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Abstract: Multi-signal detection is of great significance in civil and military fields, such as cognitive
radio (CR), spectrum monitoring, and signal reconnaissance, which refers to jointly detecting the
presence of multiple signals in the observed frequency band, as well as estimating their carrier
frequencies and bandwidths. In this work, a deep learning-based framework named SigdetNet is
proposed, which takes the power spectrum as the network’s input to localize the spectral locations of
the signals. In the proposed framework, Welch’s periodogram is applied to reduce the variance in the
power spectral density (PSD), followed by logarithmic transformation for signal enhancement. In
particular, an encoder-decoder network with the embedding pyramid pooling module is constructed,
aiming to extract multi-scale features relevant to signal detection. The influence of the frequency
resolution, network architecture, and loss function on the detection performance is investigated.
Extensive simulations are carried out to demonstrate that the proposed multi-signal detection method
can achieve better performance than the other benchmark schemes.

Keywords: multi-signal detection; deep learning; cognitive radio; parameter estimation; non-
cooperative communication

1. Introduction

With the advent of the Internet of Things (IoT), the electromagnetic spectrum scarcity
has become an increasingly important problem [1–3]. Cognitive radio (CR) is an encour-
aging solution to resolve spectrum scarcity in wireless communications using dynamic
spectrum access (DSA) [4,5]. In CR, two common spectrum sharing strategies exists: (i) the
secondary users (SUs) can utilize spectrum that is not used by the primary users (PUs);
(ii) the SUs are allowed to transmit when the PUs are transmitting, by superimposing
its transmission to the primary user (namely, superposition coding) [6–8]. In the former
spectrum sharing paradigm, it is needed to sense the spectrum to obtain the usage status of
frequency resources. Building smart spectrum sensing products in the license-free band to
monitor and analyze the electromagnetic spectrum would be of great commercial value,
especially in the IoT era where wireless device density increases significantly. Furthermore,
in civilian and military applications such as spectrum monitoring and management [9], as
well as battlefield electromagnetic spectrum situational awareness [10,11], signal detection
and relevant parameters estimation are indispensable. It will benefit mastery of spectrum
usage in the observation frequency band.

Multi-signal detection is aiming to jointly determine the existence of signals in a
specific wideband, and estimate signal parameters such as the number of separable signals,
center frequencies, and bandwidths. This is different from most spectrum sensing works,
which only estimate signal “presence” or “absence”.
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1.1. Related Works and Motivations

Many signal detection algorithms have been studied in the past decades, including
energy detection (ED) [12,13], matched filtering detection [14,15], cyclostationary feature
detection [16,17] and eigenvalue based detection [18]. Although the matched filtering
and cyclostationary feature detections exhibit good performance, these schemes require
prior information about the transmitted signal such as the transmitted period, which is not
always available in practice. In contrast, energy detection is a simple and effective method
to detect the presence of signal and requires no prior knowledge of the transmitted signal,
but is susceptible to noise power [19]. Nevertheless, most of the above work only focuses
on detecting the presence of signal (binary detection decision).

For jointly detecting the presence of signal, as well as estimating the bandwidth and
center frequency, several algorithms that are based on a threshold have been proposed [20–22].
Threshold setting is a key issue because the threshold directly affects the performance of
the detection algorithms. Therefore, many methods have been proposed for determining
the detection threshold, such as measuring noise power [23], analyzing noise histogram, or
spectrum histogram [24]. However, these methods possess some drawbacks. For instance,
they do not perform well when the noise power varies across the spectrum. Moreover,
some of the methods require a priori knowledge of the noise statistics for the threshold
estimation. A localization algorithm based on double-thresholding (LAD) is proposed
for detecting and localizing multiple signals in the frequency domain [25,26]. The LAD
method uses two thresholds, upper and lower. The lower threshold is used to avoid signal
separation and the upper threshold helps to avoid false detections. However, the LAD
method has a trade-off between the performance of the detection probability and the false
alarm probability, especially in the case of a low signal-to-noise ratio (SNR).

