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Abstract: This work presents an overview of the main strategies that have been proposed for non-
invasive monitoring of heart rate (HR) in extramural and home settings. We discuss three categories
of sensing according to what physiological effect is used to measure the pulsatile activity of the heart,
and we focus on an illustrative sensing modality for each of them. Therefore, electrocardiography,
photoplethysmography, and mechanocardiography are presented as illustrative modalities to sense
electrical activity, mechanical activity, and the peripheral effect of heart activity. In this paper, we
describe the physical principles underlying the three categories and the characteristics of the different
types of sensors that belong to each class, and we touch upon the most used software strategies that
are currently adopted to effectively and reliably extract HR. In addition, we investigate the strengths
and weaknesses of each category linked to the different applications in order to provide the reader
with guidelines for selecting the most suitable solution according to the requirements and constraints
of the application.

Keywords: electrocardiogram; extramural monitoring; heart rate; mechanocardiogram; non-invasive
monitoring; photoplethysmogram; sensors

1. Introduction

The heart is an organ that pumps blood through the blood vessels of the circulatory
system. This blood carries oxygen and nutrients to the body, while it removes the metabolic
waste [1]. Heart rate (HR) is the rate at which the heart pumps and is measured by the
number of contractions (beats) of the heart per minute (bpm) [2]. The HR can vary according
to the body’s physical needs, such as the need to use oxygen and expel carbon dioxide,
and it is modulated by several internal and external factors including genetics, fitness
activity, stress or psychological status, diet, bad habits (e.g., smoking or drinking alcohol),
medications, hormonal status, environment, and disease/illness [3].

HR is one of the most important vital signs as it can be considered an indicator of the
general health status of a subject. For this reason, already since decades, HR is extensively
monitored in critical care areas such as the intensive care unit, post-anesthesia care unit,
telemetry monitoring units, and emergency departments where patient conditions can
rapidly deteriorate [4,5]. Alarms can be generated when the patient’s HR is outside the
normal physiological limits [5]. The American Heart Association states that the normal
resting HR in adult humans is 60–100 bpm. A cardiac rhythm higher than 100 bpm at rest is
defined as tachycardia, while an HR lower than 60 bpm at rest is defined as bradycardia [6].

Another relevant parameter associated with HR is heart rate variability (HRV). HRV is
the variation over time of the period between consecutive heartbeats and is predominantly
dependent on extrinsic regulation of HR [2]. Several metrics have been investigated
to assess HRV. For example, a standard deviation of the cardiac cycle duration lower
than 100 ms is considered unhealthy [7] and could involve adverse events such as sepsis
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and systemic inflammatory response syndrome in low-weight newborns [8] or an acute
inflammatory response in COVID-19 patients [9].

In the last decade, the rapid development of sensor, information, and communication
technology has provided tremendous opportunities and challenges in the field of extra-
mural monitoring of health status and well-being [10]. Among others, the HR and HRV
are one of the most used physiological parameters for extramural monitoring, as in many
extramural situations these parameters can be measured by noninvasive and low-cost tech-
nologies. For example, monitoring HRV to estimate athletes’ training (mal)adaptation is
becoming normal practice to improve athletic performances [11]. HRV is also used to assess
the occurrence of mild or severe dehydration levels caused by intense physical activity or
by a specific health status (e.g., old age, cardiovascular or kidney diseases, medications,
etc.) [12].

Extramural monitoring opens the way to a prolonged and extended evaluation of the
heart rhythm, which has several advantages for both the diagnosis of pathology and the
prevention of adverse events related to heart disease. For example, reduced HRV is a strong
predictor of mortality in patients with infarction and heart failure; therefore, its continuous
assessment helps to recognize patients at risk in order to timely intervene with preventive
therapy [13]. Moreover, HRV analysis in extramural settings can be used to indirectly infer
arousals associated with obstructive sleep apnea syndrome. This novel diagnostic approach
enables both mass screening of the population to efficiently identify those who suffer from
this disease and long-term monitoring of patients, which are precluded by the traditional
diagnostic approach based on the polysomnogram [14]. Finally, continuous and daily HR
monitoring helps to improve users well-being and their awareness of their lifestyle. In fact,
HR and HRV provide useful information on stress level [15] and sleep quality [16].

The requirements of HR monitoring devices for remote and out-of-hospital (i.e., ex-
tramural) applications are different from the devices used in traditional monitoring. In
particular, the needs for minimal obtrusiveness, lightweight, and comfort are crucial. Fur-
thermore, the HR estimation provided by the devices must be accurate, especially in devices
that are used for medical and diagnostic purposes, even when measurements are made
under challenging acquisition conditions (e.g., high-level noise or motion artifacts and loss
of contact) and without the supervision of an expert.

This work presents an overview of the main strategies that have been proposed for
noninvasive monitoring of HR in extramural and home settings. In particular, we focus
on the sensing principle, which can be classified according to which physiological effect is
used to measure the pulsatile activity of the heart. We consider three sensing categories: (i)
sensing the electrical activity of the heart, (ii) sensing the peripheral effect of the heart pulse,
and (iii) sensing the mechanical activity of the heart. For each of these categories, we focus
on an illustrative sensing modality that is presented in detail in terms of sensing principle,
strength, and challenges. Electrocardiography is presented as an illustrative modality to
sense the electrical activity of the heart. It exploits the dynamic electromagnetic fields
generated by the heart. Photoplethysmography is described as an illustrative modality
to investigate the peripheral effects of cardiac pulsations. The ejection of blood from
the heart into the vascular tree causes changes in blood volume in the microvascular
tissue of the peripheral areas. Because blood absorbs light more than surrounding tissues,
these microscopic changes in the optical properties of the body surface can be measured by
photoplethysmography. Finally, mechanocardiography is presented as a recently developed
possibility to describe organ motion and deformation caused by the pulsatile activity of
the heart. In fact, at every heartbeat, the pulse wave traveling through the body produces
subtle changes in displacements and vibrations of the body surface that can be measured.

In this paper, we describe the physical principles underlying the three categories, the
characteristics of the different types of sensors that belong to each class, and we touch upon
the most used hardware and software strategies that are currently adopted to effectively
and reliably extract the information of interest, i.e., HR and HRV. In addition, we investigate
the strengths and weaknesses of each category linked to the different applications. In this
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way, we provide the reader with a general overview of the strategies commonly used
to monitor HR and HRV and we give indications for selecting the most suitable sensing
modality in different applications.

2. Sensors Based on Electrical Activity

The pumping function of the heart is the result of a rhythmic contraction and relaxation
of approximately 109 muscle cells [17]. This process is controlled by the propagation of
biopotentials through the whole cardiac tissue, culminating in a complex electrical pattern.
Heart electrical activity begins through spontaneous depolarization of the sinoatrial (SA)
node, which is located above the right atrium. This depolarization propagates through the
atrial tissue and is transmitted to the ventricles through the atrioventricular node. From
the atrioventricular node, the signal enters the bundle of His. This bundle branches into
the tree structure of Purkinje fibers, which provides rapid conduction of electrical signals
through the ventricles. The initial stimulus of the SA node thus causes depolarization
wavefronts, which ultimately activate the entire mass of the ventricles.

2.1. The Electrocardiogram

The heart, from an electrical point of view, can be seen as a dipole. In fact, depolariza-
tion and repolarization of cardiomyocytes induce low-intensity electric fields on the surface
of the human body. The electrical potential produced by the myocardium is the sum of the
potential differences generated by individual cardiomyocytes. These small tensions are
recorded through a device called electrocardiograph, which was introduced for the first
time in 1903 by Willem Einthoven and Étienne-Jules Marey [18].

The electrical potential generated by the heart’s activity is measured as a potential
difference between any pair of electrodes. In non-invasive applications, electrodes are typi-
cally made of conductive pads that are attached to the body surface, where the combination
of two electrodes forms a lead.

The signal recorded through an electrocardiograph is called electrocardiogram (ECG).
It has three main components: the P wave, which corresponds to the depolarization of the
atria; the QRS complex; and the T wave, which represent, respectively, the depolarization
and the repolarization of the ventricles. The HR (in bpm) can be determined by dividing
60 (seconds per minute) by the RR interval measured in seconds. The RR interval is the
distance between two successive R peaks, as shown in Figure 1.

Figure 1. Illustrative ECG signal recorded during one cardiac cycle. The main components are
highlighted.

2.2. Instrumentation

The acquisition of the potential differences generated by the electrical activity of the
heart in extramural and home monitoring settings is based on portable ECG-based HR
monitors. These devices are formed by a handheld sensing unit (e.g., a pad, a watch, a
band, a necklace, a t-shirt, wireless sensors, etc.) [19–21] sensitive to the electrical field and
a unit that captures, processes, and displays or transmits the sensed signals.

The interface between the body and the ECG device is formed by the electrodes. To ob-
tain a stable and high-quality ECG signal, these electrodes have the following requirements:
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(i) the impedance between the electrode and the skin should be minimized to guarantee a
signal with high amplitude; (ii) the electrode should provide stable contact with the skin
during the acquisition in order to keep contact during motion; (iii) the electrodes must be
biocompatible, avoiding adverse reactions of the skin, and comfortable, even when used
for a prolonged time.

The skin–electrode interface mainly comprises multiple layers of conductive and
capacitive coupling, which are complemented by parallel resistor-capacitor (RC) networks
connected in series [22]. Depending on which RC networks are predominant, the type and
the operating principle of each sensor are defined. In general, the electrodes used for ECG
acquisition can be divided into wet, dry, and capacitive electrodes, as depicted in Figure 2.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. (a–c) Schematic representation of skin-electrode interface for wet (a), dry (b), and capacitive
(c) electrodes; (d–f) equivalent circuit model of skin–electrode interface for wet (d), dry (e), and
capacitive (f) electrodes; (g–i) example of wet (g), dry (h), and capacitive (i) electrodes.

2.2.1. Wet Electrodes

Wet electrodes are the standard biosensors for most electrocardiography applications,
thanks to the high-quality signals that can be acquired with them. These electrodes are
based on an electrode–electrolyte interface, which is characterized by a half-cell potential
(Ehc). The Ehc is linked with the impedance of the electrode–electrolyte interface, modeled
as the parallel circuit between a resistor Rd and a capacitor Cd. The skin is a dry dielec-
tric surface that creates a barrier for any transfer of charges between the body and the
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electrode [23]. The electrolyte gel acts as a contact medium and helps transfer charges
between the skin and electrode [24]. The resistance of the electrolyte is modeled as the
serial resistor Rg. At the skin level, a difference in ionic concentration across the stratum
corneum results in a potential Ese. The entire epidermis can be considered equivalent to
a parallel circuit between a resistor Re and a capacitor Ce. The impedance of the dermis
and subcutaneous tissues can be treated as a resistor Ru [25]. The equivalent circuit of wet
electrodes is depicted in Figure 2d.

