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Abstract: Data-driven rolling-bearing fault diagnosis methods are mostly based on deep-learning
models, and their multilayer nonlinear mapping capability can improve the accuracy of intelligent
fault diagnosis. However, problems such as gradient disappearance occur as the number of network
layers increases. Moreover, directly taking the raw vibration signals of rolling bearings as the network
input results in incomplete feature extraction. In order to efficiently represent the state characteristics
of vibration signals in image form and improve the feature learning capability of the network, this
paper proposes fault diagnosis model MTF-ResNet based on a Markov transition field and deep
residual network. First, the data of raw vibration signals are augmented by using a sliding window.
Then, vibration signal samples are converted into two-dimensional images by MTF, which retains the
time dependence and frequency structure of time-series signals, and a deep residual neural network
is established to perform feature extraction, and identify the severity and location of the bearing
faults through image classification. Lastly, experiments were conducted on a bearing dataset to
verify the effectiveness and superiority of the MTF-ResNet model. Features learned by the model
are visualized by t-SNE, and experimental results indicate that MTF-ResNet showed better average
accuracy compared with several widely used diagnostic methods.

Keywords: intelligent fault diagnosis; Markov transition field; residual network

1. Introduction

Rolling bearings are critical components in rotating machinery, and their operating
conditions under various loads directly impact their performance, stability, and endurance.
More specifically, rolling bearings are vital in mechanical equipment. To maintain the
normal operation of mechanical equipment, it is necessary to monitor the vibration signals
generated by the rotating mechanism in real time [1]. Many scholars extensively studied the
fault detection and diagnosis of rolling bearings [2–4]. The traditional manual diagnostic
can no longer adapt to the large-capacity, diverse, and high-speed data in the current
mechanical field, which leads to poor diagnosis capability and generalization performance
in the face of massive amounts of mechanical equipment data with alternating multiple
working conditions and the serious coupling of fault information [5].

The diagnosis of rolling bearings generally consists of two stages: feature extraction
and classification. Signal processing approaches that are widely employed to extract fea-
tures from a raw signal include short-time Fourier transform (STFT) [6], wavelet transform
(WT) [7], and empirical mode decomposition (EMD) [8]. However, traditional fault diag-
nosis methods rely heavily on manual feature engineering and expert knowledge, and
the process is time-consuming and laborious. In addition, when extracted features are
insufficient, the accuracy of fault diagnosis is greatly reduced, which is not conducive to
the diagnostic tasks of massive amounts of industrial data. In the past decade, machine-
learning theories and statistical inference techniques have been widely applied to identify
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bearing faults, such as Bayesian networks [9], artificial neural networks (ANNs) [10], sup-
port vector machines (SVMs) [11], and k-nearest neighbor [12]. Despite the effectiveness of
the above-mentioned methods, shallow networks are restricted in their capacity to repre-
sent complicated functions with limited samples; thus, they lack the ability to diagnose the
faults of complex and high-dimensional signals.