With the advent of the age of artificial intelligence, deep learning and neural network
(NN) have been rapidly improved and have numerous applications. For signal detection,
several methods utilizing neural networks have been put forward [27–29]. In [27], a convo-
lutional neural network (CNN) is proposed to learn the energy-correlation features from
the signal sample covariance matrix. A deep learning framework, namely DeepMorse, is
proposed to detect morse signals in wideband spectrum data without prior knowledge [28].
In [29], a deep learning-based detector is proposed, which consists of CNN, a self-attention
(SA) module, and a gate recurrent unit (GRU). Compared with traditional detection al-
gorithms, the deep learning-based algorithms exhibit superior performance due to the
NN’s powerful ability to learn key features from the signal samples. Unfortunately, these
methods only detect the presence of the signal and cannot estimate the relevant parameters.
Furthermore, a Q-learning-based method is presented in [30] to identify those temporar-
ily unused frequency ranges. In [30], the epsilon-greedy action selection method is also
adopted to indicate the next monitoring channel. In [31], the object detection network
named single shot multibox detector (SSD) is developed for detecting signals by using the
time-frequency spectrogram. Similarly, the work in [32] has employed a downscaled Faster
region-based convolutional neural network (Faster-RCNN) to detect and localize Wi-Fi
signals when uninteresting signals cause RF interference (RFI). However, these methods
are difficult to accurately obtain the time and frequency information of the signal using the
bounding box of object detection.

Different from the object detection task, the goal of scene parsing is to classify images
at the pixel level, and obtain the category of each pixel. Most scene parsing frameworks
are based on a full convolutional network (FCN) [33]. The works of [34,35] have improved
the performance of the original FCN, and now these networks have been successfully
applied to complex scene parsing tasks. In [35], a pyramid scene parsing network (PSPNet)
is proposed for the scene parsing task, which utilizes the global context information of
different regions through pyramid pooling. In [36], the FCN has been applied to the
detection task of real satellite signals. Nevertheless, the FCN classifies the pixels in the
input sequence independently, lacking the relationship between pixels, and may lose the
detailed information of features. Motivated by the task of scene parsing, the multi-signal
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detection task is highly analogous to image segmentation, detecting whether each frequency
bin in the broadband power spectrum contains a signal.

1.2. Contributions and Organization

To develop a multi-signal detector, several challenges should be addressed. First,
the signals in electromagnetic space are increasing and changing dynamically, ranging
from several to dozens; second, various uncorrelated signals are usually transmitted
simultaneously in different modulation types, and may even contain burst signals; third,
the background noise in the electromagnetic environment increases significantly, and the
dynamic range of the signal is large, which makes it difficult to detect the weak signal.

In this work, a multi-signal detection framework based on deep learning named
SigdetNet is proposed, which can perform two major tasks simultaneously: (i) detect
multi-signal in the frequency band of interest; (ii) estimate their center frequencies and
bandwidths. By taking the power spectrum as the network’s input, the proposed framework
transform the multi-signal detection problem into a scene parsing problem, performing
pixel-wise classification. The Welch’s periodogram method [37] is used to obtain the power
spectrum, which can reduce the variance in the power spectral density (PSD). Moreover,
logarithmic transformation is applied to the PSD, scaling the numerical range of the PSD
magnitudes, thereby enhancing the weak signals. In particular, a convolutional encoder-
decoder network embedded with the pyramid pooling module (PPM) is constructed to
extract informative features related to the signal detection task. The convolutional encoder-
decoder network has been proved to have the ability to extract high-level representative
features from noisy [29]. While, the PPM can capture multi-scale information by fusing
different pyramid level features without significantly increasing the complexity. The main
contributions of this paper are summarized as follows:

1. We develop a relatively complete deep learning-based framework for multi-signal
detection, including signal pre-processing, signal enhancement, feature extraction
using NN, and post-processing.

2. Extensive simulations are carried out to demonstrate the superiority of our proposed
method compared with the benchmark detectors. In addition, the influence of design
parameters, e.g., frequency resolution, network architecture, and loss function, on the
performance of the proposed method are investigated.

This paper is organized as follows. Section 2 introduces the mathematical model
on multi-signal detection. In Section 3, the proposed method is introduced in detail. In
Section 4, evaluation criteria, datasets, and experiments are given. Section 5 reveals the
results of the experiments. At last, Section 6 summarizes the whole paper.