Conventional wet electrodes are silver-silver chloride (Ag/AgCl) electrodes, as illus-
trated in Figure 2g. A new generation of adhesives allows for the realization of novel
electrodes or bio-patches that are less uncomfortable than traditional ones [26]. Although
contact electrodes provide good signal quality, they require skin abrasion to minimize the
skin impedance and can cause adverse reactions (e.g., allergic reactions and skin irritation)
especially if the electrodes are worn for a long time. In addition, the quality of the acquired
signal decreases with dehydration of the gel as a result of prolonged use [27].

2.2.2. Dry Electrodes

Dry electrodes are constituted by metal discs (such as that shown in Figure 2h) or
conductive plastics and are in direct contact with the skin, without the need for any gel.
Therefore, the resistance Rg in Figure 2d is replaced by a parallel circuit of a capacitor
Ci and a resistor Ri. The schematic circuit and an example picture of a dry electrode are
shown in Figure 2b,h, respectively. During the employment of dry electrodes, sweat that
is accumulated at the skin surface can chemically resemble the electrolyte solution in wet
electrodes and thus act as a substitute for the gel [28].

Dry electrodes are proposed to overcome the issues of wet electrodes related to long-
term applications, which are common in extramural HR monitoring. Dry electrodes are
expected to satisfy long-term HR monitoring requirements because they do not require
skin pretreatment and conductive gel, and can be manufactured with advantages such
as good stretchability, portability, small size, and low cost. In fact, recent advances in
research have opened the way to printable and flexible dry electrodes [29], making them
more comfortable than traditional wet electrodes, without incurring adverse reactions. In
addition, dry electrodes can maintain good contact with the skin, even during intense
motion, such as fitness activity, and are suitable for prolonged use. These qualities make
them especially suitable for ambulant applications [25]. Conversely, they have a higher
equivalent impedance and, compared to signals acquired with wet electrodes, signals
received by dry electrodes are characterized by lower amplitude and hence lower signal-to-
noise ratios (SNR). Therefore, many studies conducted in recent years aim to overcome the
shortcomings of low SNR to enable reliable HR and HRV monitoring with dry electrodes.

In the dry electrode manufacturing process, researchers mostly choose to combine
conductive materials with flexible substrates (e.g., polydimethylsiloxane (PDMS), poly-
imide (PI), polyethylene terephthalate (PET), etc.) by lithography, sputtering, deposition,
blending, electrostatic spinning, electrostatic spraying, chemical coating, and screen print-
ing [30].

Conductive materials used for dry electrodes include metals and derivates (e.g., silver
(Ag), silver nanowires (AgNWs), gold (Au), and titanium nitride (TiN)), which are selected
because of their excellent electrical conductivity. For example, Zheng et al. [31] proposed
an ECG monitor for wearable applications based on two sensor patches. The sensing unit
is realized by means of ultrathin (19 µm) Ag/PDMS thin-film electrodes using a coating
process, which enables a skin contact impedance comparable to that of commercial wet
electrodes. Due to its ultrathin properties, the PDMS film conforms very closely to the
curved surface of the skin, maintaining stable contact for 24 h. However, metallic materials
are not widely used for dry electrodes due to their high cost, combination issues with
flexible substrates, and the long time required for manufacturing [25].

Because of their excellent electrical conductivity and stability, carbon materials (e.g., car-
bon, carbon black (CB), graphene, carbon nanotubes (CNTs), carbon nanofibers (CNFs), etc.)
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have a wide range of applications in the field of bioelectric dry electrodes. Kim et al. [32]
proposed a novel flexible electrode based on the gecko-inspired hierarchical microstructure
using a mixture of CNT and graphene. Such an electrode has self-absorption ability, which
is crucial for wearable applications because fixing the electrode with a tape or elastic strap
is not desirable. The proposed electrode showed good cyclic adhesion and its conductivity,
during movement, did not show a significant decrease, satisfying the requirements for long-
term ECG measurement. Furthermore, since the materials used are super-hydrophobic, this
electrode is well-suited for a reusable, sustainable, and low-cost ECG monitoring system.
Although carbon materials are currently the most widely used materials for dry electrodes,
there are still some improvements that can be made in terms of reducing the harm of CNTs
to the human body and making the manufacturing process easier through technological
improvements [25].

Although metallic and carbon materials have good conductive properties, conductive
polymers outperform them in terms of biocompatibility and chemical stability. One of
the most widely used polymers is poly 3,4-ethylenedioxythiophene:polystyrene sulfonate
(PEDOT:PSS) because it has excellent mechanical properties, high-temperature resistance,
and good biocompatibility. It can be used on the skin surface to enhance electrical conduc-
tivity and reduce contact impedance. PEDOT:PSS can be easily processed into films using
simple techniques such as inkjet printing and has recently been successfully integrated
into textiles (e.g., cotton, polyester, nylon, etc.) [33,34] or paper-based materials [35]. For
example, Sinha et al. [36] fabricated a textile electrode using screen printing technology,
which was directly integrated into sports tights. However, the high skin-electrode contact
impedance due to low contact pressure and unstable contact reduces the quality of the
acquired ECG signals. Yet, the electrode is still acceptable for HR-monitoring purposes.
Integrating electrodes, wires, and other modules within smart clothes could improve the
sustainability and convenience of HR monitoring. However, the decrease in signal quality
after repetitive washing is a flaw that needs further investigated [37].

2.2.3. Capacitive Electrodes

The capacitive sensors do not require direct contact with the skin. In fact, a thin
insulator material is placed between the metal electrode and the skin [24] (Figure 2c).
Charge transfer from the skin to the electrode takes place by means of capacitive coupling at
the skin-dielectric and dielectric-electrode interface [38], represented as C in the equivalent
circuit in Figure 2f.

The most common materials used as dielectrics are conductive rubber [39] and biomed-
ical e-textile. In Figure 2i a t-shirt is placed between the electrode and the skin. Capacitive
electrodes can be incorporated into everyday usable garments and objects. For example,
Lim et al. [40] and Baek et al. [41] proposed capacitive electrodes embedded in an office
chair so that the ECG can be acquired simply by sitting on it. Uguz et al. [42] installed capac-
itive electrodes in a car seat to measure the HR of the user during driving. Nemati et al. [38]
embedded their electrodes in a t-shirt and Varadan et al. [43] in a bra.

Capacitive electrodes are comfortable and suitable for long-term monitoring because
they do not cause skin irritation. On the other hand, the lack of gel between the skin and
the electrode increases the contact impedance, resulting in a reduced signal amplitude [27].
Furthermore, the presence of the insulator material involves a large discrepancy in terms of
shape between the actual physiological signal and the signal obtained through capacitive
electrodes [30]. Furthermore, due to the lack of direct contact, the ECG signals acquired
with capacitive electrodes are highly sensitive to movements, producing ECG signals that
are strongly corrupted by artifacts [22].

2.3. Signal Processing Approaches to Extract the HR

Once the signals have been acquired by the sensing unit, the ECG samples are transmit-
ted to a processing unit (e.g., a smartphone, a smartwatch, a cloud environment, etc.) [44,45],
where they can be processed in real time or stored for later processing. Late processing
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occurs in Holter devices, which are employed especially to diagnose specific cardiac pathol-
ogy and follow-up cardiopathic patients. In contrast to the delayed processing in Holter
devices, fitness trackers, and devices that can generate alarms for emergency assistance
typically require real-time analysis of the acquired data.

Most of the methods proposed in the literature to estimate HR from ECG signals are
based on the detection of R peaks. Over the years, several methods based on different
strategies, such as wavelet transformations, filtering, machine learning, empirical mode
decomposition, Markov models, etc., were proposed.

The pipeline of algorithms for R-peak detection can be summarized in three main
steps: (i) preprocessing aimed to suppress noise and artifacts; (ii) enhancement of the QRS
complexes, reducing at the same time the amplitude of the other waves in the ECG signal
in order to make the detection of the R-peak more reliable; and (iii) R-peak detection based
on a decision rule approach. The most popular approach for the detection of R peaks is the
well-known Pan–Tompkins algorithm [46], which was proposed in 1985 and is still widely
employed. The block diagram of this algorithm is reported in Figure 3.

Figure 3. Main steps of the well-known Pan–Tompkins [46] algorithm to detect R-peaks.

Although the Pan–Tompkins algorithm was proposed several decades ago, it is still
widely used because it enables efficient detection of QRS complexes, satisfying requirements
related to noise rejection, computational load, and accuracy. In fact, the combination of low
computational load and high accuracy makes this approach suitable for real-time applications.

ECG signals acquired in extramural and home settings often have a lower quality than
signals acquired in a hospital setting. In part, this can be explained by the fact that for long-
term extramural monitoring, often dry or capacitive electrodes are used. As mentioned
above, these electrodes result in low-amplitude and distorted signals. Furthermore, the
acquisition of the ECG during daily life results in signals affected by a large number of
motion artifacts [47]. Therefore, there is the need to design ad hoc denoising algorithms
aimed at sufficiently increasing the SNR to allow the detection of R-peaks with high
accuracy. For example, Peng et al. [48] employed a discrete wavelet transform (DWT) with
a moving average to enhance the SNR of ECG signals that were acquired using capacitive
electrodes placed over a t-shirt. DWT was also used by Kota et al. [49] to remove noise from
signals acquired during physical activity with dry electrodes. Galli et al. [50] presented
a denoising algorithm based on a compressive sampling Taylor–Fourier multifrequency
(CSTFM) approach, which enables the effective removal of the superimposed noise from
ECG signals acquired by low-cost and wearable smartphone-based devices.

Additional sensors (e.g., triaxial accelerometers, multiple biopotential sensors for
multiple ECG leads, and electromyography) can also be embedded in portable ECG devices
to effectively remove noise. As an example, multiple leads enable the design of a denoising
approach based on array processing methods, such as by Lazaro et al., who used Princi-
pal Component Analysis (PCA) combined with normalized least mean squares (NLMS)
adaptive filtering to effectively reduce the EMG noise from the ECG channels [51].

2.4. Extramural Applications

Handheld ECGs involve the use of dry electrodes (e.g., pads, bands, conductive
fabrics integrated into garments) [20,52], or capacitive electrodes embedded in furnishing
accessories (e.g., pillows, beds, blankets) [53,54]. To minimize the obtrusiveness of the
device, the number of leads used is commonly limited to one. Furthermore, the position of
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the electrodes is not always standardized; when the electrodes are for instance embedded
in objects, the position of the electrodes with respect to the body is quite common [53].

The applications of portable HR monitors based on ECG are many. For instance,
wearable ECG bands (e.g., QardioCore (Qardio®, San Francisco, CA, USA)) or adhesive
patches (e.g., Zio (iRhythm San Francisco, CA, USA)), are widely employed to track fitness
activity [55]. To obtain the most effective fitness workout, the HR should be kept within the
optimal boundaries [44]. Monitoring HR and HRV during physical exercise is an important
aspect of both sports and rehabilitation medicine because high levels of training or high-
performance sports entail a high degree of stress for the human heart that could lead to
abnormal or undesired behavior in some athletes. On the other hand, HR monitoring can
also be used to quantify the calories burned during exercise [21].

