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Abstract: Recently, intelligent IoT applications based on artificial intelligence (AI) have been de-
ployed with mobile edge computing (MEC). Intelligent IoT applications demand more computing
resources and lower service latencies for AI tasks in dynamic MEC environments. Thus, in this paper,
considering the resource scalability and resource optimization of edge computing, an intelligent task
dispatching model using a deep Q-network, which can efficiently use the computing resource of edge
nodes is proposed to maximize the computation ability of the cluster edge system, which consists of
multiple edge nodes. The cluster edge system can be implemented with the Kubernetes technology.
The objective of the proposed model is to minimize the average response time of tasks offloaded to
the edge computing system and optimize the resource allocation for computing the offloaded tasks.
For this, we first formulate the optimization problem of resource allocation as a Markov decision
process (MDP) and adopt a deep reinforcement learning technology to solve this problem. Thus,
the proposed intelligent task dispatching model is designed based on a deep Q-network (DQN)
algorithm to update the task dispatching policy. The simulation results show that the proposed model
archives a better convergence performanc in terms of the average completion time of all offloaded
tasks, than existing task dispatching methods, such as the Random Method, Least Load Method
and Round-Robin Method, and has a better task completion rate than the existing task dispatching
method when using the same resources as the cluster edge system.

Keywords: edge computing; task offloading; deep reinforcement learning; clustering

1. Introduction

Recently, massive computing resource-consuming and delay-sensitive-based diverse
IoT applications have been emerging. These applications are deployed with a computation
offloading scheme, which offloads the tasks to an edge with enough computing resources.
In addition, these applications demand more computing resources. Thus, some solutions
are emerging that can flexibly use computing resources in edge computing [1–3]. Solutions
based on mobile edge computing (MEC) [4,5] or fog computing [6] deploy IoT services
with computation offloading at the edge networks. These solutions can obtain a better
quality of service (QoS), such as a fast task response time for computation-intensive and
latency-sensitive IoT applications such as augmented reality, virtual reality, and object
detection [7,8]. To strictly satisfy the quality of service requested by IoT applications, a
feasible solution is proposed to offload part of the tasks to the remote cloud for collab-
orative processing and return the task results to the edge computing server. Although
the cloud provides enough computing resources, the offloading tasks sent to the cloud
would suffer unpredictable delays due to network congestion, fail to meet the task re-
sponse time deadline required by a task and degrade the quality of service. Thus, to
overcome these shortcomings, solutions using collaborative resource allocation in a dis-
tributed computing manner between the edge computing server and the cloud have been
proposed [9–13]. Using the task scheduling method for collaborative resource allocation
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between the edge computing server and the cloud is more challenging for several reasons.
First, the link transmission delay is stochastic due to the dynamic network conditions
between the edge server and the cloud. Second, response times are different depending
on the available resources. Lastly, the task arrival rate, task size, and task return time
requirement are different for diverse IoT applications, making task-scheduling to ensure
the optimal collaborative manner between the edge computing server and the cloud more
challenging [12].

In addition, it is necessary to consider the resource scalability of edge computing.
Recently, more research has adopted Kubernetes technology for the resource scalability
of edge computing [14–16]. Kubernetes is an open-source platform which is optimized to
configure the infrastructures to deploy the cluster-based edge system due to its inherent
portability and scalability [14]. It also enables the automated deployment, scaling, and man-
agement of containerized applications. It is based on a master–worker architecture, where a
kubelet is used as the communication interface between the master and workers [15]. When
deploying a private cloud and cluster-based edge system in several industry domains, the
Kubernetes technique is used to increase the resource scalability [16,17].

In this paper, we use a network model based on the cluster edge system implemented
with the clustering technique [14]. Compared with the existing non-cluster edge system
with resource scalability limitations, the cluster edge system implemented based on the
Kubernetes technology has the advantage of being able to flexibly use the computing
resources of the cluster edge system by adding the number of edge nodes within a cluster.
However, at present, the resource allocation policy used for the offloaded tasks at the cluster
edge system has used traditional resource allocation policies such as the random-based
policy, least-load-based policy, and the round-robin-based policy. These traditional resource
allocation polices cannot ensure quality of service, such as the task response time demanded
from IoT applications in dynamic MEC environments. Thus, in our work, we focus on
the optimization problem of resource allocation to maximize computation capabilities in
the cluster edge system and propose an optimal resource allocation policy considering
the resource scalability and resource optimization in a cluster edge system. Specifically,
we aim to address how to estimate the load status of edge nodes in the cluster edge in
the dynamic environment and find the edge node that can ensure the demanded quality
of service without overload and congestion for task dispatching to minimize the average
response time of computation tasks offloaded to the edge computing system and allocate
optimal resources to compute offloaded tasks. To achieve these objectives, we propose
an intelligence task dispatching method using the deep Q-network, which can efficiently
use the computing resources in the cluster edge system. The goal of the proposed method
is to minimize the average task response time through minimizing the completion time
of tasks offloaded to the cluster edge system and achieve a high task completion rate by
allocating the optimal resources. We first formulated the optimization problem of resource
allocation as a Markov decision process (MDP), which is an effective approach to model the
sequential decision-making problem, and then, for the MDP-based optimization problem, a
deep Q-network (DQN) algorithm is proposed as the reinforcement learning (RL) learning
technology to find the optimal policy in the proposed edge network.

In this paper, we investigate the collaborative computing resource allocation problem
with the objective of minimizing the average task service delay and maintaining fairness
and efficiency in terms of the utility of computing resources in the cluster edge. The main
contributions of this paper are summarized as follows:

1. The cluster edge system is investigated using the clustering technique. Compared
with the existing non-cluster edge system with the limitations of resource scalability,
the cluster edge system has the advantage of being able to flexibly use the computing
resources of the cluster edge system by joining the number of edge nodes within a
cluster.