In recent years, deep-learning models have grown in popularity in the field of machine
learning, which uses the deep network structure to achieve more efficient and reliable fea-
ture extraction. Deep learning disposes of the dependence on manually extracting features
and expert experience, which has achieved breakthroughs in many pattern recognition
tasks such as natural-language processing [13], automatic speech recognition [14], and
computer vision [15]. The application of deep-learning models in fault diagnosis and health
monitoring is flourishing [16,17]. Shao et al. [18] proposed a new deep belief network,
which was optimized with the particle swarm algorithm, and verified the robustness of
the model. Wen et al. [19] developed a novel DTL model for fault diagnosis that extracted
features with a three-layer sparse autoencoder and achieved high prediction accuracy.
Jiang et al. [20] constructed a deep recurrent neural network with an adaptive learning rate
for the fault diagnosis of bearings, and results confirmed the effectiveness of the method.
Hasan et al. [21] proposed an explainable AI-based fault diagnosis model and incorporated
explainability to the feature selection process. Within the deep-learning framework, convo-
lutional neural networks, as an end-to-end learning model with powerful feature extraction
capability, have received more attention in fault diagnosis. Chen et al. [22] developed bear-
ing discrimination patterns on the basis of the cyclic spectral coherence (CSCoh) maps of
vibration signals and established a CNN model to learn high-level features. Guo et al. [23]
proposed a new method named DCTLN for transfer fault diagnosis tasks, and verified the
effectiveness of the model by experiments. Jia et al. [24] proposed a DNCNN to address im-
balanced classification problems in fault diagnosis. In some scenarios, raw one-dimensional
signals are converted into two-dimensional gray images with pixels fulfilled by data stack-
ing [25,26]. However, these methods may contain limited feature information because
spatial correlation in a raw vibration sequence can be corrupted. Although there are a
few commonly used image representation approaches based on time–frequency principles,
such as short-time Fourier transform (STFT) [6] and wavelet packet transform (WPT) [27],
short-time Fourier transform is not suitable for handling nonstationary signals such as
mechanical fault signals, and the determination of the number of decomposition layers
for wavelet packets usually relies heavily on expert knowledge. Therefore, a new image
encoding method called Markov transition field (MTF) was introduced [28] that preserves
complete time-domain information by representing Markov transition probabilities, and
converts that information into two-dimensional images. In addition, despite the great
success of deep convolutional neural networks, degradation problems such as gradient
disappearance or explosion can occur as the number of layers increases. To address the
issue mentioned above, He et al. [29] proposed residual networks that have achieved
excellent performance on various machine-learning tasks.

In order to efficiently represent the state characteristics of vibration signals in image
form and improve the feature learning capability of the network, a new intelligent bearing
fault diagnosis method (MTF-ResNet) is proposed in this paper. The main contributions of
this paper are summarized as follows.

1. A novel two-step fault diagnosis method is proposed that converts raw vibration
signals into images through the Markov transition field, and adopts the residual
network for feature extraction and fault identification.

2. The signal-to-image conversion preserves the time dependence of the raw vibration
signals and retains sufficient temporal features without setting parameters involving
expert knowledge. Residual learning is applied to effectively address degradation
problems in the deep neural network.
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3. The effectiveness of the proposed model was verified on a popular bearing dataset.
Compared with some existing methods, the MTF-ResNet method achieved better
accuracy in bearing fault diagnosis.

4. To further demonstrate the performance of the proposed method and investigate the
intrinsic mechanism of the CNN model in bearing fault diagnosis, t-SNE was used to
visualize the feature maps learned by the model.

The remainder of this paper is organized as follows. Section 2 introduces the funda-
mentals of CNN and residual networks. In Section 3, the details of the proposed MTF-
ResNet model for fault diagnosis are elaborated. Section 4 outlines experimental analysis
to verify the effectiveness of the proposed model by employing a popular bearing dataset.
Section 5 presents the conclusions.

2. Background and Related Work

Motivated by the concept of various cells in the visual cortex of the brain, and some
cells that are exclusively responsive to the local receptive field [30], convolutional neural
networks (CNNs) were first proposed by LeCun [31] for image processing. A typical CNN
involves three different layers: (1) convolutional layer, (2) subsampling or pooling layers,
and (3) fully connected layer. The convolutional layer comprises a number of kernels that
extract features from input data. The pooling layer is the downsampling layer to reduce the
trained parameters. The fully connected layer is a traditional feed-forward neural network
where all neurons are connected to the activation of the previous layer. In this section, we
describe CNNs and residual networks in more detail.

2.1. Convolutional Layer

The convolutional layer performs convolutional operations on local regions of the
input data (or features) with the use of the convolutional kernel. Weight sharing is the most
essential characteristic of the convolutional layer, since the input is traversed once by the
same convolutional kernel at a set stride which can minimize the parameters and alleviate
overfitting to some extent. In general, the mathematical model of the convolutional layer
can be described as:

xl
j = σ(∑ i∈Mj x

l−1
j ∗ kl

ij + bl
j) (1)

where xl−1
j is the input to the (l − 1)st layer of the network; xl

j is the output of layer l of the

network; kl
ij is the weight matrix of the convolution kernel; bl

j is the bias; Mj denotes the
set of input feature maps; σ represents the nonlinear activation function; ∗ represents the
operation of convolution.