Wearable ECG monitors are also helpful in telemedicine scenarios. For addressing
a cardiac rehabilitation condition, Worringham et al. [56] presented a e-Health network
consisting of a smartphone, an ECG, and a GPS-based system to remotely monitor the
exercise of patients. The system provided a more flexible way to remotely perform unsu-
pervised cardiac rehabilitation, where HR information was transmitted by a programmed
smartphone to a server where data could be monitored in real time by qualified medical
personnel. In a similar scenario, Baig et al. [57] discuss a system for monitoring the HR of
elderly living in remote locations based on wireless textile electrodes. El Attaoui et al. [58]
presented a remote ECG monitoring system that can evaluate cardiac electrical activi-
ties and detect HR and HRV disorders in patients who suffer from chronic heart disease
(e.g., strokes and heart attacks) in order to reduce hospitalizations for examination and
follow up. Wearable, wireless, and mobile monitoring systems can provide the best possible
solution for telemedicine because they address convenience and comfort; they reduce costs,
time, and travel, and enable immediate medical assistance in case of an emergency.

Moreover, by exploiting continuous monitoring, which is made possible by the advent
of portable technologies, a higher number of pathologies related to heart rhythm can be
diagnosed, especially intermittent diseases such as atrial arrhythmias [59].

2.5. Future Developments

Although ECG-based HR monitoring is widely used in both clinical and extramural
settings and several commercial devices are already available on the market, some im-
provements can still be made. In particular, such improvements include more economic
and sustainable manufacturing processes. In fact, the cost associated with the manufac-
turing of comfortable sensors and ECG devices, as well as the number of waste products
(e.g., disposable electrodes), are very high. Therefore, future developments in this field will
be oriented to the development of prolonged use and reusability of electrodes in order to
reduce both costs and environmental impact.

3. Sensors Based on Peripheral Effects of Heart Activity

Due to the pumping function of the heart, the blood volume and the blood pressure at
a given location in the body will vary over time. Given the elastic properties of the vessels,
this change in blood pressure causes the arteries of the peripheral system to vary in size.
The change in size allows the local blood volume to temporarily vary. As the blood is
pumped by the heart, the volume of blood at a certain location will increase and decrease,
showing a pulsatile behavior. This pulsatile behavior is delayed compared to, e.g., the ECG
as the pulse needs to propagate through the arteries. In fact, this delay, typically referred to
as the pulse transit time, is hypothesized to be related to blood pressure variations [60].

3.1. Photoplethysmography

Photoplethysmography (PPG) is an optical measurement technique, used to detect
blood volume changes in the skin [61]. It uses a sensor composed of a light-emitting
diode (LED) to emit light of a certain wavelength and a photodetector to detect the light
transmitted through or reflected by the skin, typically making the hardware for PPG simple
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and cheap. The sensor can be placed unobtrusively on the skin surface, where it can remain
for a long time. The intensity of the light detected by the photodetector is affected by
the amount of blood in the pathway of the light. This amount varies due to the pulsatile
blood volume changes in the artery [62]. When there is more blood in this pathway, the
absorption of light is higher and the intensity measured by the photodetector is lower. Most
of the light absorption is caused by the non-pulsatile part of the arterial blood, the venous
blood, and other tissues. The PPG waveform, therefore, has a large DC component and
only a small AC component. The ratio between the AC and the DC components of the
PPG waveform is called the perfusion index and is related to the blood perfusion [63]. This
principle is illustrated in Figure 4.

Figure 4. Composition of the PPG signal where different tissue layers cause the absorption of light.
Figure reproduced from [64].

The absorption of the emitted light depends on the wavelength used due to the
different absorption coefficients of the tissue for various wavelengths [65], in accordance
with the Beer–Lambert law [66]. Indeed, absorption of longer wavelengths (e.g., red and
near-infrared light) is lower, meaning they will penetrate the tissue deeper, up to the larger
arterioles and possibly arteries in the deep dermis [67]. In contrast, shorter wavelengths
(e.g., green light) penetrate less deeply into the tissue and cannot reach the arteries, where
the major pulsatile component is present. Variations in the intensity of detected light
recorded with shorter wavelengths originate from changes in the density of the capillaries,
as suggested by Kamshilin et al. [68]. In fact, when blood volume increases, the size of the
arteries will also increase due to their elastic properties, resulting in a compression of the
tissue located between the arteries and the skin. Consequently, absorption and scattering
coefficients will reflect the underlying cause of the variations and will therefore show the
same pulsatile differences in light absorption. This hypothesis is further supported by the
finding that HR can be determined with green light as accurately as it can be with a red
light [67].

In Figure 5, an illustrative PPG wave is shown. The representation of the PPG wave is
the inverted sensor readout to express blood volume rather than light intensity. Indeed,
less light recorded by the photodetector corresponds to a higher amount of blood in the
arteries, which is caused by the blood injected into the arteries during systole. This phase
is responsible for the systolic peak in the PPG wave. However, the reduction in blood
volume during diastole involves a decrease in absorbed light. This downward trend can
show a separate peak, called the diastolic peak, which is the result of the reflections of
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the pressure wave [69]. The local minimum that occurs between the systolic and diastolic
peaks is the so-called dicrotic notch, which represents the transition from the end of systole
to the start of diastole [70]. Many physiological parameters can be extracted from the PPG
wave, including the systolic amplitude, pulse width, pulse area, peak-to-peak interval, and
pulse interval. An extensive overview of the PPG parameters can be found in [71].

Figure 5. An illustrative PPG wave for one pulse, with the pulse start, systolic, and diastolic peaks,
the dicrotic notch, and the pulse to pulse (P-P) interval indicated. The P-P interval is the time between
to consecutive systolic peaks. Note that with respect to Figure 4, the signal is flipped along the vertical
axis, to represent the volume instead of the detected light intensity.

The amplitude of the PPG signal is influenced by many controllable factors, such
as sensor geometry, emitted light intensity, and photodiode sensitivity, but also due to
uncontrollable biological factors, such as the thickness of the skin at the measurement
location, the skin color, and the tissue composition at the measurement location [72]. This
implies that the PPG signal is not straightforwardly comparable between different users
and even between different measurements within the same user. Therefore, it is desirable
to consider ratios between amplitudes rather than absolute values.

3.2. Instrumentation

The sensing unit consists of two parts: the light source and the photodetector. The
light source is an LED. To increase the amount of light detected by the photodetector, an
array of LEDs can be used. This is because the path of light can fluctuate heavily during
recordings, especially due to the movements. An array of LEDs can then be exploited to
reduce these motion artifacts.

PPG sensors can operate in two modes: transmissive and reflective PPG. Transmissive
PPG is the mode in which the photodetector is opposite to the LED. In this case, the light
travels from the led directly through the tissue before it reaches the photodetector. If the
path length of the light is too large, almost all of the light will be absorbed before reaching
the detector. For this reason, measurement locations are limited to the fingertip, nose,
earlobe, or toe. Too much pressure on the measurement location due to sensor placement
can also suppress variations in peripheral blood volume, which may result in a reduction
in signal oscillations [73]. When using reflective PPG, the LED, and the photodetector are
placed on the same side of the tissue. This configuration is convenient for sensor design and
can also be used when the underlying tissue introduces a significant absorption coefficient
in the light path in the case of a transmissive PPG sensor design. This happens when the
distance between the LED and the photodetector is too large, or when the measurement
location does not have a larger artery present. A visual representation of transmissive and
reflective PPG can be seen in Figure 6.

Sensor hardware for PPG measurements is often relatively minimal. Besides the
light and the photodetector, the hardware typically consists of a few components: a signal
amplifier and some basic signal filters. Because the light intensity of the received is very low,
the corresponding voltage difference at the output of the photodetector is very low. For this
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reason, the voltage is amplified. Additionally, the information in a PPG signal is mostly low
frequency (less than 5 Hz); often a sampling frequency between 125 and 500 Hz is chosen.
The low frequency content in the PPG is used for the definition of bandpass filters, with
the aim of removing DC and high frequency components from recorded data. Depending
on the final application, more strict constraints for signal filters or sampling frequency are
common to sample the signal. For example, to determine the average HR, Béres et al. [74]
showed that the sampling frequency can be lowered to as much as 5 Hz, while for accurate
HRV analysis, a sampling frequency of 20 Hz with the addition of interpolation is enough.

Figure 6. Schematic overview of transmissive (left) and reflective (right) PPG using an LED and a
photodetector (PD). For the transmissive PPG, LED and PD are placed on opposite sides of the finger.
For reflective PPG, the LED and PD are placed on the same side. Figure reproduced from [64].

One of the sources of noise in PPG signals is other variations in the illumination of the
measured tissue or photodetector that are not caused by changes in blood volumes but, for
instance, by changes in the ambient light. To reduce the amount of variation in illumination
caused by ambient light, the LED and the photodetector are typically shielded from outside
light sources. Another important source of noise is caused by motion, i.e., motion artifacts.
The choice of the light source, specifically the wavelength/color of the light, can help
reduce this type of noise; shorter wavelengths have been shown to be less susceptible to
motion artifacts [75].

3.3. Signal Processing Approaches to Extract the HR

The peak-to-peak interval, which is the time between two systolic peaks, is commonly
used to determine HR, as these peaks are the most easily detected feature of the PPG signal.
Using this method, HR can be determined directly in the time domain. A more robust way
of detecting HR is based on frequency-domain analysis [76]. Here, the main component
of the obtained Fourier series (besides the large DC component, if it has not been filtered
out) is the frequency of the heartbeat. However, HR estimation in the frequency domain
relies on window-based frequency analysis and hence only provides trends in HR, instead
of beat-to-beat variations. Due to the increased difficulty in accurately measuring smaller
variations of heart rate in the frequency domain, post-processing strategies can often be
included for more accurate results, such as the Kalman filtering proposed by Galli et al. [76].

When HR detection is performed in the time domain, the detection of the peaks
is affected by the noise in the data. This noise can be partially suppressed by digital
(bandpass) filtering techniques. Unfortunately, finding the optimal trade-off in the design
of these filters is a challenging task, as excessive filtering can distort the pulse shape, but
too little filtering can result in the quasi-DC component dominating over the AC pulse [77],
complicating peak detection. The implementation of bandpass filters can be completed in
several ways. For instance, Chatterjee et al. proposed to use a combination of a Butterworth
IIR filter and a Savitzky–Golay FIR filter [78]. An extensive overview of different state-of-
the-art signal processing techniques to determine HR and HRV in wrist-worn PPG data,
and their performance with respect to the gold standard, ECG, can be found in [79].