2. The optimization problem related to the resource allocation policy for the cluster
edge system is formulated. The aim is to optimize the resource allocation policy
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considering the resource scalability and resource optimization in a cluster edge system.
The formulated problem is based on the Markov decision process (MDP), which is
solved by our proposed deep Q-network (DQN) optimization algorithm.

3. A deep Q-network (DQN)-based intelligent task dispatching method is proposed.
To evaluate the proposed model, a mathematical model-based simulator is devel-
oped. The simulations for a performance evaluation are to validate the mathematical
formulation and the DQN based algorithm for task dispatching. Simulation results
show that the proposed method can achieve the optimal performance for average task
service delays and average task completion rate in terms of the utility of computing
resources in the cluster edge system.

The rest of the paper is organized as follows. Section 2 presents the related works and
Section 3 provides the system model and problem statement. Section 4 proposes a solution
for the problem and an intelligent task dispatching method using a deep Q-network (DQN)
algorithm. In Section 5, the performance evaluation of the proposed method is presented.
Finally, this paper is concluded in Section 6.

2. Related Work

Recently, there have been several studies regarding resource allocation schemes that
adopted a deep reinforcement learning algorithm in an edge computing environment [9–13,18].
In [9], assuming that there are mobile edge computing networks (MECNs) consisting of
multiple access points; multi-edge servers; and N mobile nodes, where each mobile node
has M independent, real-time massive tasks; a reinforcement-learning-based state-action-
reward-state-action (RL-SARSA) algorithm is proposed to resolve the resource management
problem and make the optimal offloading decision to minimize system costs, including
energy consumption and computing time delays. In [10], a deep reinforcement learn-
ing algorithm is proposed to solve the collaborative computation offloading problem in
the heterogeneous edge computing environment. In [11], an improved deep Q-network
(DQN)-algorithm-based resource allocation policy is proposed for the IoT edge computing
system to improve the efficiency of resource utilization and minimize the task completion
delay. The proposed method formulates the resource allocation problem as the MDP and
proposes an improved DQN algorithm to learn the resource allocation policy, which can
use multiple replay memories. In [12], an intelligent resource allocation framework (iRAF)
is proposed to support massive resource-consuming and delay-sensitive IoT services in
edge computing. The Monte Carlo tree search (MCTS)-algorithm-based iRAF automatically
learns the dynamic network environment and generates resource allocation decisions to
maximize the performance over service delay and power consumption in the collabora-
tive mobile edge computing network. In [13], an intelligent task scheduling framework
focusing on heterogeneous VM resource allocation is proposed in IoT edge computing
environments, where to solve the task scheduling problem, a policy-based reinforce algo-
rithm is adopted. In [18], a distributed task migration algorithm based on counterfactual
multi-agent reinforcement learning is proposed for task migration optimization in MEC.
Specifically, the proposed algorithm in [18] can facilitate cooperation among users with low
computational complexity. In [19], the IoT devices’ offloading decision method is proposed
to solve CPU frequencies and transmit powers’ joint optimization problem for an MEC
environment. The proposed method uses a mixed integer nonlinear program (MINLP)
algorithm to minimize the sum of the computing pressure on the primary MEC server, the
sum of the energy consumption of the network, and the task dropping cost. In addition, the
DRL-based optimization algorithm is developed to solve the nonconvex problem. In [20], a
DRL-based dynamic resource management scheme is proposed to minimize the average
service delay of the offloaded tasks in an industrial IoT MEC network. In [21], a DRL-based
resource allocation method for computation offloading is proposed to minimize the energy
consumption of the edge system in a device–edge/fog–cloud orchestrated network.

The problem of joint task-aware offloading and scheduling in MEC systems is studied
in [22]. The proposed method formulates the problem as a mixed integer nonlinear program
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(MINLP) to schedule the offloaded co-tasks and minimize the average co-task completion
time. In [23], the standard marine predators algorithm based on an energy-aware and delay-
sensitive taskscheduling scheme is proposed to tackle the task scheduling in edge/fog
computing and improve the QoSs required by IoT devices. In [24], an online algorithm
named Dedas was proposed for the deadline-aware task dispatching and scheduling in
edge computing to improve the number of completed tasks. These schemes were designed
with a mathematical model and optimized through a heuristic algorithm and MINLP.
Although the algorithms proposed in these schemes have a good performance, they are
not adapted to the dynamic environment. In addition, because these schemes assume that
the availability of computing resources is fixed, they are not adapted to the distributed
edge environment which can improve the scalability of edge computing resources. The key
differences between the relevant works and our work are shown in Table 1.

Table 1. Comparison of relevant works.

Work Objective Algorithm Environments

Our work
Average task service delay

and average task completion
rate for cluster edge

DQN Static, Dynamic

[9] Average task service delay
for collaborative edge SARSA Static, Dynamic

[10] Task service delay for
distributed edge DDPG Dynamic

[11] Resource utilization for an
edge DQN Static

[12] Average task service delay
for collaborative edge MCTS Static, Dynamic

[13] Task satisfaction degree for
an edge Q-network Static, Dynamic

[18]
Service Migration
Optimization for

collaborative edge
Multi-Agent DRL Static, Dynamic

[20] Average task service delay
for an edge DRL Dynamic

[21] Energy consumption for an
edge DRL Dynamic

3. System Model and Problem Statement

In this section, we describe the proposed cluster edge computing system model. We
also define the optimization problem of resource allocation for computation offloading ser-
vices, considering the resource scalability and the resource optimization of edge computing.
We first introduce the cluster-based edge computing system and then present the commu-
nication and the computation offloading models. Finally, we formulate the optimization
problem with objective functions. For clarity, the major variables and notations used in our
model are shown in Table 2.
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Table 2. Variables and notations used in our model.