2.2. Pooling Layer

The main function of the pooling layer is to reduce the dimensionality of the data
after convolutional operations. Average and maximal pooling are two commonly used
pooling methods. The pooling layer performs a downsampling operation on the feature
map, which avoids overfitting to a certain extent while retaining key features. The pooling
layer transformation can be described as:

xl
j = σ(βl

jdown(xl−1
j ) + bl

j) (2)

where down(·) represents the downsampling function, βl
j is the multiplicative weight.

2.3. Residual Network

Traditional deep convolutional neural networks are difficult to train as the network
deepens because of problems of vanishing and exploding gradients. To address the degra-
dation problem, He et al. [29] proposed deep residual networks that are widely used in
image processing. The structure of the residual networks is shown in Table 1.
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Table 1. Structure of residual networks.

Layer Name ResNet-18 ResNet-34 ResNet-50 Output Size

Conv1 7 × 7, 64, stride 2 112 × 112

Conv2_x

3 × 3 max pool, stride 2

56 × 56
[

3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 3

 1× 1,
3× 3,

64
64

1× 1, 256

× 3

Conv3_x
[

3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 4

 1× 1,
3× 3,

128
128

1× 1, 512

× 4 28 × 28

Conv4_x
[

3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 6

 1× 1,
3× 3,

256
256

1× 1, 1028

× 6 14 × 14

Conv5_x
[

3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 3

 1× 1,
3× 3,

512
512

1× 1, 2048

× 3 7 × 7

Average pool, fc, softmax 1 × 1

Residual building blocks are the basic components of a residual network. As shown
in Figure 1, a residual building block is composed of several convolutional layers, batch
normalizations (BNs), ReLU activation functions, and an identity shortcut. The residual
building block can be expressed as:

y = F (x,{Wi}) + x (3)

where x represents the input vectors of the layer and y represents the output. F (x, {Wi}) de-
notes the residual mapping function. Take the diagram in Figure 1 for example,F = W2σ(W1x),
where σ denotes the nonlinear activation function (ReLU).
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Figure 1. Residual building block.

3. Proposed Model for Fault Diagnosis

This section presents the proposed MTF-ResNet fault diagnosis method. First, data
augmentation is used to increase the training data. Then, the conversion method of the
vibration signals into images is presented. Lastly, the network architecture based on MTF
and ResNet for rolling bearing fault diagnosis is established.

3.1. Data Augmentation

An effective technique to improve the generalization capabilities of machine-learning
models is to use additional training samples. In computer vision tasks, horizontal flips,
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random crops or scales, and color jitter are commonly utilized to increase the data to train
the model. Data augmentation is also required in fault diagnosis for deep convolutional
neural networks to achieve high classification accuracy and avoid overfitting. The data
augmentation method used in this paper is overlapping samples from raw one-dimensional
sequences. Augmented samples were all allocated the same fault label as that of the raw
sequence, since each input sequence was obtained under a single fault state. The data
augmentation process is shown in Figure 2. The specific calculation method is expressed
as follows:

N =
L− l

s
+ 1 (4)

where L is the length of the raw signal, l is the length of a single sample, s is the shift stride,
and N is the number of samples obtained through data augmentation.
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3.2. Signal-to-Image Conversion

When diagnosing and analyzing bearing faults, the accelerometer is one of the most
frequently used sensors in modern research, which can directly collect the original vibration
signal of the target object. Collected data from industrial processes are continuous time
series, and have the characteristics of nonlinearity and nonstationary caused by high
coupling in the system.

