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Abstract: Digital pathology analysis using deep learning has been the subject of several studies. As
with other medical data, pathological data are not easily obtained. Because deep learning-based
image analysis requires large amounts of data, augmentation techniques are used to increase the
size of pathological datasets. This study proposes a novel method for synthesizing brain tumor
pathology data using a generative model. For image synthesis, we used embedding features extracted
from a segmentation module in a general generative model. We also introduce a simple solution for
training a segmentation model in an environment in which the masked label of the training dataset is
not supplied. As a result of this experiment, the proposed method did not make great progress in
quantitative metrics but showed improved results in the confusion rate of more than 70 subjects and
the quality of the visual output.

Keywords: generative adversarial networks; pathology image synthesis; digital pathology

1. Introduction

Pathology is a branch of medicine in which the morphological changes that occur in
tissue, organs, and cells are microscopically observed to investigate the causes of disease. It
provides important information for making final diagnostic decisions. Latterly, pathology
has used electron microscopes to magnify brain tumor, muscle, or other tissue by thousands
to tens of thousands of times to observe minute morphological changes. This digitization is
called digital pathology, and accordingly, digital pathology data analysis research based on
deep learning is being studied using a large amount of data. In recent years, in the field
of pathology, deep learning has been used to analyze and predict data and has achieved
state-of-the-art performance. Through various deep learning-based algorithms, digital
pathology mainly designs classifiers for diagnosing pathologist-level diseases and to assist
in human decision-making processes. It has also been used for detecting or segmenting
specific parts, such as nuclei, cells, and blood vessels, in slide images, normalizing H&E
stained images and predicting patients’ life expectancies.

For training, deep learning networks generally require tens of thousands to millions of
samples in the datasets. However, collecting data from medical imaging remains difficult,
and the data imbalances between classes are a problem. Data augmentation techniques
and methods of synthesizing data have been actively researched to solve this problem.
General data augmentation techniques, such as x-flips, y-flips, 90◦ rotations, color trans-
forms, brightness control, noise addition, etc., have been used to create data to improve
and generalize the performance of deep learning networks. In addition to the common
data augmentation techniques, machine learning algorithms are also widely used. Rep-
resentatively, there is the Synthetic Minority Oversampling TEchnique (SMOTE) [1] that
uses the k-nearest neighbors (K-NN) algorithm. He et al. and Han et al. oversampled the
data using both the adaptive synthetic sampling (ADASYN) [2], and Borderline-SMOTE
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algorithms are based on SMOTE [3]. Deep learning algorithms also demonstrated good
performance in data synthesis. Generative adversarial networks (GANs) [4] have actively
studied a representative generative model for data synthesis and have produced several
unanticipated applications.

In this paper, we present a method to generate oligodendroglioma (ODG) pathology
images from latent space using the GAN for generating realistic data. Unlike many previous
GAN algorithms, we propose the following: a method of applying a simple feature concate-
nation that assists in training the generator. To apply the feature concatenation technique
requires a segmentation module consisting of symmetrically designed segmentation and
reconstruction networks based on the U-net architecture [5]. The segmentation module con-
sists of the segmentation network that segments important features in cellular tissue, such
as nuclei and glands, and a reconstruction network that helps improve the segmentation
accuracy by reconstructing the original image from the masked image, which is the result
of segmentation. Similar to most segmentation tasks, a training dataset consisting of pairs
of the original and labeled data are often used for supervised learning. The Cancer Genome
Atlas (TCGA) LGG dataset we used does not have labeled data; therefore, for training, we
provided a guideline dataset using k-means clustering [6] to our segmentation model and
changed from unsupervised training to a simple method. The generator produces realistic
ODG images from the random latent vector z by utilizing the features that are used in
the reconstruction stage of the segmentation module. Our simple method of guiding the
generator by concatenating the embedding feature maps of the reconstruction network
created better quality images for the TCGA data than the existing method.

Works related to this study are described in Section 2. We propose our method in
Section 3 and describe the qualitative and quantitative experimentation results in Section 4.
Finally, we include the discussion and conclusion in Sections 5 and 6, respectively.