Even though the choice for short wavelengths reduces the presence of motion artifacts
in PPG data, these artifacts are still the dominant interference. The main challenge in
HR extraction from PPG signals is therefore related to the motion artifacts [80]. In fact,
the relative movement between the tissue and the sensor modifies the path of the light,
distorting the intensity of the light that falls onto the photodetector and hence affects the
acquired signal. Data containing a large number of motion artifacts is often unusable.
To detect segments of the signal affected by motion artifacts, several signal processing
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strategies have been proposed. A signal quality index has been used to describe the presence
of noise and artifacts in short PPG segments [81] and more recent studies have used neural
networks to detect and exclude segments that are contaminated by motion artifacts from
further processing. Goh et al. [82] used a 13-layer one-dimensional convolutional neural
network and reached an accuracy of 94.5% in classifying signal quality.

Despite the good performance achieved in quantifying signal quality, low-quality
recordings still entail a significant impediment for various applications. When low-quality
segments are discarded from processing to extract the HR, the monitoring is non-continuous.
Whereas for some applications this can be acceptable, for others it is not. For these sit-
uations, some researchers focus on the removal of the motion artifacts. As described by
Pollreisz et al. [83] other sensors might be included to provide more information about the
motion, such as an accelerometer. Lai et al. [84] reported a mean average percentage error
with respect to the HR as recorded by the ECG of 2.57% during heavy exercise, using the ac-
celerometer to provide additional information, whereas Hara et al. [85] used a second PPG
sensor located a short distance from the skin for extra information on motion artifacts, and
achieved a root mean squared error (RMSE) of 7.1 bpm during rest, walking and jumping.

3.4. Extramural Applications

Due to the ease of use and comfort provided by PPG sensors, PPG is often the technol-
ogy chosen for applications that require prolonged HR and HRV measurement. Examples
of such applications are sleep monitoring [86] and detection of paroxysmal irregular heart
arrhythmia [87]. PPG is also used in commercial applications to track HR and HRV during
exercise. Smartwatches aimed at determining the heart rate often have reflective PPG
integrated with green light [88]. The reason that most smartwatches are based on PPG
with green light stems from the fact that, on the one hand, the use of smartwatches, es-
pecially during exercise is associated with increased levels of motion, while, on the other
hand, as mentioned before, smaller wavelengths such as green are less susceptible to
motion artifacts.

Besides measuring the heart rate, PPG is also used in a variety of other applications.
One of the most common ones is oxygen saturation [89], but PPG can also be used to deter-
mine a variety of biological markers that are linked with the timing differences between
distinctive features of the PPG signal or the pulse morphology (e.g., the time between
the systolic and diastolic peak or the presence of the dicrotic notch). The relationship
between these features and the biological factors affecting them is an active field of research.
For example, the dicrotic notch shape is known to deteriorate with age. Furthermore,
Evans [90] used PPG morphology to determine blood vessel vasoconstrictor activity, Jöns-
son et al. [91] determined ankle pressure, Mansi et al. [92] determined cold sensitivity,
and McCombie et al. [93] studied cardiac output. In combination with ECG, PPG can be
used to determine the Pulse Transit Time (PTT), which is the time between the start of the
heartbeat and the start of the pulse. This PTT has been demonstrated to be a proxy for
blood pressure [94].

3.5. Future Developments

PPG has been shown to enable determining HR and HRV, reaching performances sim-
ilar to ECG-based HR under specific conditions [79]. Performance rapidly degrades when
motion artifacts are introduced [95]. In an extramural setting, the removal of motion arti-
facts remains of critical importance for the development of PPG-based solutions. Because
PPG allows for long-term unobtrusive measuring, applications for monitoring changes in
user condition, detecting diseases or monitoring sleep cycles show many potentials. An
advantage of sleep monitoring is the relatively low number of motion artifacts.

PPG can also be obtained without contact of sensors with the skin (also called remote
PPG) [96,97]. Such a technique is based on a video that records the reflection of ambient
light by the skin. The advantage of this type of PPG is that the recorder can be up to several
meters away from the subject, minimizing the obtrusiveness of the solution. On the other
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hand, the distance between the subject and the recorder is responsible for a significant
reduction in the SNR. Indeed, the intensity of the light that is detected will be reduced,
and noise sources, such as varying background illumination, will increase. This produces
variations in the detected signals that do not depend on the pulsating blood. The reduction
in SNR makes the ability to obtain the heart rate reliably harder as compared to contact PPG.
When a user is moving around in an extramural setting, additional tracking is required
and even more noise is introduced. However, the method is extremely non-invasive, as
it involves no wearable sensors. The prevalence of phones and other devices capable of
recording video also makes it a widely available solution. The technique has been shown
to have a lot of potential in sleep monitoring [86,98]. Sun et al. [99] used remote PPG to
monitor the heart rate during exercise, where they have a stable video camera, reducing the
motion artifacts from a moving sensor. McDuff et al. [100] used remote PPG to determine
the systolic and diastolic peaks. Despite the large potential for video-based PPG, in the
case of extramural measurements, the recording is much less controlled, typically leading
to a further reduction in the SNR compared to video-based PPG in controlled settings such
as the hospital. Therefore, before video-based PPG can be used in real applications, further
steps need to be taken to make this type of measurement more reliable.

4. Sensors Based on Mechanical Activity

It is a long-known fact that each heartbeat imparts movements to the entire body
when blood is ejected into the arteries [101]. Ejection of blood through the descending aorta
produces a backward recoil movement that is correlated with heartbeat. Local movements
induced by mechanical beating of the heart also propagate to the skin surface of the chest
wall. The mechanocardiogram (MCG) is a graphical representation of these movements.

4.1. The Mechanocardiogram

The MCG is a container for all measurements of mechanical vibrations that are caused
by cardiac motion. It can be subclassified by taking into account the type of sensors that are
used and whether the detected motion is localized on the chest wall or distributed through-
out the body. The ballistocardiogram (BCG) describes motions distributed over the whole
body. Accelerations and rotations of the chest wall are described by seismocardiogram
(SCG) and gyrocardiogram (GCG), respectively.

The MCG was investigated through the 1900s [102,103] but was initially largely ne-
glected by the medical community [104]. With technological advancements that simplified
the acquisition of these signals, MCG is gaining new attention in research in recent decades.
Such research has not yet been translated into commercial devices.

The BCG is characterized by several waves with I, J, and K being the most visible,
as shown in Figure 7. Early studies have shown correlations between BCG measurement
alterations and cardiovascular functions [105–107]. Although the exact mechanism of the
genesis of the BCG waveform and its physiological origin are not as well understood
as ECG, several pertinent studies have been published that advanced in this direction.
Kim et al. [108] proposed a mathematical model that gave meaning to the timing and
amplitude of I, J, and K waves, where the time interval between I and J was hypothesized
to represent the aortic pulse transit time; the amplitude of J wave was hypothesized to
indicate relative changes in the aortic pulse pressure; the ratio of the amplitude of the J-K
down-stroke to the amplitude of the J wave was hypothesized to indicate pulse pressure
amplification. Guidoboni et al. [109] proposed another mathematical model that was shown
to have captured the fundamental cardiovascular mechanisms which generate the BCG
waveform. The predominant features of the BCG waveform captured by this model were
reported to be capable of predicting systolic failure.

In 1957, instead of measuring the impact of the heart’s mechanical activity on the
whole body, Mounsey et al. [110] acquired accelerometer-based BCG from the human chest,
which was later renamed seismocardiogram by Baevskii et al. [111] in 1964. Unlike BCG,
which measures the whole body’s recoil movement as a reaction to general cardiovascular
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forces (i.e., heart beating and blood ejection) and thus can be detected all over the body,
SCG measures to a large extent local linear acceleration perpendicular to the chest [110]
or local linear accelerations along the abscissa, ordinate, and applicate (i.e., x-, y-, and
z-axes) [112,113]. A characteristic SCG measurement collected in dorso-ventral direction
(i.e., z-axis) is shown in Figure 8. Its waveform appears very similar to BCG. However, as
reported by Migeotte et al. [114], there are some differences in timings and amplitudes of
the waves and BCG shows smoother curves and lower frequency content than SCG.
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Figure 7. A characteristic ballistocardiogram waveform for one heartbeat. Each peak is denoted with
letters H-N. The most relevant peaks related to physiological functions are denoted as I, J, and K.
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Figure 8. Characteristic seismocardiogram (SCG) and gyrocardiogram (GCG) measurements from
the sternum, co-currently collected and annotated according to the ECG. Inside the SCG waveform,
the identified systolic events include mitral valve closure (MC), isovolumic movement (IM), aortic
valve opening (AO), rapid systolic ejection (RE), and aortic valve closure (AC). Identified diastolic
events include mitral valve opening (MO) and early rapid filling (RF). Inside the GCG waveform,
the gI , gJ , gK , and gL points of the waveform along the x-axis of the GCG are annotated and used
to estimate cardiac time intervals, including isovolumetric contraction time (IVCT), isovolumetric
relaxation time (IVRT), the total electromechanical systole (QS2), the left ventricular ejection time
(LVET), and the pre-ejection period (PEP) [115].

In 2015, Meriheinä et al. [116] proposed to measure the cardiac activity manifest-
ing as rotational movements on the chest. In 2017, it was named gyrocardiogram by
Tadi et al. [115] who obtained a three-dimensional measurement on the sternum, where the
x-axis is horizontal across, and the y-axis is vertical across and the z-axis is perpendicular
to the front torso, respectively. Their experimental results demonstrated that GCG is less
sensitive than SCG to intra-subject and inter-subject variability in signal morphology and
has higher SNR, which coincides with the study of Migeotte et al. who showed that 60% of
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cardiac vibrational energy is contained in the gyration signal [117]. A characteristic GCG
measurement along the x-axis is shown in Figure 8.

4.2. Instrumentation

The similarities and differences in the sensing modalities for the acquisition of BCG,
SCG, and GCG are summarized in Table 1. In this section, we focus on contact-based
sensing modalities, as they are widely investigated in the literature. Some initial studies
on contact-free solutions are also present and are discussed as future developments in
Section 4.5

Table 1. Summary of instrumentation for mechanocardiogram (MCG).

MCG Measurements Measurement Origin Contact-Based Sensing Modalities Contact-Free Sensing Modalities

BCG Whole-body recoil movement Scale, Hydraulic sensors,
EMFi film sensors, Accelerometer, etc. Radio Frequency

SCG Sternal accelerations Accelerometer
Laser Doppler Vibrometer,
Laser Speckle Vibrometry,
Airborne Ultrasound

GCG Sternal rotations Gyroscope Laser Speckle Vibrometry

Sensors for MCG measurements do not require direct skin contact, eliminating poten-
tial skin hazards that can be present when applying ECG electrodes or contact-based PPG.
However, these sensors are more susceptible to motion distortions than ECG and PPG.

When MCG is recorded using inertial sensors (i.e., accelerometer and gyroscope),
the cardiac signal is typically represented by using the z-axis of the three-dimensional
SCG/BCG measurement. For three-dimensional GCG measurements, the x-axis [113,118] or
y-axis [112,119] can also be used.

