also help reduce the risk of human error. IBN is also a valuable tool for
NDT management, as the same advantages can be transferred to this environment, where
the need for manual setup and maintenance is greatly reduced, and operational efficiency
is increased.

Software-Defined Networking (SDN) and Network Function Virtualization (NFV) are
two key enablers of IBN. NFV and SDN are complementary technologies that are often used
together to provide a more complete IBN solution. NFV decouples network functions from
dedicated hardware devices, allowing them to be run on standard server hardware. This
greatly increases the flexibility of the network, as different functions can be quickly and
easily deployed, reconfigured, or upgraded as needed. SDN, on the other hand, provides a
centralized control plane that can be used to manage and configure the network. Together,
NFV and SDN allow for the creation of virtualized networks that are much more flexible
and easier to manage than traditional networks [75].

IBNs are based on the principle that guides Infrastructure as Code (IaC). In this context,
the network is treated as a software system, and is configured and managed by code. Driven
by this conceptual analogy, one approach to achieve an intent-based network is to create a
Domain Specific Language (DSL) to formally specify network policies. This DSL can be
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used to define the appropriate configuration of network devices and traffic routes. This
configuration, often referred to as a “policy” in this context, is defined as a sequence of
actions to be performed on the network, which can be formulated as a Markov Decision
Process (MDP).

There are still some challenges to be solved before IBN can be fully realized. Chief
among them is the need for more intelligent algorithms that can automatically and reliably
translate high-level user intentions into a low-level network configuration policy that copes
with the ambiguities and lack of proper context that human language often presents. In
addition, these algorithms must take into account the subtle conflicts and incompatibilities
in the execution of each user intent and be able to automatically resolve them or suggest a
possible resolution to the network operator [76]. Currently, there is no clear consensus on
how to solve these problems in a scalable and efficient manner. For this reason, although
IBNs have been widely recognized as a promising paradigm for future network operation,
the lack of efficient methods for policy inference limits their applicability. Further research
is needed to enable the widespread adoption of this concept.

6. B5GEMINI Use Cases

In this section, we describe two use cases to demonstrate the advantages of using the
proposed NDT architecture. In the first use case, we propose to develop security capabilities
that help detect malicious elements in the real network in order to prevent or mitigate
potential cyber-attacks in a 5G cloud infrastructure. In the second use case, we propose the
realization of energy optimization mechanisms for NDT integrated AI components that
can be seamlessly deployed in the real network in a secure and reliable manner.

6.1. Cyber-Attack Use Cases on Cloud 5G Infrastructure

One of the most relevant issues in 5G and beyond is security. The evolution towards
distributed solutions in the cloud, with multiple providers and hyperscalers, can represent
a handicap at the security level for future 5G services, since the network operators will not
have absolute control of the infrastructure. Analyzing the capacities and performance of
AI-based solutions to address attacks to the cloud environments represents an interesting
topic. Using an NDT with 5G functionalities, based on NFV and cloud architectures, allows
one to introduce attacks in the virtual environment without causing harmful situations
on the physical system and related 5G services. In this way, this approach serves as a
foundation to enable advanced AI-based solutions.

On this basis, some cybersecurity attacks are proposed with an NDT 5G cloud envi-
ronment with generalized encryption (at signaling and data plane levels). A first case to be
evaluated in the NDT is an attack on the illegal consumption of resources due to the pres-
ence of malware. The cryptomining variant of malware (intensive use of CPU and memory
resources for cryptocurrency mining) is a lucrative criminal activity today, impacting the
performance and cost of certain cloud services. Analyzing and classifying the traffic that
is generated, with AI models in an NDT environment, allows the creation and evaluation
of tools to block this activity. Another case is the attack to the DNS, a critical service in
5G cloud infrastructure. Today, there is a progressive adoption of DoH protocol (RFC
8484), with a secure HTTPS layer for DNS resolution to increase user privacy. Precisely, the
activation of this protocol variant in an NDT opens the possibility to study how flooding or
other attacks variants affects the cloud infrastructure and provides a mechanism to detect
the attack using AI.