2. Related Work
2.1. Oligodendroglioma

Oligodendroglioma (ODG) are rare tumors that infiltrate a wide range but mainly
occur in adult cerebral hemispheres’ white matter, and they consist of cells resembling
oligodendrocytes or oligodendroglia [7,8]. Histologically, ODG is characterized by round
nuclei with a rounded cytoplasmic surround. Because of this perinuclear halo characteristic,
it is often referred to as the “fried egg appearance”. In addition, “uniformly round to oval-
shaped cells”, “uniform nuclei”, the “chicken-wire capillary network”, and “calcification”
are frequently found characteristics [7,8].

According to statistics from the Central Brain Tumor Registry of the United States (CB-
TRUS) from 2011 to 2015, the incidence of ODG, including anaplastic oligodendroglioma,
was 3.57 to per 100,000 [9]. Kleihoues reports that ODG is a brain tumor that accounts
for about 5–18% of all intracranial gliomas [7]. Suh et al. reported that it accounted for
approximately 3.4% of the total central nervous system gliomas [10].

2.2. Histology Image Synthesis

By training deep learning networks, data augmentation techniques improve the per-
formance of deep learning models by increasing the number of training samples. Various
techniques are used when the training data are insufficient. This is essential for medical
data that are severely imbalanced in each class. Using methods such as x-flips, y-flips, 90◦

rotations, color transforms, brightness control, and noise addition increases the general-
ization performance of deep learning models by creating a large quantity of relevant data.
Data augmentation methods may yield desired performance depending on the task, but
sometimes, it degrades the network’s performance. For example, for a human face dataset,
such as the CelebA [11] and FFHQ [12] datasets, if color transformations are strongly
applied, samples that are highly unlikely to exist can be added as the training data. There-
fore, rather than simply sampling meaningless data, meaningful augmentation techniques
must be applied such as increasing the number of data points in a minority layer that has
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insufficient data. The SMOTE finds the nearest neighbor within the minority class and
multiplies the difference between samples using a random value of between 0 and 1 to
create new data samples. Consequently, it matches the quantity of data between classes [1].
He et al. proposed ADASYN, which improves SMOTE. This work applies the concept of
assigning weights according to the density of the majority class when selecting a small-class
sample [2]. In addition, Han et al. proposed Borderline-SMOTE, which synthesizes new
data samples by applying SMOTE based on the boundary between the minority class
sample set and the majority class sample set [3].

2.3. Segmentation

Several studies have been conducted on pixel-accurate segmentation for digital pathol-
ogy. In particular, it is common to use U-Net [5] in medical imaging tasks, such as data
segmentation, reconstruction, and pre-processing. U-Net is a U-shaped architecture-based
model in a fully convolutional network [13]. This model can execute end-to-end learn-
ing using small datasets, resulting in efficient segmentation for biomedical imaging. Two
paths, one contracting and the other expanding, function as the encoder and decoder,
respectively. The two paths are connected via skip connection. This structure ensures
successful segmentation results by preserving local information. In digital pathology,
previous studies have used the U-Net structure to segment various cancers, such as in
breast [14–18], colon [19–23], lung [24,25], and prostate tissue [26,27]. Furthermore, the
structure is also applied to localized tissues such as the nuclei [24,28–32], cells [33,34] and
glands [19–23], which exhibit major pathological characteristics. Currently, from the struc-
tural perspective, some relevant studies have used network-modified U-Net structures,
such as Dual-U-Net [32], U2-Net [35] and R2U-Net [31]. We followed the fundamental
structure of previous segmentation studies and used them to stabilize the training and
contribute to improving performance by combining it with GANs.