Notation Definition

mi,j The ith MN at the ith BS
ec The edge controller in the cluster edge
en nth edge node in the cluster edge
Ĉ Collaborative core Cloud

Ti,j Task of mi,j offloaded to the cluster edge
tyi,j The type of the task Ti,j
ci,j The number of CPU cycles requested in the single task
ck

i,j The number of CPU cycles requested kth sub-task in the bundle task
si,j The data size of the single task
sk

i,j The data size of kth sub-task in the bundle task
di,j the task’s result deadline in the task required by mi,j
Ri,j The wireless link bandwidth between ith MN and ith BS
pC

i,j The transmit power of mi,j

hi,j The channel gain of MN and jth BS
Di,j Task service delay of Ti,j

Di,j,k kth sub-task service delay of Ti,j set as the bundle task
Db

i,j Bundle task service delay of Ti,j

Dt
i,j The task transmission delay

Dq
i,j The task queuing delay

Dp
i,j The task computation processing delay

Dqc

i,j
The queuing delay in the task waiting queue of edge controller

Dqe
n

i,j
The queuing delay in the task waiting queue of nth edge node

Pm The computation processing time of mth task
f n The total computing resource of nth edge node

Dqc The queuing delay in edge controller
Dqe

1 ∼ Dqe
n The queuing delay in nth edge node

D̃Ti,j The average task service delay

3.1. Cluster Edge Computing System and Network Model

We consider the network model with the cluster edge system as shown in Figure 1.
We call the cluster edge system the cluster edge e. As shown in Figure 1, the cluster
edge consists of an edge controller (a master) known as ec and N edge nodes (workers)
known as en, which can execute an offloaded computation task. In the cluster edge,
based on the procedures of a computation offloading, the mobile node (MN) requests task
offloading to the cluster edge, and then the edge controller in the cluster edge determines
the appropriate edge node (worker) with the application related to the offloaded task and
sufficient computing resources. The offloaded task is forwarded to the selected edge node
through a scheduler for task dispatching. After the task offloading is performed on the
selected edge node, the edge controller collects and then responds to the task results for the
MN, requesting task offloading. In this paper, we only focus on an edge node selection and
scheduling for task dispatching among all edge nodes in the cluster edge.
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Figure 1. Cluster edge system-based network model.

As shown in Figure 1, we assume the edge-cloud network model in which the cluster
edge is connected to the core Cloud collaborates in computation offloading. In the edge-
cloud network model, the edge controller and N edge nodes are connected through a
fiber switch, and the edge controller is connected to the core cloud through the backbone
network. To support multiple services in the cluster edge, there may be multiple configured
services. In the network model, we assume that there are the ith MN, mi,j connected to
the jth Base Stations (BSs), and each BS serves multiple MNs within a radius. Multiple
MNs offload tasks over wireless to the BSs, and then the BS sends the offloaded tasks to
the cluster edge. After offloading the task at the cluster edge, it will be performed using
a worker within the cluster edge. Then, the result of the offloaded task returns to MNs.
Note that if the total computing resource of the cluster edge is insufficient to perform the
offloaded task, the offloaded task is sent to the core cloud. We use an optical-fiber-based
wired network between the edge controller and edge nodes in the cluster edge and between
the cluster edge and the core cloud. That is why we assume that all the wired links have
sufficient network resource bandwidth in the network model. Thus, in our work, we only
consider the allocation of the wireless communication bandwidth denoted by Ri,j. For tasks
based on AI applications, since the result data size of the offloaded task is much smaller
compared with the data size of the offloaded task, we ignore the downlink bandwidth of
wireless communication between the MNs and the cluster edge. To perform the offloaded
task, the cluster edge stores the data of the offloaded task and then computes and analyzes
the offloaded task. If an edge node in the cluster edge has sufficient computing resources,
such as CPU cycles, it is assumed that each edge node can execute the offloaded task
independently. In this paper, the computational resource needed to perform the task
offloaded by the MN is characterized by the number of CPU cycles per second. Thus,
to optimize the utilization of computing resources in the cluster edge and minimize the
average task response time of all offloaded tasks, an efficient edge node (worker) selection
and scheduling for task dispatching is required for the cluster edge.

3.2. Task Model

In this paper, we consider two types of task model: (1) single task, consisting of an
application running with one micro-service, and (2) the bundle task, which consists of M
independent multi-tasks running with multiple micro-services [25]. Thus, we assume that
the bundle task can be partitioned into sub-tasks by the edge controller, and each sub-task
partitioned from the bundle task can be independently performed through multi-edge
nodes in the cluster edge.
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The task offloaded from the MNs mi,j is expressed as the set Ti,j(tyi,j, Ci,j, Si,j, di,j),
where tyi,j is the type of the task described above, Ci,j is the number of CPU cycles requested
by the MN to perform the task, Si,j is the data size of the task, and di,j is the task’s result
deadline, such as the task response time requested by the MN. Here, if the tyi,j is a single
task, Ci,j and Si,j are defined as the value of one task and if the bundle task, CPU cycles
space, Ci,j, can be given as Ci,j = {c | c = (c1

i,j, c2
i,j, ..., cn

i,j)}, and the sub-task data size space,

Si,j, can be given as Si,j = {s | s = (s1
i,j, s2

i,j, ..., sn
i,j)}, where n is the number of sub-tasks in

the bundle task. The task’s result deadline, di,j, is the most important consideration for
the offloaded task of applications or services subject to strict time deadlines, e.g., virtual
reality and real-time control systems. Additionally, the computational resources needed
to perform Ti,j are characterized by the number of CPU cycles Ci,j. Thus, in the case of a
single task, Ci,j is used as the required computing resource and, in the case of a bundle task,
the total number of CPU cycles required by each sub-task in the bundle task is used as the
required computing resource. Thus, to define the total number of CPU cycles requested by
Ti,j of the bundle task, assuming that the number of sub-tasks is M, the total number of
CPU cycles required for Ti,j of the bundle task is defined as cM

i,j , given by

Ci,j = cM
i,j =

M

∑
n=1

cn
i,j. (1)