Notations: In this paper, superscripts (·)T denote the transpose operation. <(·) denote
the real part of a complex number. Boldface lowercase letters such as a, b denote vectors,
and boldface uppercase letters such as A, B denote matrices.

2. Problem Statement

In this paper, we consider a non-cooperative communication scenario, in which multi-
ple heterogeneous transmitters are emitting wireless signals at different center frequencies
with different modulation types, such as amplitude shift keying (ASK) modulation, phase
shift keying (PSK) modulation, frequency shift keying (FSK) modulation, Gaussian mini-
mum shift keying (GMSK) modulation, and so on. The i-th single transmission signal si(t)
can be generally presented as

si(t) =
√

2<
{

∑
m

amg(t−mTi)ej(2π fit+φi)

}
(1)

where <(·) denotes the real part of a complex number; am = ami + jamq is the complex
symbol sequence; g(t) is the pulse shape function. The bandwidth, carrier frequency, initial
phase, and symbol period of the i-th signal are denoted by Bi, fi, φi, and Ti respectively.
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Assuming that a wideband receiver captures the radio frequency (RF) data at a sam-
pling rate Fs and duration T. Multiple different wireless communication signals si(t) are
captured together by the receiver. While modulated signals overlap in the time domain,
they would exhibit various shapes and distributions in the frequency domain. The discrete-
time series r(n) obtained by the receiver is composed of Nsig signals, which is defined as

r(n) =
Nsig

∑
i=1

si(n) + w(n) (2)

where Nsig is the number of signals; si(n) is the discrete form of the signal si(t); w(n) is
the receiver noise, which is modeled as Additive White Gaussian Noise (AWGN). The
parameters such as the power, modulation type, carrier frequency, and bandwidth of each
signal si(n) are different and are unknown to the receiver. Moreover, in the electromagnetic
environment, multiple irrelevant signals are usually transmitted simultaneously in different
frequency bands and do not overlap in the frequency domain. In this work, our goal is to
develop a deep learning-based method for RF spectrum analysis, focusing on the presence
detection of signals within the observed band, as well as estimating their frequencies and
bandwidths. This is a wideband signal detection problem because the sampling bandwidth
of the receiver is much wider than that of any individual signal bandwidth (such that
multi-signal may appear within the sampling bandwidth).

For illustration, Figure 1 shows the time and frequency content of an example wide-
band capture with Fs = 6.4 MHz and T = 200 ms. The signal amplitude is plotted as a
function of time in Figure 1a, the fast Fourier transform (FFT) amplitude is plotted as a
function of frequency in Figure 1b, and the time-frequency representation of the spectrum
is plotted as a function of both time and frequency in Figure 1c. The example captured RF
data in Figure 1 contains 52 narrowband signals, including burst signals.

(a) (b) (c)

Figure 1. The time content, frequency content, and spectrogram of an example RF capture with
a sampling rate of 6.4 MHz and a duration of 200 ms, respectively. (a) signal amplitude vs. time;
(b) FFT magnitude vs. frequency; (c) time-frequency spectrogram.

3. Proposed Detection Framework

In this work, a deep learning-based framework is proposed to detect the presence of
signals in the observation frequency band, as well as estimate their carrier frequencies and
bandwidths. The proposed framework, named SigdetNet, consists of four stages, which
referred to signal pre-processing, signal enhancement, feature extraction using neural
network, and post-processing respectively, as shown in Figure 2. The framework takes the
received RF data as the input, and predicts the number, carrier frequencies, and bandwidths
of signals.
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Figure 2. The proposed framework for multi-signal detection.