In terms of Cloud 5G solutions deployment, we can consider several scenarios: na-
tive cloud, on-premises, or hybrid solutions (i.e., on-premises but integrated into cloud
management to address regulatory aspects). In relation to the two-way communication
capabilities that an NDT provides, and the information exchanged between the two parties
(the NDT and the physical system), it should be noted that management systems support
templates to automate deployments and simplify replications. These templates can be
used as the automatic system input feed to the NDT (Section 3.3.1) for initial deployments
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of the NDT, on a reduced scale. For example, the 5G component, such AMF or UPF, can
be deployed with few resources to manage reduced user traffic volume. Additionally,
hyperscalers and on-premise setups have the capacity to deliver rich information based on
supported API, including telemetry information (activity loads, traffic volume, etc.). This
information can be understood as part of P2V pipeline input (Section 3.3.4), which will
enrich the NDT behavior, such as statistical traffic profiles and behavioral patterns for the
traffic generation (Section 3.3.5) and combine with cryptomining and DoH-related attacks.
The NDT results will provide a customized AL/ML output (Section 3.3.6) to deploy again
using the P2V channel.

Nothing limits a dynamic interaction between real Cloud 5G Core and its NDT over
time to improve the ML detection. This is possible because most of the workload falls on
the side of the NDT (rebalance traffics generation types, attacks patterns, and re-train ML
models), and avoids affections to production networks loads and costs that are focused on
providing the 5G service. One potential advantage in the cybersecurity case for NDT is
that we can limit the P2V data feed to only one direction of communication (from the real
network to the NDT). The other direction feed (ML model updates), which implies changes
in the production cloud, can be performed through the secured pre-existing management
channels (i.e., through the provisioning system). This is also relevant when NDT evaluates
different technicalities in the types of attacks selected (e.g., use DoH for data extra filtration,
for malware control channel communication, or to launch packet flooding) because there is
no risk to impacting the production network or rendering it inaccessible.

6.2. Digital Maps for Energy Optimization of Network AI Components’ Use Case

To demonstrate the advantages provided by the architecture proposed in Section 4.3,
we present a use case for energy optimization that builds on the DMap concept to optimize
the energy consumption of an NDT system by managing its resources. The need for energy
consumption has been increasing in communication networks, as they have become more
sophisticated and widespread over the years. To cope with the high energy demand,
network providers must be able to manage their energy resources more efficiently. ML has
proven to be a valuable tool to achieve this goal [77]. The same can be applied to an NDT
scenario by using ML methods to optimize the energy usage of the grid by predicting when
and where energy usage is highest. In this way, the network can be reconfigured to reduce
energy consumption in those specific areas. In this regard, considering that AI components
play an increasingly important role in current networks assisting other components in
complex decision processes, it can be interesting to use an NDT to optimize their training
and inference processes to optimize the energy consumption of the network. In this context,
these optimizations can be applied first in the NDT and then seamlessly reproduced on
the physical system after validation. With this innovative approach, optimizations can be
performed in a more controlled and safer way.

In particular, this use case will illustrate how a physical network can be easily attached
to a DMap that will support the optimization of the power consumption of the AI compo-
nents of the network in a controlled manner. In addition, this use case will consider the
implementation of a complementary DMap for the generation of synthetic data that can be
used during training processes to boost the performance of ML components in the NDT or
for exporting such synthetic data to be used by third parties without creating any privacy
breach. We schematically represent the described use case in Figure 7.

We will develop EnOp, a DMap responsible for the energy optimization of the AI
components integrated in the real network. The EnOp DMap will be obtained incorporating
an Energy Optimization Component (EOC) in the minimal NDT architecture. The EOC
component will allow one to optimize ML/DL models in order to reduce their power
consumption in their training procedure and in downstream inference tasks over the
network. The EOC component will be composed of an energy estimation model and
an upgradeable collection of algorithms for optimizing ML/DL models. The energy
estimation model will be in charge of defining the energy consumption of the ML/DL
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models, which can be conducted either by measurements on real hardware or using
simulated environments [78]. Based on this power state, several algorithms can be applied
to optimize the ML/DL components to adjust the power consumption of the network with
minimal impact on its performance. In particular, we consider introducing the energy
dimension in the automatic search of efficient DNN architectures using NAS. In addition,
other techniques such as Quantization, Pruning, Low-rank Factorization, or Knowledge
Distillations techniques can be also applied to compact the ML/DL models in order to
decrease their memory footprint and accelerate training and inference task.
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In addition, this use case proposes Gen, a complementary DMap for the generation of
synthetic telemetry data (e.g., VM logs, network traffic connections, etc.). The Gen DMap
will allow one to generate synthetic data that statistically replicate data of the real system
with high fidelity. The synthetic data in combination with the real data can be highly
beneficial for the training of ML/DL models because it can serve as a data augmentation
technique to improve the performance of these models. Furthermore, the Gen DMap can
provide a safe way to export data to third parties involved in cross developments without
violating the privacy of data or incurring data breaches. Finally, the synthetic data could be
also used to build realistic traffic models for a better understanding of the physical twin
behavior in different scenarios without compromising user privacy.