Sensors for BCG are diverse, including bed-based EMFi film sensors [120,121], bed-
based loadcell sensors [122], bed-based hydraulic sensors [123], scale-based sensors [124],
PVDF sensors [125,126], etc. Accelerometer-based BCG measurements can be acquired by
inserting a micro-electro-mechanical system (MEMS) accelerometer into a chair [118] or
by attaching one to the center of mass (CoM) of the human body [127]. Unlike scale-based
sensors, integrated sensors (e.g., hydraulic, EMFi, PVDF, etc.) and accelerometers can
offer continuous BCG measurements. Furthermore, accelerometer-based BCG is wearable
compared with bed-based sensors.

SCG and GCG measurements can be acquired by attaching an accelerometer or a
gyroscope, respectively, to the sternum. A complete overview of the sensors that can be
employed for SCG and GCG recordings is reported by Taebi et al. [128]. MEMS is a popular
choice of accelerometer when the sensor is employed for HR extraction. For example, Tadi
et al. [112,129] used a triaxial MEMS accelerometer to record SCG signals from the sternum
of human subjects in resting state, where true positive beat detection rates of 95.8%, 99.3%,
and 99.5% were achieved, respectively, for supine, left lateral, and right lateral positions.
As an alternative to SCG, GCG measurements are preferably recorded using a MEMS
gyroscope due to its size, cost, power consumption, and accuracy [115,130]. Moreover,
MEMS gyroscopes measure angular velocity based on Coriolis force [119], which makes
the collected GCG less affected by posture changes of the human subject as compared
to SCG [116]. GCG alone can be used to extract the HR based on beat-to-beat detection
as demonstrated by Wahlström et al. [131], with an absolute error of the beat-to-beat HR
of 0.29 ± 0.36 bpm. Gardner et al. [132] used a triaxial MEMS gyroscope embedded in
a continuous positive airway pressure (CPAP) mask to measure GCG and achieved a
beat-to-beat HR error of 2.35 ± 2.30 bpm.

4.3. Signal Processing Approaches to Extract the HR

Using ECG as reference, the performances of different approaches from the literature
for stand-alone beat-to-beat HR extraction of contact-based MCG measurements are shown
in Table 2. As can be observed, despite the fact that different evaluation metrics have
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been employed, stand-alone beat-to-beat detection based on MCG measurements shows
good performance.

Table 2. Performances on beat-to-beat heart rate estimation of MCG using ECG as reference. Se:
sensitivity; Sp: specificity; Acc: accuracy; Err = error.

Algorithms Measurement # Subjects Body Posture Beat-to-Beat Detection Performances

Time domain analysis

SCG
SCG
SCG
SCG
SCG + GCG
BCG
BCG
BCG

16
10
29
20
25
33
3
10

walking
walking
supine
sitting
supine
supine
supine
supine

Acc = 98% [133]
Se = 98.7% [134]
Se/Sp = 99.5%/99.8% [112]
Acc = 98.3% [135]
Se/Sp = 96.6%/99.7% [113]
Err = 0.83% [120]
Se/Sp = 84%/90% [121]
Se/Sp = 95.2%/94.8% [122]

Wavelet analysis SCG 17 supine Err = 2.27 ± 0.81 bpm [136]

Aritifical intelligence

BCG
SCG
SCG + GCG
SCG
GCG

17
20
67
14
14

supine
supine
supine
walking/jogging
walking/jogging

Se/Sp = 76%/85% [137]
Se/Sp = 98.5%/98.6% [138]
Err = 0.56 ± 2.74 bpm [131]
Se = 91.6% ± 2.1/86.4% ± 4.1 [139]
Se = 87.6% ± 3.9/76.8% ± 5.5 [139]

Generally speaking, the approaches for extracting the HR from MCG measurements
that are presented in the literature follow a similar strategy. First, respiration and motion
artifacts are removed as a preprocessing stage. After preprocessing, the HR is estimated.

Unprocessed MCG measurements usually contain a respiratory component that can
be suppressed by high-pass filtering [133]. Furthermore, due to the nature of the motion
sensors, MCG measurements are in general more susceptible to random motion distortions
than ECG measurements. Motion artifacts found in MCG measurements collected via an
accelerometer or gyroscope (i.e., contact-based) are usually irregular and intermingled
with heartbeat-induced motion in both the time and frequency domains [140,141]. This
makes it challenging to estimate the HR, especially the beat-to-beat HR. In recent years,
most research on MCG measurements has therefore focused on the effective removal of
motion artifacts. Some studies suggest the use of two or more accelerometers and/or
gyroscopes, with at least one sensor attached to the sternum and at least one to the right
side of the back. With blind source separation techniques, motion artifacts can subsequently
be effectively removed from sternal cardio-mechanical measurements [134,139]. However,
unlike single-sensor approaches, the usage of multiple sensors increases the complexity of
the measurement setup and the computational complexity of the processing stage.

To overcome such limitations, motion artifact removal based on single accelerome-
ter measurements has also been investigated. Javaid et al. [142] employed an empirical
mode decomposition (EMD) based approach to increase the SNR of the collected SCG
measurements during walking. Yu et al. [133] proposed a novel adaptive recursive least
squares (ARLS) filter to remove motion artifacts in SCG measurements that were collected
during the standing and walking movements of the subjects. Motion artifacts found in
bed-based [121] and scale-based [143] BCG measurements were also tackled, where the
former detected motion artifacts based on dual thresholds, and the latter added secondary
strain gauge sensors to the scale to detect motion artifacts.

As mentioned above, after denoising and artifact removal, the HR can be estimated.
The algorithms that have been proposed in the literature for extracting the beat-to-beat
HR from MCG measurements, independent of a reference (e.g., ECG), can be divided into
three main categories: time-domain analysis, wavelet analysis, and artificial intelligence
(AI) based approaches. For real-time applications, the employed approaches for beat-to-
beat HR estimation rely on beat detection in the time domain analysis, including Hilbert
transform [112], envelop-based detection [135], an autocorrelated differential algorithm
(ADA) [113], and template matching methods [122]. For performance optimization, while
real-time applications are not required, research is currently exploring methods such as
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wavelet analysis [136] and AI [139] to overcome non-stationary and irregular patterns that
can be present in long-term MCG measurements.

4.4. Extramural Applications

Thanks to recent technological developments, reduced costs, and simplified imple-
mentation of the measurement setup (e.g., MEMS), there is increasing interest in MCG
measurements for extramural monitoring purposes. Such extramural applications can be
divided into those performed at home and those related to ambulant scenarios. For the
first scenario, it is assumed that the user remains still during the recording, as this limits
the presence of motion artifacts in the acquired signals. BCG/SCG measurements can be
collected multiple times a day or continuously overnight. Inan et al. [124] used a modified
commercially available scale to obtain repeatable BCG measurements with sufficient quality
in terms of I-J amplitude and timing.

To limit obtrusiveness, sensors can be embedded in objects at home. For example,
Cao et al. [144] used a chair with a load-cell platform installed under the seat to measure
BCG. However, similar to the work by Inan et al. [124], this study relied on the R-peak
detection of ECG to locate J and K waves of BCG, which rendered them unfeasible as a
standalone BCG measurement setup for HR estimation. Lydon et al. [123] used a hydraulic
bed sensor that can be placed under a mattress to collect BCG measurements from four
elderly people in their apartments while they lay on their beds. They also proposed
a short-time energy-based method to detect heartbeats in BCG measurements and the
results seemed promising (Sensitivity/Specificity = 100%/95%) even with the presence of
motion distortions. Regarding SCG, Ashouri et al. [145] proposed an algorithm that can
automatically detect accelerometer misplacement, which can be potentially exploited for
HR monitoring at home.

In ambulant settings, where human subjects perform daily activities (e.g., walking), the
commonly used sensing modality is a wearable accelerometer for BCG/SCG acquisition.
Rienzo et al. [146] used the MagIC-SCG garment with an accelerometer located in the
vest pocket at the sternum level and tested the feasibility of continuously measuring
the SCG signal in one human subject from 8 am to 8 pm and successfully estimated
beat-to-beat cardiac time intervals using ECG as a reference. Despite promising results,
data collection on more human subjects is needed to verify the usability of ambulatory
BCG/SCG. Yang et al. [139] employed a dual-SCG system, which was proposed in [134]
and is composed of two accelerometers, to monitor HR in 14 subjects who performed
jogging and walking exercises. The relatively high detection accuracy (91.6% and 87.6%
were achieved, respectively, for walking and jogging scenarios) suggests a high potential
for using a wearable SCG for daily ambulatory HR monitoring. As for BCG measurement,
Javaid et al. [147] employed a multi-sensor-fusion approach to record multi-site BCG
measurements while the four human participants were performing a walking activity and
successfully obtained systolic time intervals that demonstrated good correlation (r = 0.7)
with impedance cardiogram. However, more studies on the feasibility of using wearable
BCG for HR estimation in ambulant subjects are still needed.

4.5. Future Developments

In addition to contact-based MCG sensors, research is also being carried out on contact-
free sensing modalities for MCG measurements. Existing technologies that allow contact-
free acquisition of MCG include radio frequency (RF) technology [148–150], laser Doppler
vibrometry (LDV) [151,152], airborne ultrasound [153], and laser speckle vibrometry (SV).
RF technology processes the phase variation information of a microwave radar signal
to extract heartbeats [128], which is mainly BCG due to its delocalized area of interest
(AOI). Unlike RF, airborne ultrasound can restrict its AOI and detect SCG [153]. LDV
detects the vibration velocity of the surface where the laser spot is focused, by determining
the frequency shift between the emitted and reflected laser beams [154]. In this case, the
detected MCG measurement is essentially SCG. SV exploits the laser speckle effect, where
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a laser speckle pattern is formed on an optically rough surface and is extremely sensitive
to temporal changes induced by both tiny linear acceleration and rotational motions on
that surface [155]. Based on this principle, the MCG measurement extracted using SV is a
composition of both GCG and SCG.

The success of RF technology in general is subject to the complexity of separating
cardiac motions from respiratory ones, which results in difficulties in beat-to-beat HR
extraction. Compared to RF, LDV has a more localized AOI, and thus better performance
on beat-to-beat HR extraction. However, LDV is angle-sensitive in the sense that the laser
beam should be perpendicular to the detected surface (e.g., the sternum). Moreover, the
measured surface has to be reasonably reflective [128,156] which often requires the use of
retro-reflective materials on the skin [157,158]. Their cost and size also pose limitations
for usage and integration with other devices. Similar to RF, airborne ultrasound can
detect heartbeat through textile [153]. The downside of using airborne ultrasound is the
complexity in precise aiming (i.e., the selection of anatomical locations), which usually
requires a trade-off in the distance of measurement or the implementation of multiple
speakers [159]. SV can extract heartbeats with a laser on the chest area [160,161] while
skin exposure is not necessarily needed. A SV-based contact-free monitor validation
study was carried out and an average accuracy of more than 99% was achieved in beat-
to-beat detection in 115 human subjects in a sitting position [162]. Unlike LDV, SV is not
angle-sensitive and does not pose a strict requirement on the reflective properties of the
measured surface. However, similarly to the three sensing modalities mentioned above, SV
is susceptible to motion distortions.