3.1. Signal Pre-Processing

In this work, the power spectrum is used as the network’s input format to obtain the
frequency-wise energy distribution. The PSD estimation techniques are generally cate-
gorized into parametric and non-parametric techniques. The parametric PSD estimators,
such as the Burg’s method [38] and the Yule–Walker method [39], try to fit a parametric
model to the signal by minimizing a given cost function [40,41]. In the parametric tech-
niques, it is sensitive to the choice of model order P to obtain accurate power spectrum
estimation. In contrast to parametric techniques, the non-parametric techniques do not
make any assumptions about the data-generating process or model, e.g., the autoregressive
model [42]. The common non-parametric techniques available in the literature include
the periodogram [43], the modified periodogram [44], Bartlett’s method [45], and Welch’s
method [37]. Among the non-parametric techniques, Welch’s method can reduce the vari-
ance in the PSD estimation and improve the estimation quality. Welch’s method eliminates
the tradeoff between spectral resolution and variance, and is widely used in spectrum
sensing [46–51]. In [46], Sarvanko et al. generalized the theoretical foundations of ED for
the case of Welch’s periodogram, and analyze the performance of spectrum sensing in
Gaussian channels, concluding that Welch’s method for PSD estimation performs better
than the classical periodogram for detecting narrowband signals. Hence, Welch’s method
is selected to estimate the PSD.

To obtain Welch’s power spectrum, the received signal r(n) with length N is divided
into L segments of length M, allowing overlapping between consecutive segments. The
l-th segment is shown in Equation (3). Note that the length of r(n) is equal to N = T · Fs.

rl(n) = r(n + lD) n = 0, 1, · · · , M− 1; l = 0, 1, · · · , L− 1. (3)

where the overlap between segments is M− D, 0 < D ≤ M; lD is the starting point for the
l-th segment.

Then, a window function, w(n), is applied to each segment. The periodogram for the
l-th segment is

pl(k) =
1

MU

∣∣∣∣∣M−1

∑
n=0

rl(n)w(n)e−j2π(kn/K f f t)

∣∣∣∣∣
2

k = 0, 1, · · · , K f f t − 1 (4)

where K f f t corresponds to the number of points considered in the FFT for the peri-
odograms; U is the normalization factor to ensure that the window function has a unitary
power, namely:

U =
1
M

M−1

∑
n=0

w2(n) (5)

The values of the individual periodogram obtained from the received signal, r(n), are
contained in a matrix of size L× K f f t, defined as

P̃ ,
[
(p̃1) (p̃2) · · · (p̃L)

]T
(6)

where superscript T denotes the transpose operation, and vectors p̃l ∈ RK f f t×1 are de-
fined as

p̃l ,
[

pl(0) pl(1) · · · pl(K f f t − 1)
]T

(7)
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Finally, the Welch’s power spectrum corresponds to the average of the L modified
periodograms

p(k) =
1
L

L−1

∑
l=0

pl(k) k = 0, 1, · · · , K f f t − 1 (8)

The equivalent vector form of Welch’s power spectrum p ∈ RK f f t×1 is defined as

p ,
[

p(0) p(1) · · · p(K f f t − 1)
]T

(9)

3.2. Signal Enhancement

The resulting Welch’s power spectrum p reflects the energy distribution in the fre-
quency domain. Signals with high SNR exhibit high values in the vector p, while signals
with low SNR may be hidden beneath the background (i.e., noise). Logarithmic trans-
formation is widely used in image enhancement, which converts a narrow range of low
input grey level values into a wider range of output values to reveal more detail [52]. To
distinguish the signal from the background and scale the numerical range of the spectral,
the logarithmic transformation is assigned to each frequency bin of the vector p to obtain
an enhanced output pe:

pe(k) =
lg(c · p(k))
lg(c + 1)

k = 0, 1, · · · , K f f t − 1 (10)

where the c is usually set to 1.
The enhanced pe is then normalized to [0, 1] by Min-Max normalization:

p′e =
pe −min(pe)

max(pe)−min(pe)
(11)

where the vector p′e ∈ RK f f t×1 is the normalized results of the pe ∈ RK f f t×1. Figure 3
presents the Welch’s power spectrum p (normalized) and the power spectrum after loga-
rithmic transformation p′e (normalized), respectively. It can be seen that the weaker signals
are enhanced after logarithmic transformation, as shown in Figure 3 marked by the red box.

(a)

(b)

Figure 3. Signal enhancement using logarithmic transformation. (a) before enhancement; (b) af-
ter enhancement.
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3.3. Feature Extraction

To jointly detect the presence of signals, as well as estimate the carrier frequency and
bandwidth of each signal in the wideband input data, a one-dimensional convolutional
encoder-decoder network is developed, as illustrated in Figure 4. In addition, the pyramid
pooling module (PPM) is embedded in the network to fuse multi-scale features. The
proposed network takes the enhanced Welch’s power spectrum p′e as input, and outputs a
spectrum segmentation mask ŷ. The goal of the network is to assign a category label to each
pixel in the input power spectrum, which includes two categories: signal and background.
Details of the proposed network are presented below.