The creation of a DMap that serves as a data source for the ML/DL model training
and behavior modeling tasks is a promising way to circumvent the current obstacles to data
processing and exploitation in real networks. It provides a network-aware and privacy-
preserving data collection and management system that is critical to the proper operation
of the AI/ML models. More importantly, the proposed solution is also easily scalable and
portable, as it can be deployed in any NDT-ready network in a plug-and-play manner.

7. Conclusions

This article has presented B5GEMINI, an NDT for B5G networks that has the potential
to serve as a platform for developing and deploying innovative intelligence-driven network
applications, and we have also discussed the key role of AI in the construction, deployment,
and operation of it.

Current NDT proposals apply AI to optimize network management and orchestration
processes in a controlled scenario that replicates the real network without compromising
its performance and security. B5GEMINI goes one step further, focusing on the design,
training, and testing of the AI components deployed in a real network. In addition to
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these two scenarios, distributed training and inference on demand, ML as a service and
educational applications such as cyber-ranges can benefit from B5GEMNI capabilities.

To effectively enable all these scenarios in a realistic NDT, we have proposed B5GEMINI
as an approach for a modular and scalable NDT system that uses DMaps, a novel design
abstraction based on the recently appeared Digital Map concept. The introduction of the
Digital Maps in the NDT architecture is fundamental to allow an iterative and incremental
development of the same, avoiding a building-from-scratch approach and allowing the
integration of new functionalities in a continuous and evolutionary way, which reduces the
risk of errors in the planning process and optimizes the investment of resources throughout
the development life cycle.

We have described the architecture of our system and presented all the interconnected
modules that comprise it, spanning from the infrastructure level to the AI applications. The
5G core functionalities were integrated in B5GEMINI, adapting some of the NFs available
in the free5GC project. Importantly, the proposed architecture has been designed to enable
a plug-and-play experience that allows fast and seamless connection of NDTs with existing
and new networks. We call this feature NDT-ready and it consists of verifying that a real
network is compatible with standard NDT interfaces, thus ensuring interoperability with
NDTs. In this regard, we have proposed, as future work, to promote the standardization
of the interfaces of the hardware and software components that comprise the described
architecture to guarantee interoperability between the NDT and the physical networks and
thus allow for easier and wider adoption of this technology by the networking industry.

Furthermore, we have detailed the main components that will be part of the AI
ecosystem in B5GEMINI. Synthetic data generation, model optimization, and robustness, to
name a few, are some of the key components that will enable the implementation of privacy-
aware, efficient, reliable, and scalable AI-based solutions for end-to-end management
of B5G networks in a safe and controlled manner. We envision that the described AI
components present great potential to shape the NDT landscape in the near future.

Finally, we have described two prominent use cases that highlight the capabilities of
B5GEMINI and demonstrate the advantages it offers over traditional network approaches.
In the use cases presented, AI components play a key role in enabling the efficient use
of network resources and improving network performance, while reducing operational
costs. In particular, we have applied some of the described AI components to solve
specific problems within the NDT in a safe and controlled manner without compromising
the security and performance of the real network. The first use case is related to the
cybersecurity domain and focuses on the training and testing of ML-based cryptomining
attack detectors. The second use case proposes the application of B5GEMINI to solve the
energy optimization problem of ML/DL models deployed in the real network by leveraging
the DMap concept to implement this functionality in a modular fashion over the proposed
architecture, which lays the foundation to incrementally deploy additional layers to design
and integrate custom AI-based applications to solve further specific use cases in the future.
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