2.4. GANs in Digital Pathology

Generative adversarial networks (GANs) introduced by Goodfellow are deep learning-
based generative models. A GAN consists of a generator (G) that maps random noise z
to the target data distribution and a discriminator (D) that estimates the probability that
the data came from the target data distribution or G. The two networks increase each
other’s performance via the adversarial training process. GANs face critical problems
during training. First, they are unstable during training and several studies have focused
on solving this problem. Representatively, the DCGAN [36] suggests guidelines for stable
training, and this structure is very effective. The WGAN mathematically proved that if the
1-Lipschitz constraint is satisfied, satisfactory convergence can be achieved using the Earth
Mover Distance (EMD) and Wasserstein distance (WD) [37]. The WGAN-GP’s training
stability and mode collapse problem is resolved by applying a gradient penalty to the
WGAN [38]. There are studies, such as LSGAN [39], hinge loss-based GAN [40], unrolled
GAN [41], MDGAN [42], and SN-GANs [43], that improve GANs from the loss-function
perspective. In addition, studies such as LAPGAN [44], PGGAN [45], StyleGAN [12],
EBGAN [46], SAGAN [47], and BigGAN [48] that have improved the structure of the models.
PathologyGAN [49], which generates pathological data, is a network that uses BigGAN as a
baseline architecture. The BigGAN is a model that stably trained GANs with a large dataset
such as the ImageNet dataset [50], which consists of 14 million images and thousands
of classes by applying the Spectral Normalization (SN) and Self-Attention (SA) layers to
both G and D networks. PathologyGAN used Relativistic Average Discriminator [51] and
succeeded in generating high-quality fidelity data with faster convergence when hinge loss
is used as the GAN’s loss function. In addition, a structure that maps the latent vector z,
the input of G, to w ∼ M(z), through StyleGAN’s mapping network and adaptive instance
normalization (AdaIN) was used. Quiros et al. used two H&E breast cancer datasets from
the Netherlands Cancer Institute (NKI) and Vancouver General Hospital (VGH) cohort,
and they achieved a Fréchet Inception Score (FID) of about 16.65 [49]. Deshpande et al.
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generated tissue images using CGAN [52] for the CRAG (Colorectal Adenocarcinoma
Gland) dataset, and they combined several small tiles to create high-resolution images with
realistic pathological features such as gland appearance and nuclei structure [53]. Sondre
et al. generated synthetic data from random latent vectors by combining CycleGAN [54]
and ACGAN (Auxiliary classifier GAN) [55] for dermoscopic skin lesion images. Sondre et
al. applied image transfer via CycleGAN to a common class (nevus) to create a rare and
specific melanoma class [56]. Boyd et al. [57] generated pathological data with realistic and
fine details through visual field expansion method and reported a FID of approximately 21
and 37 for CAMELYON17 [58] and CRC [59] datasets.

Digital pathology uses deep learning methods primarily for classification, segmen-
tation, or tasks that assist medical prediction. In recent years, research on the image-
generation task has increased, and pathological image generation using GANs in particular
has the potential for various applications.

In this study, we propose a method for generating data by applying a simple method
called a ‘’embedding feature concatenation” to the conventional GAN architecture. We
generated ODG images using the TCGA dataset, and the overall workflow was divided
into two parts: the segmentation module and the generation module.

3. Method

We propose a method to synthesize oligodendroglioma (ODG) pathology data. Our
model is based on the PGGAN, which among GAN models, achieves high performance. For
generating realistic images, we trained our generator using latent vector z and embedding
features.

As illustrated in Figure 1, our proposed method consists of two modules.

• The segmentation module creates masked images from the reference images and
extracts meaningful features in the reconstruction process.

• The generation module generates pathological images from the features of the segmen-
tation module and latent vectors by the embedding feature concatenation method.

Figure 1. The overall flow of our proposed model. A segmentation module (light blue box), a
generation module (yellow box).

The segmentation module consists of two networks, one creates masked images from
pathological images and the other reconstructs the reference images. The ODG dataset that
we used has the following problem: the inability to produce segmentation labels. Therefore,
k-means clustering was used to solve this problem. The generation module was designed
based on the PGGAN. The PGGAN achieves good performance in general cases but often
generates poor visual quality in the pathology domain. To generate visually realistic images,
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we concatenate the embedding features. This method concatenates output features of the
segmentation module to the corresponding scale level of generator layers. Consequently,
we generated realistic, high-quality ODG data.