The total data size of the bundle task is defined as sM
i,j , given by

Si,j = sM
i,j =

M

∑
n=1

sn
i,j. (2)

As addressed above, in the cluster edge, the bundle tasks are partitioned into sub-tasks
by the edge controller. Thus, the offloaded bundle tasks can be jointly performed through
multiple edge nodes, which have sufficient computing resources in the cluster edge.

3.3. Computation Offloading Model

In this paper, we assume that there is no local processing in the MN for computation
offloading. Thus, in our scenario, there is only remote processing in both the cluster edge
and core cloud. When the MN requests computation offloading with Ti,j to the cluster edge,
according to the computing resources required in Ti,j and the current computing resource
state of the cluster edge, the cluster edge performs the resource allocation procedure used
for the required computation offloading. Here, we propose a DRL-based intelligence
resource allocation model, called an intelligent task dispatch model, to optimally use the
computational resources of n edge nodes in the cluster edge. Figure 2 shows the proposed
intelligent task dispatching model based on the DRL for the cluster edge.

Intelligent Task Dispatching Model for Computation Offloading.

As addressed above, the intelligent task dispatching model is used to select an optimal
edge node (worker) from the all edge nodes in the cluster edge for Ti,j. In the proposed
model, according to the type of the offloaded task, the selecting edge node’s decision is
different. In the case of a single task, either one edge node or the core cloud is selected by
the agent in Figure 2 for computing resource allocation. In the case of the bundle task, the
agent decides on one of three decisions for computing resource allocation. One is that the
agent selects one edge node, which is able to perform all sub-tasks of the bundle task with
sufficient computing resources of more than cM

i,j ; another is that the agent selects multiple
edge nodes, which are able to collaboratively perform each sub-task in the bundle task in
a distributed manner; the other is that the agent selects the core cloud if the computing
resources of the cluster edge are insufficient.
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Figure 2. DRL-based intelligent task dispatching method (DDM) using DQN in the cluster edge.

In this paper, the objective of the proposed model is to minimize the average task
service delay for all tasks. Thus, to define the the average task service delay of all the
offloaded tasks, we first describe the detailed task service delay, Di,j, of each offloaded task,
Ti,j, as the following. Di,j is classified into three parts: the task transmission delay, Dt

i,j; the

task queuing delay, Dq
i,j; and the task computation processing delay, Dp

i,j. Therefore, the

total task service delay is defined by Di,j = Dt
i,j + Dq

i,j + Dp
i,j. To address this in detail, Dt

i,j
represents the transmission delay between the MN and the cluster edge connected through
the BS, Dq

i,j represents the queuing delay before task dispatching, and Dp
i,j represents the

processing delay for task processing. First, to define Dt
i,j, we consider the transmission

time model used in [12]. In [12], assuming that the channel between an MN and the BS is
a Rayleigh channel, the transmission bandwidth between the MN mi,j and jth BS can be
defined as

Ri,j = αB
i,j log2(1 + pC

i,jhi,j/No) (3)

where pC
i,j is the transmission power of mi,j, hi,j is the channel gain, and No is the variance

in complex white Gaussian channel noise. For the analysis simplification, the transmission
rate given by the above equation ignores the burst interference. Then, Dt

i,j from mi,j to the
cluster edge can be defined as

Dt
i,j =

di,j

Ri,j
(4)

where di,j is defined in Ti,j transferred from mi,j.
When the computation offloading requested by Ti,j arrives at the cluster edge, the

cluster edge decides whether to offload the requested task to the core Cloud or to perform
the requested task at the cluster edge based on the computing resource status of the cluster
edge. Therefore, if the cluster edge does not have sufficient computational resources, it will
offload the requested task to a core cloud, and if it has sufficient computational resources,
it must decide on the appropriate edge node among n edge nodes to perform the requested
task. Here, we do not consider the task transmission delay from the cluster edge to the
core cloud because of its very small value as addressed above. To define Dq

i,j, we consider
the queuing model in the framework of the proposed model, described in Figure 2. The
framework is the new DRL-based intelligent task dispatching method (DDM) proposed in
this paper. First, we define Dq

i,j based on this model.
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As shown in Figure 2, the DDM contains two kinds of queues at the cluster edge: task
waiting queue for the task dispatching in the edge controller and task waiting queue for
the task processing in the edge node. In more detail, Dq

i,j can be defined by

Dq
i,j = Dqc

i,j + Dqe
n

i,j . (5)

where Dqc

i,j is the queuing delay in the task waiting queue of the edge controller, and Dqe
n

i,j

is the queuing delay in the task waiting queue of nth edge node. Dqc

i,j is dependent on the
decision processing time that occurs while selecting the edge node for task dispatching by
the agent. Accordingly, Dqc

i,j , after arriving at the task waiting queue of the edge controller,
can be calculated and defined by