The existing contact-free methods for MCG acquisition, including LDV and airborne
ultrasound, are currently all still too cumbersome and expensive to be implemented at home
for extramural monitoring purposes. A commercial SV-based HR monitor [162] seems to
be a suitable candidate but requires validation. Furthermore, extensive investigations into
the identification and mitigation of potential motion artifacts present in these contact-free
sensing modalities are still lacking. To increase their potential in extramural monitoring,
future studies need to look into system designs that allow these technologies to be integrated
into a domestic environment.

5. Comparison of HR Estimation with the Different Sensing Modalities

In this section, we directly compare the solutions proposed within the three categories
described above (i.e., sensing of electrical activity, peripheral activity of the heart, and
mechanical activity). For each class, we discuss the most recent and advanced solutions pro-
posed in the literature for extramural HR monitoring. We propose a comparison of several
characteristics in order to help the readers in identifying which is the most suitable solution
for their application, providing a guide for the selection of the appropriate technology.

Table 3 reports several criteria for each category. When possible, we propose a ranking
from the best (rank = 1) to the worst (rank = 3) of the three sensing categories.

The evaluated characteristics can be divided into three main classes (i.e., general,
hardware, and signal processing), which are discussed below.
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Table 3. Comparison between the three sensing categories (i.e., sensing of electrical activity, peripheral
activity of the heart and mechanical activity). The considered criteria are divided in three classes
(i.e., general, hardware and signal processing). When possible we introduced a ranking from best
(rank = 1) to worst (rank = 3) of the sensing modalities.

Electrical Peripheral Mechanical
Activity-Based Effect-Based Activity-Based

General
validated 1 2 3
low-cost equipment 2 1 (*)
contact-free no yes yes

Hardware
dimension 3 2 1
skin exposure 1 2 1
motion artifacts robustness 1 3 2

Signal processing

light-weight processing 1 2 2
HR estimation accuracy 1 2 3
real time estimation yes yes yes
anomalous rhythm detection yes yes yes

(*) No commercial devices are still available in the market for this type of sensors.

5.1. General

The most important general characteristic that we discuss is the validation provided
in the literature for the technologies considered. ECG-based HR monitoring has been
widely and extensively investigated for decades in various scenarios, ranging from normal
daily activity (e.g., during fitness training [55] or driving a car [42]) to challenging settings
(e.g., underwater [163], climbing [164], etc.). This technology, by means of the Holter device,
was the first portable option to monitor HR in extramural scenarios. Then, it was improved
by testing and validating the performance by employing different types of electrodes and
materials. For this reason, the American Heart Association [165] considers the ECG to be
the gold standard for investigations of heart rhythm and HR monitoring. However, the
high cost (about EUR 500 for QardioCore (Qardio®, San Francisco, CA, USA) and EUR
300 for Withings ScanWatch (Withings®, Paris, France)) of the commercially handled ECG
devices makes them a high-end device unsuitable for wide-range commercial applications
that are unrelated to medical purposes. Therefore, in recent years wearable devices based
on PPG technology have been proposed, since they can be realized with cheaper hardware
than ECG. In fact, the cost of the cheapest commercial PPG wristband is less than EUR 20,
making it affordable for the majority of the population. The high demand for PPG-based
HR monitors from users who want to check their physiological parameters during normal
daily activities or fitness training has led to extensive research development and validation
of this device in recent years. This increased interest from research and commerce led to
an improvement in accuracy in HR estimation and also in challenging scenarios, such as
during intense physical exercise that involves poor signal quality [76]. HR monitoring
based on the mechanical activity of the heart is the youngest technique among those
described in this paper. Therefore, the validation of MCG and its performance are still
under investigation by the scientific community. Furthermore, one of the main obstacles to
its commercial spread and wide application is related to the lack of standard measurement
methodologies and protocols [109]. Since the application and validation of inertial sensors
to measure the mechanical activity of the heart are still in a preliminary phase, MCG-based
devices are not yet available on the market. However, accelerometers/gyroscopes are
usually cheap (around EUR 10), so when the research in this field will be able to provide
commercial devices (for both medical and non-medical applications), it is expected that
their cost will not be high.

Finally, the last general item we considered to compare the three sensor modalities
described in this paper is the availability of contact-free measurement conditions, which
means that no sensors are placed on the body to provide the HR estimation. ECG sensors
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cannot reach this possibility, since they are sensitive to the electrical variation induced
by heart activity only if they are placed on the body. In contrast, PPG technology can be
used remotely via a camera that can detect skin color variations due to pulsatile blood
flow in the most superficial capillaries [166]. Furthermore, for MCG sensors the radio
frequency and ultrasound technologies that are used to detect the vibrating activity of the
body induced by heart pumping can also be placed relatively far from the body [128,153].
Contact-free measurements have the undoubted advantage of minimizing intrusiveness;
however, providing the right exposure of the body to the camera or the ultrasound probe is
quite difficult and loss of signal is frequent. Furthermore, the portability of such contact-free
instrumentation is limited because the measurement setup cannot easily follow the user in
outdoor scenarios. Therefore, its application is still limited to a few convenient scenarios,
such as the HR monitoring of car drivers [52]. For all these reasons, beyond the great
potential of this modality, further investigations are needed in the future.

5.2. Hardware

The first item evaluated for the hardware is the dimension of the sensors, as reported
in Table 3. As discussed in Section 2.1, the ECG signal can only be measured as the potential
difference between two points of the body surface. Therefore, at least two electrodes are
needed, and a third ground electrode is commonly used to improve SNR. Furthermore,
if the electrodes are placed too close to each other, the acquired signal will have a low
amplitude, which will make the R-peaks detection challenging, causing poor HR estimation.
Therefore, portable ECGs are more suitable for being embedded in objects with a large
surface (e.g., belt, t-shirt, bed, chairs, and so on), rather than in a smartwatch or fitness band.
The optical measurement performed by the PPG devices requires two elements (i.e., the
led that transmits the light and the photodetector that receives it). However, unlike the
ECG, these two elements need to be close to each other to avoid dispersion of light, which
would reduce the acquired signal. For these reasons, such sensors are suitable for compact
devices, such as smartwatches or smart bands. Finally, contact-based MCG sensors rely on
an accelerometer or a gyroscope. Therefore, since only one probe is needed, this solution is
the one that involves a smaller size than the other solutions considered in this paper.

The second hardware criterion that we consider is skin exposure. For PPG sensors,
skin exposure is a mandatory requirement because the optical measurement would be
hampered by the presence of a layer of material between the skin and the sensors. The
ECG is sensitive to the electrical field of the body, and the MCG to the vibration induced by
heart activity. Therefore, the presence of a layer between the skin and the electrodes (e.g., a
fabric) does not make the detection unfeasible, but often reduces the SNR.

Finally, we discuss the robustness of the considered modalities to motion artifacts,
which is a major challenge for HR monitors employed during extramural activities. Tradi-
tional wet ECG electrodes are not very sensitive to movements; therefore, ECG acquisitions
can have high quality also in presence of motion. On the other hand, the signals acquired
with capacitive electrodes usually have lower quality because they are affected by motion
artifacts induced by changes in the distance between the electrodes and the skin. The PPG
sensors need to be positioned in parts of the body where the capillaries are superficial
(e.g., wrist, fingers, earlobes, etc.), to obtain a strong and reliable signal. However, the
downside of these positions is that they are located in parts of the body that are subject to
frequent movements even during normal daily activities and which are intensified during
physical activity. Therefore, signals acquired with PPG sensors, whose quality is highly
sensitive to motion, are often corrupted by a large number of motion artifacts that make
the accurate and continuous detection of HR difficult. MCG sensors are based on the
detection of micro-motions induced by the heart pumping; therefore, they are in general
more susceptible to motion distortions than ECG sensors. For these types of sensors as well
as for PPG sensors, the employment of additional sensors, which help in the removal of the
artifacts, is a strategy often pursued [79,167–169].
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5.3. Signal Processing

The last category that we consider for the comparison is signal processing. As dis-
cussed in the previous sections, the extraction of a reliable HR estimation in extramural
scenarios could be a challenging task due to low SNR and motion artifacts that corrupt the
signals. Each sensing modality has different abilities in HR detection and it is important to
take its shortcomings and strengths into account in the selection and design phase of the
monitoring approach.

The waveforms of the signals acquired with the sensors discussed in this article are
very different from each other. The ECG signal is characterized by the high amplitude of the
R waves and limited motion artifacts, thanks to favorable sensor placement, in locations in
the body that are less subject to movement than others. This makes the detection of R peaks
in the time domain feasible by using simple and computationally light methods based on
adaptive thresholds. In this way, an accurate beat-to-beat HR estimation is provided. If the
acquisitions are made under non-optimal conditions with noise and artifacts that corrupt
the signal, the threshold detector is often preceded by a denoising phase, as discussed
in Section 2.3. These strategies have low computational complexity, requiring limited
processing time, and can facilitate that the HR estimation can be provided to the user in
real-time and with high accuracy. For example, Lazaro et al. [51] estimate the HR from
ECG signals acquired via dry electrodes embedded in an armband while the user performs
normal daily activities with an accuracy of 98.54%. The reference in their study is ECG
signals acquired by means of a Holter device.

In Section 3.3, we already discussed the sensitivity of PPG signals to artifacts that
on the one hand are caused by the positioning of optical sensors on body parts that are
frequently moved (e.g., wrist, finger), and on the other hand by the measurement principle
of the PPG which makes is, in comparison to ECG, extra sensitive to motion-induced
distortions of the PPG wave shape, even when the motion has low intensity. Due to this
high sensitivity, the extraction of HR in an extramural monitoring scenario is challenging.
To overcome this limitation, PPG devices are often equipped with additional inertial sensors
(e.g., accelerometers) that provide information on artifacts to make denoising more effective.
The denoising approaches proposed in the literature are abundant and based on different
strategies, such as signal decomposition [50,170], Wiener filtering [171], or supervised
learning frameworks [172]. Some of those are computationally complex; however, thanks
to the high computational ability of the recently proposed smartphones or smartwatches,
this shortcoming can be handled. Furthermore, to improve reliability, the HR estimation is
usually performed in the frequency domain, which is more suitable for rejecting artifacts
than the time domain estimation. Such an approach provides a highly accurate estimation
(error lower than 1 bpm [79]) but cannot perform a beat-to-beat estimation, being unsuitable
for some types of HRV analysis. Very few studies presented in the literature attempt to
overcome these limitations, suggesting that research in this field is still in an emerging phase.
For instance, Jarchi et al. [173] investigated a processing method based on instantaneous
spectral measures that were calculated using empirical mode decomposition and Hilbert
Transform with a novel spectral masking stage. Successful estimation of HR (the mean error
is equal to 1.75 bpm) provides a clue that a beat-to-beat HR estimation could be extensively
used in the future after further investigations.