3.1. Segmentation and Reconstruction Module

In recent years, pixel-level segmentation studies have been conducted in digital pathol-
ogy. Segmentation in the pathological domain distinguishes various regions such as cell
nuclei, cells, and glands.

Our segmentation module aims to extract meaningful embedding features from refer-
ence images. The architecture was composed of two networks, as shown in Figure 2a. The
first network is a segmentation network. The network creates masked images by discrimi-
nating blood vessels, cells, nuclei, and cytoplasm from the input pathology images. The
second network reconstructs the masked results obtained by the reconstruction network
into original input images of the segmentation network. Subsequently, the feature outputs
of the intermediate layers of the reconstruction network are concatenated to train the
generator. Additionally, we observed that the segmentation accuracy improved by adding
the reconstruction network.

Figure 2. The segmentation module structure. (a) The structure of the segmentation network and
reconstruction network. (b) The layer structure of the residual down-sampling block. (c) The layer
structure of the residual up-sampling block.

Both networks were designed based on Res-UNet [60], which is a residual block ap-
plied to U-net. We designed networks based on both Res-UNet and the residual blocks
applied to U-net. To captures the local information of the input accurately, both networks
have a symmetrical structure. We configured the two networks in the same U-net architec-
ture using four pairs of residual down-sampling blocks (RDB) and residual up-sampling
blocks (RUB). Figure 2b,c show the structural layouts of the RDB and the RUB, respectively.

The RDB consists of two paths. One path connects two 3× 3 depth-wise separable
convolution layers and an average pooling layer. The other goes through a 1× 1 convolution
and an average pooling layer. Subsequently, the outputs of both paths are added. The RUB
adds a path that connects an up-sampling layer and two 3× 3 convolution layers and the
path of an up-sampling layer and a 1× 1 convolution layer.

We generated masked images using softmax in the last RUB, resulting in a segmenta-
tion network and obtained reconstructed images by using tanh in the reconstruction net-
work.
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In general, the segmentation network aims to learn the function f : X → Y, where X is
the dataset of pathological images, Y is the corresponding mask label and the reconstruction
network aims to learn the function g : Y → X, which reconstructs the original input data.

Most studies on segmentation tasks use a paired dataset containing data with corre-
sponding ground truth labels. Unfortunately, many medical datasets including the TCGA
dataset we used do not provide segmentation labels.

We used k-means clustering to train the segmentation module using the TCGA dataset,
because k-means clustering is a simple algorithm requiring few computational costs. We
labeled groups of pixels with similar colors using k-means clustering. The TCGA dataset
consisted of H&E-stained pathology images, and the images were stained with similar
colors for cells, nuclei, and cytoplasm. Therefore, we conducted pixel grouping of simi-
lar colors using k-means clustering and classified the cells, nuclei, and cytoplasm with
relevant labels.

As shown in Figure 1, we used the mask image obtained by k-means clustering as
ground truth labels and used the cross-entropy loss between the k-means clustering results
and the segmentation results in the training process. Using this method, we addressed the
problem of ground truth labels not being simply provided.

The segmentation operation results in an integer value of class per each pixel via
softmax. It means that the masked data have k-channels as the output of the softmax layer,
and each channel value is expressed as a probability of k classes. For visualization and
training the reconstruction network, we mapped the results to the class corresponding to
the highest probability. Then, we normalized the result to a value of [0, 1]. Consequently, our
segmentation network generated the gray-scale masked data with a resolution of 256× 256,
as shown in Figure 3c. Figure 3a shows samples of TCGA input data, and Figure 3b shows
examples of k-means clustering results.

Figure 3. Examples of images obtained through k-means clustering and the segmentation results.
(a) The samples of the segmentation network input. (b) The samples of k-means clustering results.
(c) The samples of the mask images of the segmentation module.

Figure 4 shows the loss during training of the segmentation module. The two lines
are the loss of the segmentation network and the reconstruction network, respectively.
Additionally, the embedding features of the reconstruction network were concatenated
into the layers of the generator for each scale level. Thus, the embedding features extracted
from the segmentation module improve the visual performance of the baseline.



Sensors 2022, 22, 3960 7 of 16

Figure 4. The training loss of the segmentation module.