Dqc

i,j = avg(DPT)(N) (6)

where DPT is the decision processing time needed to select an edge node for task dis-
patching, and N is the total number of both all single tasks and all sub-tasks of the bundle
task, which is waiting in the waiting queue when Ti,j arrives at the waiting queue of the
edge controller. We used the average decision processing time, avg(DPT), as the decision
processing time. Dqe

n
i,j can be estimated after the agent’s decision to select the edge node for

Ti,j. Thus, after the agent’s decision, Ti,j forwards to the task waiting queue of the selected

edge node. Dqe
n

i,j is dependent on the number of tasks waiting in the waiting queue and total
computation processing time needed to process all tasks in the waiting queue, when Ti,j

arrives at the waiting queue of nth edge node. Thus, Dqe
n

i,j can be defined by

Dqe
n

i,j =
N

∑
m=1

Pm (7)

where N is the total number of tasks, including all single tasks and all sub-tasks of the
bundle task, and Pm is the computation processing time of mth task in the task waiting
queue of nth edge node. To estimate Pm at nth edge node, first, in cases where there is a
single task in the waiting queue, its computation processing delay can be estimated by

Pm =
ci,j,m

αn
i,j f n . (8)

where ci,j is defined in Ti,j, transferred from mi,j, αn
i,j is the ratio of the computing resource

provided by nth edge node to perform Ti,j, and f n is the total computing resource of nth
edge node, which is denoted as the CPU cycles. In the case of the sub-task of the bundle
task in the waiting queue, its computation processing delay can be estimated by

Pm =
ck

i,j,m

αn
i,j f n . (9)

where ck
i,j is defined as the requested computing resource of the kth sub-task in Ti,j, set as

a bundle task. Moreover, assuming that there are total N tasks, which consist of a total
number of single tasks, S, and a total number of sub-tasks, R, in the waiting queue of the
nth edge node, the queuing delay at the nth edge node, as addressed in Equation (7), Dqe

n
i,j ,

can be estimated by

Dqe
n

i,j =
S

∑
m=1

ci,j,m

αn
i,j f n +

R

∑
m=1

ck
i,j,m

αn
i,j f n . (10)
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Finally, to estimate the processing delay for task processing, Dp
i,j for Ti,j can use

Equation (8) for a single task and Equation (9) for the sub-task of a bundle task.
Thus, in the case of a single task, the expected task service delay, Di,j, for Ti,j can be

represented by

Di,j = Dt
i,j + Dq

i,j + Dp
i,j

=
di,j

Ri,j
+ (avg(TD)(N) +

S

∑
m=1

ci,j,m

αn
i,j f n +

R

∑
m=1

ck
i,j,m

αn
i,j f n ) +

ci,j

αn
i,j f n .

(11)

and in the case of a bundle task, the total kth sub-task service delay, Di,j,k can be repre-
sented by

Di,j,k = Dt
i,j,k + Dq

i,j,k + Dp
i,j,k

=
di,j

Ri,j
+ (avg(TD)(N) +

S

∑
m=1

ci,j,m

αn
i,j f n +

R

∑
m=1

ck
i,j,m

αn
i,j f n ) +

ck
i,j

αn
i,j f n .

(12)

Thus, we assume that there are K sub-tasks in the bundle tas,k and a bundle task is
performed in a distributed manner in the cluster edge. The expected bundle task service
delay can be represented by

Db
i,j =

∑K
k=1 Di,j,k

K
(13)

3.4. Optimization Problem Formulation

We formulate the optimization problem to minimize the average task service delay of
all tasks offloaded from MNs. We first formulate the problem of minimizing the average
task service delay D̃Ti,j , as shown in Equation (14). The task service delay is the time taken
to complete the task initiated at time tau within the range of jth BS under the cluster edge.
We assume that the MNs do not experience the channel interference for other BS in a single
BS, and the wireless link bandwidth is equal to R. The wireless link bandwidth is limited
by these constraints.

D̃i,j = min
1

NM

N

∑
i=1

M

∑
j=1

(Di,j + Db
i,j)

= min
1

NM

N

∑
i=1

M

∑
j=1

(
di,j

Ri,j
+ avg(TD)(N) +

S

∑
m=1

ci,j,m

αn
i,j f n +

R

∑
m=1

ck
i,j,m

αn
i,j f n +

ci,j

αn
i,j f n

+
∑K

k=1(
di,j
Ri,j

+ avg(TD)(N) + ∑S
m=1

ci,j,m
αn

i,j f n + ∑R
m=1

ck
i,j,m

αn
i,j f n +

ck
i,j

αn
i,j f n )

K
)

(14)

under the constraints

N

∑
i=1

Ri ≤ R, R ≥ 0, ∀i

4. Drl-Based Task Dispatching Method in the Cluster Edge

In this section, for simplicity, we consider an offloading task with edge applications
deployed on the cluster edge and focus on task dispatching for the resource allocation
to process the tasks generated by the application in MN. Thus, we propose a DRL-based
task dispatching method. The proposed DRL-based task dispatching applies the deep
Q-network (DQN) for policy training, which exploits past experience based on edge node
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selection by estimating the current state of the environment based on the load state of the
edge node, to select the edge node for offloading tasks in the cluster edge. The objective of
our work is to increase task offloading and to reduce the service latency of the processing
of offloaded tasks, which will allow us to improve the utilization of limited resources in
the cluster edge. To fulfill these objectives, we formulate the above problem as a Markov
Decision Process (MDP) as τ = 0, 1, ....., ∞.