Assume a time series X = {x1, x2, · · · , xn}; the values can be quantized in Q bins, and
each xi can be allocated to a related qj(j ∈ [1, Q]). By calculating the transitions among bins
in the way of a first-order Markov chain along each time step, a matrix W of Q×Q size is
obtained. wi,j is the probability that an element in qj is followed by an element in qi. After

normalization by ∑Q
j=1 wij = 1, W is considered to be the Markov transition matrix. Since

the matrix is not sensitive to the distribution of X and time steps ti, in order to reduce the
loss of information, the Mij in the Markov transition field (MTF) is defined as follows:

Mij =


wij
∣∣x1 ∈ qi, x1 ∈ qj · · · wij

∣∣x1 ∈ qi, xn ∈ qj
wij
∣∣x2 ∈ qi, x1 ∈ qj · · · wij

∣∣x2 ∈ qi, xn ∈ qj
...

. . .
...

wij
∣∣xn ∈ qi, x1 ∈ qj · · · wij

∣∣xn ∈ qi, xn ∈ qj

 (5)

The Markov transition field (MTF) then can be defined as follows:

M =


M11 · · · M1n
M21 · · · M2n

...
. . .

...
Mn1 · · · Mnn

 (6)
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Mij is the probability that an element in qj is followed by an element in qi. In other
words, MTF incorporates temporal information on the basis of the Markov transfer matrix
and actually represents the multispan transition probabilities of the time series. Such
an expansion can denote not only the state transition for a single time stamp i. but also
characterize state transitions over multiple time bins according to changes in the elements
of MTF. Mij‖i−j‖=k represents the transition probability between points with a time interval
k. A special case is that, when k = 0, main diagonal Mii obtains the probability from each
quantile to itself at time step i.

In the MTF matrix, the Mij can be regarded to be a pixel point represented through the
colormap. Red denotes a larger value, while blue denotes a smaller value. It is inappropriate
to directly employ images generated by MTF as the input of CNN since the images may
be too large for training the model. In order to reduce the size of the images and improve
computation efficiency, blurring kernel

{
1

m2

}
m×m

was adopted to average the pixels in

each nonoverlapping m×m region. The transformation process of the Markov transition
field is shown in Figure 3.
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3.3. Network Architecture

Once the raw vibration signals are converted into MTF images and formed into the
image dataset, a CNN model can be trained to classify these images. In this paper, we
applied the ResNet-34 network to extract 2D image features. A softmax layer was employed
at the end of the network to classify the rolling-bearing health condition on the basis of
the learned features. The proposed MTF-ResNet model architecture is demonstrated in
Figure 4. The detailed parameters of the MTF-ResNet model are presented in Table 2.
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Table 2. Detailed parameters of the MTF-ResNet model.

Parameters Value

Batch size 32
Optimizer Adam

Lr 0.0001
Loss function Category—cross-entropy

4. Experiments and Results
4.1. Data Processing

To validate the performance of the proposed MTF-ResNet, the Case Western Reserve
University (CWRU) [32] bearing dataset was employed to conduct experiments. The test rig
comprised an electric motor, a torque transducer/encoder, and a dynamometer, as shown
in Figure 5. The bearing to be tested rotatably supports the shaft of the motor under four
load conditions: 0, 1, 2 and 3 hp with motor speeds of 1772, 1750, and 1730 r/min. Different
types and severity levels of bearing failures are caused by the use of electrical discharge
machining (EDM), including normal condition (NC), inner-race fault (IF), outer-race fault
(OF), and rolling ball fault (BF). For each fault state, three kinds of fault diameters were set:
0.007, 0.014, and 0.021 inches, respectively.

In this paper, we used raw vibration signal sample at 12 kHz from the drive end
accelerometer (DE). The training data were generated from half of the raw vibration
sequence by overlapping samples through a sliding window length of 2048 with a step
size of 80, while the test data were generated by the same window length from the other
half without data augmentation. According to the working conditions, datasets under a
single working condition and variable working conditions are considered in this study. The
bearing fault datasets under a single working condition are shown in Table 3; each dataset
contained 6600 training samples and 250 testing samples from 10 fault types, as presented
in Table 4. The composition of bearing fault data under variable working conditions is
shown in Table 5.
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Table 3. Working conditions studied in this work.