3.2. Concatenating Embedding Features in the Generation Module

This section describes how to concatenate embedding features into a general GAN
structure. We generated ODG data by applying the proposed method based on a pro-
gressive growing GAN (PGGAN), which demonstrated stable training and high-quality
image generation. Initially, the PGGAN maps the latent vector to the 4× 4 low-resolution
samples. In addition, this model adopts the progressive training method of stacking new
layers by increasing the resolution by a power of 2. Consequently, it stably generates
high-resolution images. Similarly, we progressively trained our model by the proposed
method concatenating the embedding features extracted from the reconstruction network
of a pre-trained segmentation module of a PGGAN-based generator. As shown in Figure 2a,
the reconstruction network of the segmentation module consists of 4 RDBs that constitute
the encoder and 4 RUBs that constitute the decoder. We extracted the embedding feature
outputs from three blocks: the last RDB, first and second RUBs. Each feature map was
concatenated according to the output scale of the generator.

Therefore, the generator uses the information from the reconstruction network and
supports GAN training with the process formulated as:

ImgG = G(z,Fenc,Fdec) (1)

where G(·) is a generator, z ∼ N (0, 1) is a latent vector, and Fenc and Fdec indicate the output
feature maps of the encoder and decoder of the reconstruction network, respectively.

Figure 5 shows how to apply the embedding feature concatenation method during
progressive training. Our training process also learns an initial generator that creates
Imginit ∈ R4×4 images from the latent vector z ∈ R512 in the same manner as the PGGAN,
and the new layers fade in smoothly in subsequent steps. In the intermediate step, to gener-
ate 16× 16 resolution, the feature maps Fenc ∈ R16×16×512 are concatenated to the generator.
Then, F1

dec ∈ R32×32×256, F2
dec ∈ R64×64×128 are concatenated in order. Consequently, we

generated ImgG ∈ R256×256×3, which is a high-quality pathological ODG image. Figure 6
shows the samples from low-resolution to high-resolution ODG data generated by our
network.

For a more detailed description of the generation module, we used a generator and a
discriminator with a symmetrical structure. In the initial generator and discriminator, 4× 4
convolutional layers are used at the beginning and end, respectively, and the kernel sizes of
all other convolutional layers are 3× 3. Both networks used the convolutional layer twice
per scale for each progress and use LeakyReLU activation. The generator generates the RGB
data ImgG as an output using a 1× 1 convolutional layer and tanh at the final stage, and the
discriminator at the end applies a 4× 4 convolutional layer and a dense layer to distinguish
synthetic and real data. The discriminator gradually add layers while using the weights
of the previous training step during the training process following the PGGAN method.
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The training progressed well without applying a separate training method. Figure 7 shows
samples generated by the proposed method.

Figure 5. The embedding feature concatenation method and the layer structure of the generator of
the generation module.

Figure 6. Low to high-resolution data samples were progressively generated by our model. From
4× 4 (leftmost) to 256× 256 (rightmost).

Figure 7. The plots of losses for all resolutions during training: (a) PGGAN, (b) proposed method.

3.3. Training

In practice, applying the embedding feature concatenation method requires a pre-
trained segmentation module. The segmentation network was trained using supervised
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learning with the softmax outputs and the final layer of the network and the k-means
clustering guide set. The k-means clustering results can be considered a multi-label clas-
sification problem; categorical cross-entropy (CCE) was applied as an objective function.
Therefore, the segmentation loss that was used can be formulated as:

Lseg = CCE(S(x), c) (2)

c = Cluster(x) (3)

where S(·) denotes the segmentation network, x is the input data sample from the in-
put dataset {xi|i = 1, . . . , N}, and c is the corresponding centroid from the cluster set
{ci|i = 1, . . . , N}, which is the result of the k-means clustering algorithm.

We used the k-means clustering guide set because our training dataset does not have
corresponding ground truth labels. Unlike natural images, in which local features are
important, pixel-level labels can be created based on clusters that correspond to fairly
simple features in the pathological images. When the guide labels are obtained through the
k-means clustering algorithm, it is not experimentally more accurate than the paired dataset
with the ground truth, but it leads to reasonable segmentation performances. The model
delivered good performance when K = 4 or 5, and it was fixed at K = 4 in the experiment.