4.1. Markov Decision Process

In general, the MDP model contains several elements: agent, state, action, policy, and
reword. In our intelligent task dispatching model, the agent has the role of interacting
with an environment, which is known as a state. The state is defined as the status of the
computing resource in the cluster edge and status information of the offloaded task. The
action refers to edge node selection to allocate the computing resource of the offloaded
tasks by the agent playing the role of resource allocation, based only on the current state
with an optimization function. The policy is the function of the pair of state and action
(s, a). The reward is defined as the response of the pre-formed action and is received from
the environment. The detailed MDP model is explained as follows. The agent has the role
of task dispatching, choosing the edge node of the offloaded task based on the current
state of the environment. Thus, the goal of the agent is to make the optimal decision in
each round to minimize the overall average task service delay for tasks in τ. The state
space sτ ∈ S is defined as the state of edge nodes in the cluster edge and the state of task
requested in the edge network, which can be given as S = {s | s = (Dqc

, Dqe
1 , Dqe

2 , ..., Dqe
n)},

where Dqc
represents the queuing delay in the edge controller and Dqe

1 ∼ Dqe
n represent the

queuing delay in each edge node, where n is the number of edge nodes needed to perform
the computation offloading service in the cluster edge. In our model, the agent used for
task dispatching will take action by observing the current state of the environment. Thus,
the action of agent aτ is to select the edge node for the task in this round, which indicates
that the computing resource of the selected edge node will be assigned to the current task.
Let A = {a | a = (e1, e2, ..., en)} be an action space, where en is nth edge node and n is
the total number of edge nodes. The state is transferred from sτ to sτ+1 through action aτ

with the probability P(sτ+1 | sτ , aτ). The action policy π(sτ) : S→ A defines the mapping
relationship from the state to the action. The policy is updated by training the agent. The
task dispatching policy indicates a set of actions aτ = π(sτ), which maps the state to an
action at time τ. After observing the state of the queuing delay in the edge controller and
in each edge node at time τ, the agent will take action according to the task dispatching
policy based on the current state and then receive the reward from the environment at time
τ + 1. The received reward will be used to update the task dispatching policy to make a
decision regarding the optimal action for the next action. In RL, since the agent’s goal is
to maximize the objective, which is the sum of rewards achieved by taking good actions,
it learns to choose the optimal action by interacting with the environment. The detailed
design of the reward function used in our model is explained as follows. In our work, the
optimization objective problem or function is to minimize the average task service delay
of all offloaded tasks so that each action is optimal. At time τ, the agent will observe the
current state in all task waiting queues in the edge controller and all edge nodes and will
select the edge node optimally using the action a(τ) based on the policy iteration. It will
then evaluate the performance of the action using the following reward function:

R(s(τ), a(τ)) =
exp(D̃i,j − Di,j) if D̃i,j > Di,j
− exp(Di,j − D̃i,j) if Di,j > D̃i,j

(15)

where D̃i,j is the average service delay of all tasks, and Di,j is the estimated service delay
of the current task. In our model, the objective function is to minimize the average task
service delay. Thus, in the reward function design, we use average task service delay
as the baseline and make the current task service delay as small as possible through the
exponential function. If the agent uses a good action for the offloaded tasks, the average
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service delay will be small. A good policy allows for most offloading tasks to be performed
with a sufficient service delay without exceeding the deadline. Finally, we define the
optimization objective or the reward. At time τ, the agent estimates the performance of
the current action using the reward returned by the reward function, R{s(τ), a(τ)}. Thus,
for DRL-based learning, to maximize the expected cumulative discounted reward, the
optimization objective is defined as

max
aτ

E[
σ

∑
τ=0

γ2R(s(τ), a(τ)], (16)

where γ ∈ (0, 1] is the factor discounting future rewards. In addition, the optimization
objective minimizes the average completion time of all offloaded tasks and the utility of
computational resources in the long term.

4.2. A Drl-Based Task Dispatching Method Using DQN

In our model, we used the deep Q-network (DQN) algorithm for the learning process.
The DQN algorithm is an off-policy algorithm, which does not have to discard experiences
once they have been used, and also a value-based temporal difference (TD) algorithm,
which can approximate an action–value function called a Q-function. Thus, the agent
decides on the optimal action through the learned optimal Q-function instead of the Q-
function based on the current policy, compared to traditional Q-learning such as SARSA.
DQN is applied to environments with discrete action spaces. However, the model in this
paper assumes that the state space and the action space of environments are continuous
and large. Thus, to solve the optimal problem assumed in this paper, we applied the DQN
model and the convectional neural network (CNN) used in [11]. The learning process for
DQN is shown in Figure 3.

Figure 3. Illustration of the proposed DQN for task dispatching policy.

As shown in Figure 3, the proposed learning process based on DQN applies an
experience replay memory (ERM), which is able to store experience data and then use this
for learning. Here, the experience replay memory is used to solve the problem related to
the correlation between the experience data. The experience replay memory stores the
most recent experience, e = (s(τ), a(τ), R(s(τ), a(τ)), s(τ + 1)), which an agent gathers by
interacting with the environment. If it is full, the oldest experience is discarded. The agent
will randomly sample a mini-batch of data from the experience replay memory every b
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time the agent trains; then, it will update the network’s parameter, θ, of the Q-function
network with each min-batch and stochastic gradient descent (SGD), as defined by

θi+1 = θi − σ5θ Loss(θ) (17)

where σ is the learning rate.
Differing from Q-learning, DQN uses two neural networks, which comprise the main

network Q(s, a; θ) and the target network Q̃. These networks have the same network
structure but different network parameters called the Q-value. Here, one is the current
Q-value θ generated in the main network, called the prediction network, and the other
is the target Q-value θ̃ generated in the target network. As addressed above, DQN is
a value-based TD algorithm and involves an action–value function (called Q-function).
Therefore, for a particular policy π, the action–value function Qπ(s, a) measures the value
of state–action pairs (s, a) and is defined as

Qπ(s, a) = E[
σ

∑
τ=0

γ2R(s(τ), a(τ)], (18)

which is the same as (17), defined to estimate the performance of the current action by the
returned reward value. To obtain the optimal policy π∗, which is defined to be better than
or equal to a current policy π, the optimal Q-function is defined as taking action a in state s,
as follows