To be effectively adopted in extramural monitoring scenarios, MCG measurements
require the development of more advanced processing strategies than those already pre-
sented in the literature. In fact, due to the high amount and variability of artifacts induced
by movements, it is still relatively far from possible to provide an accurate beat-to-beat
estimate of HR outside laboratories and clinical settings. One of the most pioneering studies
presented on this topic [139] uses an array of inertial sensors (accelerometers for SCG or gy-
roscopes for GCG) combined with a processing strategy based on independent component
analysis. This approach allows obtaining an acceptable beat-to-beat HR estimation during
jogging (Se = 86.06% for SCG and Se = 76.30% for GCG) and walking (Se = 91.44% for SCG
and Se = 87.32% for GCG). However, this performance is lower than that can be obtained
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with ECG and PPG, and the processing algorithm is computationally expensive and could
be unsuitable to be implemented in portable devices without introducing a delay in the
HR estimation.

Through beat-to-beat HR estimation, HRV can be calculated and used to detect ar-
rhythmias. The ECG signal is considered by the medical and scientific community the gold
standard for the diagnosis and detection of heart rhythm-related pathologies, thanks to
the high level of accuracy achieved in detection. For example, Marsili et al. [174] achieved
98.1% accuracy in real-time detection of atrial fibrillation (AF) through their algorithm
implemented onboard a wearable ECG device. The state-of-the-art PPG and MCG-based
methods also show good accuracy for AF detection. For instance, regarding PPG-based
sensors, Solosenko et al. [175] and Yang et al. [176] obtained an accuracy of 87% and 92.71%,
respectively. Instead, Hurnanen et al. [177] who employed SCG measurements achieved a
True Positive Rate of 99.9% and a True Negative Rate of 96.4% in the classification of AF
segments. However, these studies were carried out in hospital settings. Therefore, further
investigation is required for the validation of PPG and MCG sensors for the detection of
atrial fibrillation in extramural and ambulant scenarios [178].

6. Conclusions

This work provides an overview of the sensing strategies capable of detecting the
three main correlates of cardiac function. In particular, we focus on the electrical activity of
the heart, detected with the electrocardiogram, the peripheral effects of the heart activity,
recorded with the photoplethysmogram, and the mechanical activity of the heart, repre-
sented with the mechanocardiogram. For each of these sensing modalities, we illustrate
the physical principle used for the measurement, the sensors employed for the detection,
and the signal processing approaches proposed to extract HR from the acquired signals.
Furthermore, we discuss for each of the three modalities which are their possible extra-
mural applications and future developments. Finally, Section 5 proposes a comprehensive
comparison of different aspects (i.e., general, hardware, and signal processing) of the con-
sidered sensing modalities. This conclusive section aims at helping the readers to identify
which is the most suitable solution for their application, providing helpful guidelines for
appropriate technology selection.

Author Contributions: Conceptualization, A.G., R.J.H.M., S.Q., E.P. and R.V.; methodology, A.G.,
R.J.H.M., S.Q., E.P. and R.V.; resources, E.P. and R.V.; writing—original draft preparation, A.G.,
R.J.H.M. and S.Q.; writing—review and editing, A.G., R.J.H.M., S.Q., E.P. and R.V.; visualization,
A.G., R.J.H.M. and S.Q.; supervision, E.P. and R.V.; project administration, E.P. and R.V. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Italian Ministry of Education, University and
Research (MIUR) under the initiative Departments of Excellence (Law 232/2016).

Conflicts of Interest: The authors have no conflict of interest to declare.

References
1. Venes, D. Taber’s Cyclopedic Medical Dictionary; FA Davis: Philadelphia, PA, USA, 2017.
2. Rajendra Acharya, U.; Paul Joseph, K.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart rate variability: A review. Med. Biol. Eng.

Comput. 2006, 44, 1031–1051. [CrossRef] [PubMed]
3. Betts, J.G.; Young, K.A.; Wise, J.A.; Johnson, E.; Poe, B.; Kruse, D.H.; Korol, O.; Johnson, J.E.; Womble, M.; DeSaix, P. Anatomy and

Physiology; Open Stax College: Houston, TX, USA, 2013.
4. Saeed, M.; Villarroel, M.; Reisner, A.T.; Clifford, G.; Lehman, L.W.; Moody, G.; Heldt, T.; Kyaw, T.H.; Moody, B.; Mark, R.G.

Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A public-access intensive care unit database. Crit. Care
Med. 2011, 39, 952. [CrossRef] [PubMed]

5. Fidler, R.L.; Pelter, M.M.; Drew, B.J.; Palacios, J.A.; Bai, Y.; Stannard, D.; Aldrich, J.M.; Hu, X. Understanding heart rate alarm
adjustment in the intensive care units through an analytical approach. PLoS ONE 2017, 12, e0187855. [CrossRef]

6. Palatini, P. Need for a revision of the normal limits of resting heart rate. Hypertension 1999, 33, 622–625. [CrossRef] [PubMed]
7. Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [CrossRef]

http://doi.org/10.1007/s11517-006-0119-0
http://www.ncbi.nlm.nih.gov/pubmed/17111118
http://dx.doi.org/10.1097/CCM.0b013e31820a92c6
http://www.ncbi.nlm.nih.gov/pubmed/21283005
http://dx.doi.org/10.1371/journal.pone.0187855
http://dx.doi.org/10.1161/01.HYP.33.2.622
http://www.ncbi.nlm.nih.gov/pubmed/10024317
http://dx.doi.org/10.3389/fpubh.2017.00258


Sensors 2022, 22, 4035 23 of 29

8. Kovatchev, B.P.; Farhy, L.S.; Cao, H.; Griffin, M.P.; Lake, D.E.; Moorman, J.R. Sample asymmetry analysis of heart rate
characteristics with application to neonatal sepsis and systemic inflammatory response syndrome. Pediatr. Res. 2003, 54, 892–898.
[CrossRef] [PubMed]

9. Hasty, F.; García, G.; Dávila, H.; Wittels, S.H.; Hendricks, S.; Chong, S. Heart rate variability as a possible predictive marker for
acute inflammatory response in COVID-19 patients. Mil. Med. 2021, 186, e34–e38. [CrossRef]

10. Benedetto, S.; Caldato, C.; Greenwood, D.C.; Bartoli, N.; Pensabene, V.; Actis, P. Remote heart rate monitoring-Assessment of the
Facereader rPPg by Noldus. PLoS ONE 2019, 14, e0225592. [CrossRef]

11. Dong, J.G. The role of heart rate variability in sports physiology. Exp. Ther. Med. 2016, 11, 1531–1536.
12. Carter, R., III; Cheuvront, S.N.; Wray, D.W.; Kolka, M.A.; Stephenson, L.A.; Sawka, M.N. The influence of hydration status on

heart rate variability after exercise heat stress. J. Therm. Biol. 2005, 30, 495–502. [CrossRef]
13. Kudaiberdieva, G.; Görenek, B.; Timuralp, B. Heart rate variability as a predictor of sudden cardiac death. Anatol. J. Cardiol. 2007,

7, 68–70.
14. Papini, G.B.; Fonseca, P.; van Gilst, M.M.; van Dijk, J.P.; Pevernagie, D.A.; Bergmans, J.W.; Vullings, R.; Overeem, S. Estimation of

the apnea-hypopnea index in a heterogeneous sleep-disordered population using optimised cardiovascular features. Sci. Rep.
2019, 9, 17448 . [CrossRef]

15. Hernando, D.; Roca, S.; Sancho, J.; Alesanco, Á.; Bailón, R. Validation of the apple watch for heart rate variability measurements
during relax and mental stress in healthy subjects. Sensors 2018, 18, 2619. [CrossRef] [PubMed]

16. Roberts, D.M.; Schade, M.M.; Mathew, G.M.; Gartenberg, D.; Buxton, O.M. Detecting sleep using heart rate and motion data from
multisensor consumer-grade wearables, relative to wrist actigraphy and polysomnography. Sleep 2020, 43, zsaa045. [CrossRef]
[PubMed]

17. Tirziu, D.; Giordano, F.J.; Simons, M. Cell communications in the heart. Circulation 2010, 122, 928–937. [CrossRef] [PubMed]
18. Barold, S.S. Willem Einthoven and the birth of clinical electrocardiography a hundred years ago. Card. Electrophysiol. Rev. 2003,

7, 99–104. [CrossRef]
19. Li, K.H.C.; White, F.A.; Tipoe, T.; Liu, T.; Wong, M.C.; Jesuthasan, A.; Baranchuk, A.; Tse, G.; Yan, B.P. The current state of mobile

phone apps for monitoring heart rate, heart rate variability, and atrial fibrillation: Narrative review. JMIR mHealth uHealth 2019,
7, e11606. [CrossRef]

20. Tu, H.T.; Chen, Z.; Swift, C.; Churilov, L.; Guo, R.; Liu, X.; Jannes, J.; Mok, V.; Freedman, B.; Davis, S.M.; et al. Smartphone
electrographic monitoring for atrial fibrillation in acute ischemic stroke and transient ischemic attack. Int. J. Stroke 2017, 12,
786–789. [CrossRef]

21. Iskandar, A.A.; Kolla, R.; Schilling, K.; Voelker, W. A wearable 1-lead necklace ECG for continuous heart rate monitoring. In
Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom),
Munich, Germany, 14–16 September 2016; pp. 1–4.