The reconstruction network, R(·), reconstructs the given input images x from S(x),
which are the masked samples. We applied the mean squared error (MSE) to the training
to reduce the the difference between the original data input x and the reconstructed data
R(S(x)). Therefore, the reconstruction loss was formulated as follows:

Lrecon = MSE(R(S(x)), x) (4)

By adding the reconstruction model and loss to a single segmentation model, we ob-
tained more highly accurate segmentation results. Finally, the total loss of the segmentation
module was utilized by adding Lseg and Lrecon, as shown in Equation (5):

Ltotal = Lseg + λreconLrecon (5)

where λrecon is a reconstruction parameter heuristically set to 5.
We used the WGAN-GP objective function [38] as an adversarial objective function to

train the generation module, and this objective function converges with that of our feature
concatenation method. The GAN objective function is formulated as follows:

Lgan = Ex̃∼PG ([D(x̃)])−Ex∼Pr ([D(x)]) + λGPEx̂∼Px̂ ([‖(∇x̂D(x̂)− 1)2‖2]) (6)

where x̃ denotes a synthesis output from the distribution PG, x denotes an image from the
real distribution Pr and x̂ denotes a sample image from sample distribution Px̂. We define x̂
as the formula of x̂← εx + (1− ε)x̃ and set the penalty coefficient λgp to 10 as used in [38].
Figure 7 shows the losses of the discriminator and generator according to the training
epochs of PGGAN and the proposed method. Each graph shows the training results from
scale 8 to 256 pixels. Figure 7a plots the training curves of PGGAN and Figure 7b plots the
training curves of the proposed method.

Our networks were implemented using Tensorflow and Keras. We optimized the
Generation Module using Adam with β1 and β2, 0.9 and 0.99, respectively. The module gen-
erator and discriminator had the same learning rate (0.0001). We trained the networks using
an Intel Core i7-10700 2.9 GHz and NVIDIA GPU RTX 3090 with 24 GB GPU memories.
The module required approximately a week for training.

4. Experimental Results

In this section, we describe the experiments conducted to measure the performance of
the proposed model in two ways. First, we compared the quality of the images generated
using a qualitative evaluation method. To measure qualitative scores, we used modified
AMT perceptual studies [61–63]. We experimented using perceptual surveys in paired and
unpaired settings. Through these experiments, we compared the confusion rates of the
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generation results from the proposed method with the embedding feature concatenation
method and other methods, WGAN-GP, PGGAN and Boyd et al. [57].

Second, to compare the two models, we calculated the Fréchet Inception Score (FID) [64]
and Inception Score (IS) [65]. The score is a commonly used metric for measuring the perfor-
mance of generative models. We calculated the two metrics and described the advantages of
applying our method compared to the other methods.

4.1. Preparing Data

We used data labeled as oligodendroglioma among the primary diagnosis classifications
of TCGA-LGG as training data. The dataset was collected from https://portal.gdc.cancer.gov/
(accessed on 20 December 2021). The TCGA-LGG ODG dataset consists of H&E stained
pathology slides. We cropped whole-slide images to 512 × 512 patches based on a 40×
magnification. Subsequently, we resized it to 256× 256 pixels to simplify this task. We then
removed the patches that were located at the boundary and that showed too little tissue
because these negatively affect the training. We constructed a training dataset with a total of
120 k samples by cropping slides from the TCGA-LGG ODG dataset as patches and filtering
out unnecessary data.

4.2. Examples of the Proposed Method

We trained our network using a pre-processed ODG dataset using synthetic ODG data
with a resolution of 256× 256 pixels. Figure 8 shows some of the samples generated by
the proposed model. The proposed model captured the morphological features seen in
pathological images such as cells, nuclei, and tissues while generating visually superior
results. However, unrealistic tissue images were occasionally synthesized, indicating that
the model can be improved.