Q∗(s, a) = maxπQπ(s, a) = Qπ∗(s, a), (19)

in which, if the estimation of Qπ(s, a) is correct, the action that maximizes Qπ(ś, á) will be
optimal. Thus, the optimal policy π∗ is given by

π∗(a|s) = argmaxa∈ A(s)Q
∗(s, a). (20)

Thus, the optimal Q-function can be rewritten with the Bellman equation as follows

Q∗(s, a) = Eπ [r(s, a) + γmaxáQ∗(ś, á)], (21)

where γ ∈ (0, 1] is a factor discounting future rewards. Based on (22), the optimal Q-
function can be estimated with the loss function, defined as follows

Q(s, a)← Q(s, a) + α[r(s, a) + γmaxáQ(ś, á)−Q(s, a)], (22)

where Q(s, a) is the learned Q-value, r(s, a) + γmaxáQ(ś, á) is the estimated Q-value, and
α is the learning rate. Differing from the Q-function, DQN uses a neural network Q(s, a; θ),
called the main network, as the approximation function to estimate Q-function. Thus, the
loss function for DQN is defined by

L(θ) =
1
N ∑

e∈N
[(Q̃−Q(s, a; θ))2], (23)

where e is experience, N is a mini-batch of experiences, and Q̃ is given by

Q̃ = Eπ [r(s, a) + γmaxáQ(ś, á; θ̃)], (24)

where Q̃ updates by copying from θ every τ iteration time.
The proposed intelligent task dispatching algorithm using DQN is described in Algo-

rithm 1. The agent makes a random decision using the random algorithm at the learning
start time. However, through the iterative processes and learning and policy updates, the
proposed algorithm finds the optimal policy. Thus, at the end of the iterations for learning



Sensors 2022, 22, 4098 14 of 21

and updating, the agent will take the learned optimal policy and can make the optimal
decision.

Algorithm 1 Intelligent task dispatching algorithm in the cluster edge
Input: the number of edge node, computing ability of edge nodes, radio bandwidth

resource, parameters for the task setting
Output: edge node selection a(τ)

1: Initiate learning rate σ;
2: Initiate τ;
3: Initiate the number of mini-batches B;
4: Initiate batch size N;
5: Initiate experience replay memory with max size K;
6: Initiate main network Q with random parameter θ;
7: Initiate target network Q̃ with parameter θ̃ = θ;
8: for episode e = 1. . . MaxSteps do
9: for τ = 1 : T do

10: Get the current state sτ from the environment;
11: Take action

12: a(τ) =

{
random action from A(s), prob. ε

argmaxa∈A(s), Q(s, a; θ), 1− ε;
13: Perform a(τ), receive r(τ) and perform state transition s(τ)→ s(τ + 1);
14: Gather and store experiences e = (s(τ), a(τ), r(τ), s(τ + 1)) using the current
15: policy into ERM;
16: for b = 1. . . B do
17: Randomly sample a mini-batch b of experiences from ERM
18: for i = 1. . . N do
19: # Calculate target Q-values for each example
20: yi = ri+ δśi γmaxái Q

π(śi, ái; θ̃) where δśi = 0 if śi is terminal,
21: -> 1 otherwise;
22: end for
23: Calculate the loss L(θ) by (23);
24: Update the network’s parameters θ by (17);
25: Set Q̃ = Q;
26: end for
27: end for
28: Decay τ
29: end for

5. Performance Evaluation and Comparison

In this section, we evaluate the performance of the proposed DQN-based task dis-
patching method and compare this with a static scenario with static nodes and a mobile
scenario with mobile nodes. We consider a scenario consisting of one cluster edge and
three BS, with a circle area of 1000 m2. For this, we develop a mathematical model-based
simulator based on Pytorch-1.9. The simulations for a performance evaluation are to vali-
date the mathematical formulation and the DQN based algorithm for task dispatching. In
the simulation, we assume that all applications performing all offloaded tasks are deployed
on all edge nodes in the cluster edge. In addition, all static and mobile nodes are scattered
uniformly in the BS coverage and the speed of mobile nodes is randomly chosen between
20 m2 and 120 m2. The transmission power is selected in a range from 32 mW to 197 mW
through channel gain hi,j. The channel number at BS is 20, and the bandwidth of a channel
is 2 MHz. For the computation task, we consider the object detection as a target application,
which relies on the devices used to collect images and offload them to the cluster edge.
These offloaded tasks are service-latency-sensitive and computation intensive. Thus, we set
the data size of the task as high load-input data to heighten the computing requirements.
Additionally, the required CPU cycles for each task are randomly assigned from 2.6× 109

to 5.2× 109. To set the task, the number of sub-tasks in the bundle task follows a discrete
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uniform distribution, with a range from 2 to 4. The arrival rate of all tasks follows a Poisson
distribution with a mean rate of λ = 30. This means that there is an average of 30 tasks
arriving at the cluster edge per time slot. The main simulation parameters related to the
environment are shown in Table 3, and the hyperparameters for DQN learning are shown
in Table 4.

Table 3. Main simulation parameters for the environment.

Parameters Description Value

NS
The number of static nodes for

non-mobility scenario 50

NM
The number of mobile nodes

for mobility scenario 20 ∼ 120

M The number of sub-tasks in
bundle task 2 ∼ 4

N The number of edge nodes in
cluster edge 5 ∼ 10

si,j The data size of the task 200 kB ∼ 5 MB

ci,j
The total number of CPU

cycles requested to serve task 2.6× 109 ∼ 5.2× 109

di,j

The tolerant service delay of
offloading task required by

mi,j

5 ms ∼ 50 ms

Table 4. The hyperparameters for DQN learning.