Dataset Motor Load (hp) Motor Speed (r/min)

A 1 1772
B 2 1750
C 3 1730

Table 4. Composition of single working condition bearing fault data.

Fault Type Fault Diameter (Inch) Number of Samples Label

BF07 0.007 660/25 0
BF14 0.014 660/25 1
BF21 0.021 660/25 2
IF07 0.007 660/25 3
IF14 0.014 660/25 4
IF21 0.021 660/25 5
NC 0 660/25 6

OF07 0.007 660/25 7
OF14 0.014 660/25 8
OF21 0.021 660/25 9

Table 5. Composition of bearing fault data under variable working conditions (Dataset D).

Fault Type Fault Diameter (Inch) Motor Load (hp) Label

NC 0 0 0
IF07 0.007 1 1
BF14 0.014 2 2
OF21 0.021 3 3

All samples were then converted into MTF images. Figure 6 shows the transforma-
tion of the same signal containing 2048 data points into MTF images of different image
sizes. Large MTF images generally result in an increase in computational cost and are not
conducive to the training of the model. However, small MTF images can hardly contain
enough useful information. On the basis of the above considerations, the size of the MTF
images was determined to be 224 × 224.
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4.2. Data Analysis

In order to show the detailed identification effect of the model for each fault type
in the test set, a confusion matrix was introduced for more accurate and comprehensive
analysis of the experimental results. The vertical axis of the confusion matrix represents
the true labels of the classification, and the horizontal axis demonstrates the predicted
labels. The confusion matrix shows the classification results of all fault types, containing
both correct and incorrect classification information. The confusion matrices of the MTF-
ResNet prediction results are shown in Figure 7. In Dataset A, there was a slight error in
the classification of fault types BF07 and BF21, two samples of bearing fault type BF07
were incorrectly labeled as BF21, and one sample of BF21 was identified as BF07; all other
samples were correctly classified by the MTF-ResNet model. In Dataset B, the incorrect
classification occurred in the identification of BF07 and OF14, two samples with the true
label BF07 were incorrectly mistaken for OF14, and one sample belonging to the OF14
fault type was classified as BF07, the model achieved correct classification in all other fault
types. In Dataset C, the situation was similar to that in Datasets A and B: two samples in
BF07 were identified as BF21 and OF14, while one sample in each of BF21 and OF14 was
misclassified as BF07. Samples of all fault types were correctly identified by the model in
Dataset D. The accuracy of the model in Datasets A–D was 98.8%, 98.8%, 98.4%, and 100%,
respectively. It is clear from the experimental results that almost all of the misclassifications
occurred in the diagnosis of ball faults, which coincides with the findings in [32] that there
are undiagnosed outer and inner race faults in the drive end bearing, probably caused by
brinelling. We conducted several trials, and the average accuracy of the model in the 10-
and 4-category datasets was 98.52% and 100%, respectively.
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In order to qualitatively illustrate the effectiveness of the proposed model and judge
the separability of the data on the basis of the visualization of learned representation,
nonlinear dimensionality reduction algorithm t-SNE was employed to project the data into
a 2-dimensional space. Figure 8 shows the visualization results of the MTF-ResNet model
for the 10- and 4-category datasets.

The model had powerful feature extraction and classification capability, samples of
different fault types were almost perfectly separated, and samples within the same type
were intuitively clustered. The results of feature visualization are consistent with the
confusion matrices and demonstrate that the fault diagnosis problem can be successfully
addressed by the proposed MTF-ResNet model.

To better understand the effect of convolutional layers of the model in fault diagnosis,
the features extracted from the four convolutional layers are visually mapped into a two-
dimensional distribution by t-SNE, as shown in Figure 9.



Sensors 2022, 22, 3936 11 of 15

Sensors 2022, 22, x FOR PEER REVIEW 11 of 15 
 

 

  
(c) (d) 

Figure 7. Confusion matrixes for each dataset: (a) Dataset A; (b) Dataset B; (c) Dataset C; (d) Dataset 
D. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Feature visualization by t-SNE for each dataset: (a) Dataset A; (b) Dataset B; (c) Dataset C; 
(d) Dataset D. 
Figure 8. Feature visualization by t-SNE for each dataset: (a) Dataset A; (b) Dataset B; (c) Dataset C;
(d) Dataset D.