Figure 8. Oligodendroglioma samples with a resolution of 256 × 256 generated by the
proposed method.

https://portal.gdc.cancer.gov/exploration?filters=%7B%22op%22%3A%22and%22%2C%22content%22%3A%5B%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.primary_site%22%2C%22value%22%3A%5B%22brain%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.program.name%22%2C%22value%22%3A%5B%22TCGA%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-LGG%22%5D%7D%7D%2C%7B%22op%22%3A%22in%22%2C%22content%22%3A%7B%22field%22%3A%22genes.is_cancer_gene_census%22%2C%22value%22%3A%5B%22true%22%5D%7D%7D%5D%7D
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Although there is a color difference between slides in the H&E-stained tissue images,
the tissues are stained with the same color in each slide because of the nature of staining.
However, we observed samples in which the extracellular material’s staining was not
uniform in the generated patch images. As shown in Figure 9d, the color of some samples
changed to a different staining color. These samples indicate a limitation of our model that
must be addressed.

Figure 9. Generated samples from the WGAN-GP, PGGAN, Boyd et al. and our model. (a) The
WGAN-GP samples generate images with a poorly uniform staining color and quality. (b) The
PGGAN samples contain unrealistic patterns that do not exist in real data. (c) The samples from
Boyd et al. generate images with high quality (upper row) but sometimes fail to generate (lower row).
(d) The samples from our model generate images with a poorly uniform staining color.

4.3. Qualitative Evaluation

We used a qualitative method to measure how distinct the synthetic ODG images
we generated are from real data. We performed the perceptual experiments as a survey
to measure the human confusion rate under two settings, and we designed a variation of
AMT perceptual studies. The survey was conducted under two settings as follows:

1. Paired Setting: Subjects are shown sequences of real and synthetic image pairs for
four seconds. Each trial required them to choose which they thought was the real
image. The experiment consisted of 200 trials per subject, and the first 20 trials gave
the correct answers as feedback.

2. Unpaired Setting: Subjects were randomly shown one of the WGAN-GP results, the
PGGAN results, the results of Boyd et al., our results, or the real images. The subjects
were asked to choose whether the images shown in each trial were either real or
synthetic. This survey included a total of 250 trials, and the first 25 trials provided the
correct answers as feedback.

We surveyed 72 subjects with general medical knowledge, including specialists in
pathology. We configured all images used in the survey to have 256 × 256 resolution
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(but generated images by Boyd et al. were produced with 224× 224) and calculated the
confusion rate as the average of the subjects’ responses. The confusion rate of each subject
means the rate at which the subjects answered labeled real among the fake images, and a
larger value means that the synthetic data were judged as from real domain.

The confusion rates of the subjects are listed in Table 1. In a paired setting, the model
increased the confusion rate by approximately 12.23% to 55.19 ± 11.18 higher than the
PGGAN of 42.96 ± 12.76. For the unpaired setting, the confusion rate of our model was
51.25 ± 13.93, which is a 12.5% increase over the PGGAN of 38.75 ± 16.26. As shown in
Figure 9c, the method of Boyd et al. also synthesized high-quality images and recorded the
second highest confusion rates of approximately 52.13% and 50.89% for each setting. Com-
pare to the method of Boyd et al., our model showed 3.06 and 0.36% higher performance
for paired and unpaired settings, respectively.

Table 1. The qualitative evaluation results of our study. The confusion-rate measurement result by
model in the paired setting (top). The confusion-rate measurement result by model in the unpaired
setting (bottom).

Survey Setting Model Confusion Rate (%) ↑

paired

WGAN-GP [38] 15.28 ± 12.63
PGGAN [45] 42.96 ± 12.76

Boyd et al. [57] 52.13 ± 10.37
Ours 55.19 ± 11.18

unpaired

WGAN-GP [38] 13.89 ± 18.08
PGGAN [45] 38.75 ± 16.26

Boyd et al. [57] 50.89 ± 18.58
Ours 51.25 ± 13.93

4.4. Quantitative Evaluation Metrics

We used two metrics for the quantitative evaluation. The first is the FID score, which
measures the distance between the images generated by the trained and training datasets.
In addition, for comparison with our model, we measured the FID of the other methods
generation results. We configured the number of data samples equal to the training data for
the FID calculation and used the Inception-V3 model [66] pre-trained on ImageNet [50].
We also calculated the IS and compared its performance with that of the other methods.
The IS calculates a score for the fidelity and diversity of the generated image and higher
value means better performance.