Parameters Description Value

episode, e The number of iterations 5000
σ Learning rate 0.005

K The size of experience replay
memory 10.000

B The number of mini-batches 8
N The size of mini-batches 32

γ
Factor discounting future

rewards 0.9

τ Step parameters 1500

To estimate the performance of the proposed model, we compare the proposed model
with three existing dispatching methods in terms of average task service delay and average
task completion rate:

• Random Method (RM): Dispatch the offloaded task to the randomly elected edge
node;

• Least Load Method (LLM): Dispatch the offloaded task to the edge node with minimal
waiting queue time;

• Round-Robin Method (RRM): Dispatch the offloaded task in the sequence of edge
node.

We evaluate the performance of the proposed DDM model in the network model
shown in Figure 4, which consists of 100-static nodes, one cluster edge computing system,
three BS, and a cloud.
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Figure 4. Network model of simulation scenario with static nodes.

We first examine the convergence performance of the proposed DDM model with the
number of iterations. As shown in Figure 5a, the average task service delay decreases in
the 4000 iterations and enters a stable status and also, as shown in Figure 5b, in the 4000
iterations, average task completion rate converges to 97% ∼ 99% as the training proceeds,
showing that the algorithm in the proposed DDM model will reach convergence. Then,
we evaluate the impact of the computation ability of edge nodes and the number of edge
nodes in the cluster edge on the average task service delay. As shown in Figures 6 and 7,
we set the computation capacity from 2.6 GHz to 15.6 GHz and the number of edge nodes
from 2 to 12. The proposed DDM model compares the performance with the Random
Method (RM), the Least Load Method (LLM), and the Round-Robin Method (RRM). As
expected, the simulation results show that average task service delay decreases according
to the increase in the computational ability and the number of edge nodes. Furthermore,
regarding computational ability, the proposed DDM model improves the performance
compared to the total average value of average task service delay by 55%, 70%, and 78%
compared with RM, LLM, and RRM, respectively. Regarding the number of average edge
nodes, the proposed DDM model improves the performance compared to the total average
value of average task service delay by 43%, 61%, and 66% compared with RM, LLM, and
RRM, respectively. Specifically, we see that the average task service delay of the proposed
DDM model decreases from 35 ms to 13 ms when the number of edge nodes increases from
2 to 12. These results are because the proposed DDM model performs the load-balancing
of the offloaded tasks well. We also observe that the offloading task ratio increases as the
computational utility of edge nodes in the cluster edge increases. This shows that the DDM
model can offload more tasks to the cluster edge.
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Figure 5. The convergence performance of the proposed DDM model on: (a) average
task service delay; (b) task completion rate with the number of edge node = 4.

Figure 6. Average task service delay according to the computation capacity of edge nodes.
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Figure 7. Average task service delay according to the number of edge nodes.

Next, we evaluate the performance of the cluster edge in mobile environments, as
shown in Figure 8, which consists of NM mobile nodes, one cluster edge computing system
with eight edge nodes, three BS, and a cloud. We assume that the network supports the
data handover between two BSs and only considers the change in channel quality during
the mobile nodes’ handover. In this simulation, the number of edge nodes is eight and the
computational ability is 10.4 GHz.

Figure 8. Network model of simulation scenario with mobile nodes.

Figures 9 and 10 show the impact of the number of mobile nodes on the average
service latency and task successful ratio. As shown in the simulation results in Figure 9,
the average task service delay of the DDM model increases from 18 ms to 42 ms when
the number of mobile devices increases from 20 to 120. Additionally, compared with RM,
LLM, and RRM, we can observe that the proposed DDM model improves the performance
compared to the total average value of average task service delay by 43%, 59%, and 72%,
respectively. This result is because the proposed DDM model distributes the offloaded
task well in a dynamic environment. In addition, as shown in the simulation results in
Figure 10, we can observe that the task successful ratio according to the number of mobile
nodes decreases from 97% to 93%. Compared with RM, LLM, and RRM, the proposed
DDM model improves the performance on the total average value by 4%, 6%, and 7%,
respectively. This is mean that the proposed DDM model has a better performance than
existing traditional methods and is an intelligent task dispatching policy, which can adjust
well in dynamic edge service environments. As part of future works, we plan to extend
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our DDM model and then evaluate the extended model with a cluster emulator as the
Fogify [26] in a real environment.

Figure 9. Average task service delay according to the number of mobile nodes.

Figure 10. Task successful ratio according to the number of mobile nodes.

6. Conclusions

In this paper, we investigate the task dispatching policy for resource optimization in
the cluster edge system. First, we have formulated the optimization problem related to the
resource allocation policy for the cluster edge system. The formulated problem is based
on the Markov decision process (MDP), which is solved by our proposed deep Q-network
(DQN) optimization algorithm. In addition, we propose a DRL-based intelligent task
dispatching method (DDM) for task load balancing in the cluster edge. The proposed DDM
model uses a DQN algorithm as the DRL technology and the efficient resource allocation
policy optimized for the resource management according to the state of edge nodes on the
cluster edge. With the simulation, we show that the proposed DDM model can achieve
a better performance than the existing methods in terms of the offloaded task service
delay and an offloaded task completion rate. In addition, the simulation results show the
optimal performance on the utility of computing resource in the cluster edge system in
static and dynamic environments. This proves that the proposed DDM model can obtain
a better convergence performance regarding average task service delay and average task
completion rate and achieve a smaller sum of average completion time for tasks as our
optimization objective. As part of future works, we plan to extend our DDM model with
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resource consideration which includes CPU, memory, cache, and network performance. In
addition, we will evaluate the extended model with cluster emulator as the Fogify in real
environment.
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