Figure 9a shows the distribution results of the first convolutional layer, the redundancy
of the vibration signal itself makes it difficult to distinguish between the different fault
types. From Figure 9b, the samples of IF21, OF21 and OF07 are separated out while the
rest samples of different categories are mixed. After the 23rd convolutional layer, the
output sample distribution significantly changed. Most of the samples are clustered in their
respective regions, but there are still some samples that are not clustered and are scattered
among the adjacent categories, as shown in Figure 9c. Results of the fully connected layer
are shown in Figure 9d; all samples were separated out and then clustered into their regions
except for the rolling ball fault samples, which had a certain degree of misclassification.
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4.3. Model Performance with Different Residual Network Structures

In this section, the performance of the MTF-ResNet model with different residual
network structures is investigated. The same 10-category dataset was adopted, and the
encoded MTF images were applied as input in ResNet-18 and ResNet-50 for feature extrac-
tion and classification. The average classification accuracy of different residual structures is
shown in Table 6. It is clear that the residual networks achieved good classification accuracy
of over 94% for images of bearing fault signals converted by the Markovt transition field,
and the model using ResNet-34 achieved better accuracy of over 4.67% and 2.16% than that
of the models using ResNet-18 and ResNet-50, respectively.

Table 6. Average classification accuracy of different residual structures.

Network Epoch Accuracy (%)

ResNet-18 100 94.12
ResNet-34 100 98.52
ResNet-50 100 96.44

4.4. Comparison with Other Methods

In recent years, much research has been conducted for rolling-bearing fault diagnosis
problems. In order to further prove the superiority of the MTF-ResNet method proposed in
this paper, we compared it with some commonly used methods. The detailed comparison
results are shown in Table 7. As obtained from the experimental results, the method in [25]
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could achieve 100% testing accuracy, but the model was only validated for 4-category
fault classification. The proposed method could achieve an average accuracy of 98.52%
for 10-category datasets and 100% for 4-category dataset. Compared with the methods
in [33–36], the proposed MTF-ResNet method could identify more fault types and improve
classification accuracy.

Table 7. Experimental results of different methods.

Methods Categories Accuracy (%)

VI-CNN [25] 4 100
STFT-CNN [33] 4 99.4

Compact 1D-CNN [34] 6 93.2
IDSCNN [35] 10 93.84

CNNEPDNN [36] 10 97.85

Proposed 4
10

100
98.52

5. Conclusions

In this work, we proposed a novel intelligent rolling-bearing fault diagnosis method
based on the Markov transition field (MTF) and residual network. Encoding one-dimensional
time-series signals into two-dimensional images by Markov transition field preserves the
time dependence of the raw signals and discards the prior knowledge to set parameters
during the conversion. On this basis, a residual network is applied to identify the fault
types through image classification. Experiments conducted on the CWRU bearing dataset
indicate that MTF-ResNet achieved prominent performance on the identification of rolling
bearings faults with various degrees of severity and locations, the proposed model achieves
an average accuracy of 100% and 98.52% in the 4- and 10-category datasets, respectively.
Compared with other intelligent bearing-fault diagnosis methods, the proposed MTF-
ResNet method offers a better performance of feature extraction and classification in the
fault diagnosis.

While the MTF-ResNet method can achieve good performance for fault diagnosis,
it has the disadvantage of requiring a longer training period than other shallow neural
network-based methods do, as the residual network in this study was trained from scratch.
Deep-learning algorithms are frequently hampered by a high computational burden. In
further work, the transfer-learning approach, which showed promising results in reducing
training time and computational cost [37], will be considered to be employed in machinery
fault diagnosis tasks. In addition, further investigations into the effectiveness of the
MTF-ResNet method should be carried out a wider variety of datasets, such as gear- and
rotor-fault datasets.
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