The FID and IS values are listed in Table 2. Our model scored the second lowest FID
score of 34.96359, which is 4.28195 higher than the PGGAN. The lower the FID, the better
the performance. This means that the features of the PGGAN samples extracted from the
Inception-V3 matched the real data distribution more accurately. In the case of IS, our
method measured the highest score of approximately 2.91609 higher, indicating that the
fidelity and diversity were higher than that of the other methods.

Table 2. The comparison of quantitative evaluation through FID and IS.

Model FID ↓ IS ↑
Real Data - 2.85245 ± 0.01389

WGAN-GP [38] 283.50172 1.45169 ± 0.01101
PGGAN [45] 30.68164 2.40684 ± 0.03606

Boyd et al. [57] 37.11364 2.73736 ± 0.02308
Ours 34.96359 2.91609 ± 0.03873
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5. Discussion

Due to the increasing interest in using deep learning for digital pathology, we con-
ducted a study to synthesize ODG data to solve the problem of obtaining sufficient
medical data.

We propose a method of concatenating the embedding features extracted from the
segmentation module to the base network generator. Consequently, there was no improve-
ment in the FID, but the IS quantitative results improved compared with the base network
PGGAN. FID and IS evaluated the performance using the ImageNet-pre-trained model.
Therefore, there was a difference in the domain because our dataset consisted of only
pathology images. The pathology data-generation task achieved a low score compared
with the general datasets in both metrics because both the base model and our generated
images are from a similar domain.

Therefore, we made a subjective comparison through a qualitative evaluation. We
conducted a survey, consisting of two settings as a qualitative evaluation, and our results
achieved higher scores for both settings. In the paired setting, the confusion rate increased
by approximately 12.23%, and in the unpaired setting, it increased by approximately 12.5%.
Our results show that the confusion rates measured respectively 55.19%, 51.25% in the
survey settings, indicating that the subjects could not reliably distinguish between the real
and the synthetic images.

There are differences in the visual quality compared to the generation results of the
PGGAN. Figure 9b shows examples of good and bad samples generated by the PGGAN.
The upper row contain good samples and the lower row contain bad samples. The PGGAN
synthesized high-quality pathological images; however, unnatural patterns that do not
exist in the real domain are also generated. However, our proposed method created more
realistic images of pathological characteristics. Our proposed method improved the visual
performance by solving the problem of the baseline network that generated artifacts, i.e.,
strange patterns.

Although the proposed method raises the problem of normalizing the staining color,
addressing it is beyond the scope of this study. However, we hope that future research
will solve this problem and demonstrate the potential for pathological image genera-
tion with higher resolution. Furthermore, we think that future studies will achieve ad-
vanced performance in data augmentation and binary classification tasks on positive and
negative datasets.

6. Conclusions

This research was intended to improve visual performance over the existing model for
generating oligodendroglioma pathology data.

Unlike the existing method, the proposed method extracts embedding features with
the segmentation module and uses it for training the generator. We used k-means clustering
to train the segmentation module on the training dataset without labels. The reconstruction
network was used to extract embedding features and concatenate them to the layers of
the generator. Our generator synthesized pathological data from the linked embedding
features and latent vectors.

Although the proposed method has a problem with normalizing the staining color,
it consistently generated samples with high visual quality. The results were analyzed by
comparison with the PGGAN used as a baseline, and low FID and high IS values were
achieved. Compared to subjective evaluation by humans, the proposed method exhibited a
higher confusion rate. However, the results show that our method causes more confusion
in the subjective evaluation of humans. Therefore, the proposed method could visually
complement the baseline network.

We expect that the proposed method will generate more realistic pathology data by
solving the problem of normalizing the staining color in future studies. We hope that
extended studies will synthesize meaningful data as a data augmentation technique for the
binary positive and negative classification of many tumors.
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