22. Chi, Y.M.; Jung, T.P.; Cauwenberghs, G. Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review. IEEE Rev.
Biomed. Eng. 2010, 3, 106–119. [CrossRef]

23. Gruetzmann, A.; Hansen, S.; Müller, J. Novel dry electrodes for ECG monitoring. Physiol. Meas. 2007, 28, 1375. [CrossRef]
24. Ramasamy, S.; Balan, A. Wearable sensors for ECG measurement: A review. Sens. Rev. 2018. [CrossRef]
25. Fu, Y.; Zhao, J.; Dong, Y.; Wang, X. Dry electrodes for human bioelectrical signal monitoring. Sensors 2020, 20, 3651. [CrossRef]
26. Guzik, P.; Malik, M. ECG by mobile technologies. J. Electrocardiol. 2016, 49, 894–901. [CrossRef] [PubMed]
27. Galli, A.; Peri, E.; Zhang, Y.; Vullings, R.; van der Ven, M.; Giorgi, G.; Ouzounov, S.; Harpe, P.J.; Mischi, M. Dedicated algorithm

for unobtrusive fetal heart rate monitoring using multiple dry electrodes. Sensors 2021, 21, 4298. [CrossRef]
28. Meziane, N.; Webster, J.; Attari, M.; Nimunkar, A. Dry electrodes for electrocardiography. Physiol. Meas. 2013, 34, R47. [CrossRef]

[PubMed]
29. Chlaihawi, A.A.; Narakathu, B.B.; Emamian, S.; Bazuin, B.J.; Atashbar, M.Z. Development of printed and flexible dry ECG

electrodes. Sens. Bio-Sens. Res. 2018, 20, 9–15. [CrossRef]
30. Niu, X.; Gao, X.; Liu, Y.; Liu, H. Surface bioelectric dry Electrodes: A review. Measurement 2021, 183, 109774. [CrossRef]
31. Zheng, K.; Chen, S.; Zhu, L.; Zhao, J.; Guo, X. Large area solution processed poly (dimethylsiloxane)-based thin film sensor patch

for wearable electrocardiogram detection. IEEE Electron Device Lett. 2018, 39, 424–427. [CrossRef]
32. Kim, T.; Park, J.; Sohn, J.; Cho, D.; Jeon, S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D–2D hybrid

carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 2016, 10, 4770–4778. [CrossRef]
33. Castrillón, R.; Pérez, J.J.; Andrade-Caicedo, H. Electrical performance of PEDOT: PSS-based textile electrodes for wearable ECG

monitoring: A comparative study. Biomed. Eng. Online 2018, 17, 1–23. [CrossRef]
34. Pani, D.; Dessì, A.; Saenz-Cogollo, J.F.; Barabino, G.; Fraboni, B.; Bonfiglio, A. Fully textile, PEDOT: PSS based electrodes for

wearable ECG monitoring systems. IEEE Trans. Biomed. Eng. 2015, 63, 540–549. [CrossRef]
35. Bihar, E.; Roberts, T.; Saadaoui, M.; Hervé, T.; De Graaf, J.B.; Malliaras, G.G. Inkjet-printed PEDOT: PSS electrodes on paper for

electrocardiography. Adv. Healthc. Mater. 2017, 6, 1601167. [CrossRef] [PubMed]
36. Sinha, S.K.; Noh, Y.; Reljin, N.; Treich, G.M.; Hajeb-Mohammadalipour, S.; Guo, Y.; Chon, K.H.; Sotzing, G.A. Screen-printed

PEDOT: PSS electrodes on commercial finished textiles for electrocardiography. ACS Appl. Mater. Interfaces 2017, 9, 37524–37528.
[CrossRef] [PubMed]

http://dx.doi.org/10.1203/01.PDR.0000088074.97781.4F
http://www.ncbi.nlm.nih.gov/pubmed/12930915
http://dx.doi.org/10.1093/milmed/usaa405
http://dx.doi.org/10.1371/journal.pone.0225592
http://dx.doi.org/10.1016/j.jtherbio.2005.05.006
http://dx.doi.org/10.1038/s41598-019-53403-y
http://dx.doi.org/10.3390/s18082619
http://www.ncbi.nlm.nih.gov/pubmed/30103376
http://dx.doi.org/10.1093/sleep/zsaa045
http://www.ncbi.nlm.nih.gov/pubmed/32215550
http://dx.doi.org/10.1161/CIRCULATIONAHA.108.847731
http://www.ncbi.nlm.nih.gov/pubmed/20805439
http://dx.doi.org/10.1023/A:1023667812925
http://dx.doi.org/10.2196/11606
http://dx.doi.org/10.1177/1747493017696097
http://dx.doi.org/10.1109/RBME.2010.2084078
http://dx.doi.org/10.1088/0967-3334/28/11/005
http://dx.doi.org/10.1108/SR-06-2017-0110
http://dx.doi.org/10.3390/s20133651
http://dx.doi.org/10.1016/j.jelectrocard.2016.07.030
http://www.ncbi.nlm.nih.gov/pubmed/27524474
http://dx.doi.org/10.3390/s21134298
http://dx.doi.org/10.1088/0967-3334/34/9/R47
http://www.ncbi.nlm.nih.gov/pubmed/24137716
http://dx.doi.org/10.1016/j.sbsr.2018.05.001
http://dx.doi.org/10.1016/j.measurement.2021.109774
http://dx.doi.org/10.1109/LED.2018.2792022
http://dx.doi.org/10.1021/acsnano.6b01355
http://dx.doi.org/10.1186/s12938-018-0469-5
http://dx.doi.org/10.1109/TBME.2015.2465936
http://dx.doi.org/10.1002/adhm.201601167
http://www.ncbi.nlm.nih.gov/pubmed/28121395
http://dx.doi.org/10.1021/acsami.7b09954
http://www.ncbi.nlm.nih.gov/pubmed/29020777


Sensors 2022, 22, 4035 24 of 29

37. Nigusse, A.B.; Mengistie, D.A.; Malengier, B.; Tseghai, G.B.; Langenhove, L.V. Wearable Smart Textiles for Long-Term Electrocar-
diography Monitoring—A Review. Sensors 2021, 21, 4174. [CrossRef] [PubMed]

38. Nemati, E.; Deen, M.J.; Mondal, T. A wireless wearable ECG sensor for long-term applications. IEEE Commun. Mag. 2012,
50, 36–43. [CrossRef]

39. Ryu, C.Y.; Nam, S.H.; Kim, S. Conductive rubber electrode for wearable health monitoring. In Proceedings of the 2005 IEEE
Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; pp. 3479–3481.

40. Lim, Y.G.; Kim, K.K.; Park, S. ECG measurement on a chair without conductive contact. IEEE Trans. Biomed. Eng. 2006,
53, 956–959.

41. Baek, H.J.; Chung, G.S.; Kim, K.K.; Park, K.S. A smart health monitoring chair for nonintrusive measurement of biological signals.
IEEE Trans. Inf. Technol. Biomed. 2011, 16, 150–158. [CrossRef]

42. Uguz, D.U.; Dettori, R.; Napp, A.; Walter, M.; Marx, N.; Leonhardt, S.; Hoog Antink, C. Car seats with capacitive ECG electrodes
can detect cardiac pacemaker spikes. Sensors 2020, 20, 6288. [CrossRef]

43. Varadan, V.K.; Kumar, P.S.; Oh, S.; Kegley, L.; Rai, P. e-bra With Nanosensors for Real Time Cardiac Health Monitoring and
Smartphone Communication. J. Nanotechnol. Eng. Med. 2011, 2, 021011. [CrossRef]

44. Biagetti, G.; Crippa, P.; Falaschetti, L.; Orcioni, S.; Turchetti, C. Wireless surface electromyograph and electrocardiograph system
on 802.15. 4. IEEE Trans. Consum. Electron. 2016, 62, 258–266. [CrossRef]

45. Galli, A.; Giorgi, G.; Narduzzi, C. Multi-user ECG monitoring system based on IEEE standard 802.15. 6. In Proceedings of the
2019 IEEE International Symposium on Measurements & Networking (M&N), Catania, Italy, 8–10 July 2019; pp. 1–6.

46. Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, BME-32, 230–236. [CrossRef]
47. Galli, A.; Frigo, G.; Giorgi, G. Robust ECG Denoising for eHealth applications. In Proceedings of the 2018 IEEE International

Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–6.
48. Peng, S.; Bao, S.; Chen, W. Capacitive coupled electrodes based non-contact ECG measurement system with real-time wavelet

denoising algorithm. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 6587–6590.

49. Kota, D.; Tasneem, N.; Kakaraparty, K.; Mahbub, I.; Mehta, G.; Namuduri, K. A Low-power Dry Electrode-based ECG Signal
Acquisition with De-noising and Feature Extraction. J. Signal Process. Syst. 2021, 1–15. [CrossRef]

50. Galli, A.; Frigo, G.; Chindamo, D.; Depari, A.; Gadola, M.; Giorgi, G. Denoising ECG signal by CSTFM algorithm: Monitoring
during motorbike and car races. IEEE Trans. Instrum. Meas. 2019, 68, 2433–2441. [CrossRef]

51. Lázaro, J.; Reljin, N.; Hossain, M.B.; Noh, Y.; Laguna, P.; Chon, K.H. Wearable armband device for daily life electrocardiogram
monitoring. IEEE Trans. Biomed. Eng. 2020, 67, 3464–3473. [CrossRef] [PubMed]

52. Wu, T.; Redouté, J.M.; Yuce, M. A wearable, low-power, real-time ECG monitor for smart t-shirt and IoT healthcare applications.
In Advances in Body Area Networks I; Springer: Cham, Switzerland, 2019; pp. 165–173.

53. Chamadiya, B.; Mankodiya, K.; Wagner, M.; Hofmann, U.G. Textile-based, contactless ECG monitoring for non-ICU clinical
settings. J. Ambient. Intell. Humaniz. Comput. 2013, 4, 791–800. [CrossRef]

54. Eilebrecht, B.; Czaplik, M.; Walter, M.; Wartzek, T.; Rossaint, R.; Leonhardt, S. Implementation of a capacitive ECG measurement
system in clinical practice: An interim report. In Proceedings of the World Congress on Medical Physics and Biomedical
Engineering, Munich, Germany, 7–12 September 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 370–372.

55. Patel, R.K.; Gupta, A.; Chowdary, V.; Kaundal, V.; Mondal, A.K. Wearable fitness band-based U-health monitoring. In Sensors for
Health Monitoring; Elsevier: Amsterdam, The Netherlands, 2019; pp. 175–189.

56. Worringham, C.; Rojek, A.; Stewart, I. Development and feasibility of a smartphone, ECG and GPS based system for remotely
monitoring exercise in cardiac rehabilitation. PLoS ONE 2011, 6, e14669. [CrossRef] [PubMed]

57. Baig, M.M.; Gholamhosseini, H.; Connolly, M.J. A comprehensive survey of wearable and wireless ECG monitoring systems for
older adults. Med. Biol. Eng. Comput. 2013, 51, 485–495. [CrossRef]

58. El Attaoui, A.; Hazmi, M.; Jilbab, A.; Bourouhou, A. Wearable wireless sensors network for ECG telemonitoring using neural
network for features extraction. Wirel. Pers. Commun. 2020, 111, 1955–1976. [CrossRef]

59. Schuchert, A.; Behrens, G.; Meinertz, T. Impact of long-term ECG recording on the detection of paroxysmal atrial fibrillation in
patients after an acute ischemic stroke. Pacing Clin. Electrophysiol. 1999, 22, 1082–1084. [CrossRef]

60. Selvaraj, N. Assessment of pulse transit/arrival time as noninvasive blood pressure predictors in finger and earlobe sites. In
Proceedings of the 2016 IEEE Healthcare Innovation Point-Of-Care Technologies Conference (HI-POCT), Cancun, Mexico, 9–11
November 2016; pp. 200–203. doi: 10.1109/HIC.2016.7797731. [CrossRef]

61. Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39.
[CrossRef]

62. Elgendi, M. On the Analysis of Fingertip Photoplethysmogram Signals. Curr. Cardiol. Rev. 2012, 8, 14–25. [CrossRef] [PubMed]
63. Abay, T.Y.; Kyriacou, P.A. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion. IEEE Trans.

Biomed. Eng. 2015, 62, 2187–2195. doi: 10.1109/TBME.2015.2417863. [CrossRef] [PubMed]
64. Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable Photoplethysmographic Sensors—Past and Present. Electronics 2014,

3, 282–302. [CrossRef]
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