Figure 4. Overview of the proposed network.

The encoder part in the proposed network performs convolution with a kernel bank
to produce a set of feature maps to extract high-order information that can describe the
characteristics of the input. To solve the degradation problem in deeper networks, a residual
learning framework, ResNet, is proposed in [53]. The structure of the residual block in
the ResNet is shown in Figure 5. Suppose the fitting function of the stacked nonlinear
layers is F(X), and the target fitting function H(X) can be decomposed into F(X) + X.
The designed encoder contains one convolutional layer, eight residual blocks, and two
embedding pyramid pooling modules. Each convolutional layer is followed by batch
normalized (BN) to facilitate training [54]. Following that, the nonlinear activation function
of the rectified linear unit (ReLU) max(0, x) is applied. In addition, max-pooling with 1× 2
window and stride equal to 1 is performed, and the resulting output is downsampled by a
factor of 2.

The pyramid pooling module can fuse multi-scale features at different pyramid lev-
els and synthesize context information. Context information can take into account the
correlation between pixels instead of making independent predictions for pixels in the
input sequence. The structure of the pyramid pooling module is illustrated in Figure 6.
The pyramid pooling module consists of four steps, including adaptive average pooling,
convolution, bilinear upsampling, and concatenation operations. Feature maps at different
pyramid scales can be obtained by adaptive average pooling. Then 1× 1 convolution layer
is added to each pyramid level to set the number of channels to 1. The convoluted feature
maps are further interpolated using bilinear upsampling to match the size of the original
feature map. The original feature map is finally concatenated with the four upsampled
feature maps so that multi-scale features can be used to maintain global features. In the
adaptive average pooling layer, the pooling size of 1× 1, 1× 2, 1× 3, and 1× 6 are used in
our settings.
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Figure 5. The residual block structure.

The compressed high-order encoder features are blurred, and boundary detail has been
lost. Therefore, a feature recovery network (decoder) is designed to map the low-resolution
encoder feature maps to full-input resolution feature maps for pixel-wise prediction. The
decoder upsamples the feature maps by using the bilinear upsampling. Following that,
a trainable convolution layer is applied after each bilinear upsampling to recover the
boundary details of the segmentation mask. In addition, a dropout operation is added to
activate the part of the weights to reduce parameters and thus alleviate overfitting. The
output is converted to the probability that each pixel is a signal or background using the
Softmax activation function.

Figure 6. The pyramid pooling module structure.
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Instead of performing intensive pixel-level classification using cross-entropy (CE) loss,
the network is trained with Dice loss [55], which is based on the Dice coefficient D. The
Dice loss and Dice coefficient are defined by Equations (12) and (13), respectively.

lossDice = 1− D (12)

D =
2ŷ · y
ŷ + y

(13)

where ŷ and y denote the network’s output and ground-truth, respectively. The Dice
coefficient D describes the similarity between two vectors, and its value ranges from 0 to 1.
The larger the value of D, the stronger the similarity between the two vectors. Compared
with CE loss, Dice loss can solve the problem of uneven distribution of positive and negative
samples. For example, if the proportion of pixels with background is larger than that of
pixels with the signal. Then the unevenness of positive samples (signal) and negative
samples (background) will cause the learning process to fall into the local minima of the
loss function, making the network biased towards negative samples.

3.4. Post-Processing

Each value in the predicted spectrum segmentation mask ŷ represents the probability
that the pixel contains a signal. By setting a binarization threshold γ on the predicted mask
ŷ to obtain a binarized segmentation mask, and search the lower and upper frequency
bounds of signals. In the binarized segmentation mask, each sub-sequence with consecutive
“1” is a detected signal, and its lower and upper frequency bounds (equivalent to a center
frequency and bandwidth estimate) can be determined. We locate the start index Îstart

i and
end index Îend

i of each consecutive “1” region in the binarized segmentation mask. The start
index Îstart

i and end index Îend
i respectively correspond to the lower and upper frequency

bounds of the i-th detected signal, as shown in Equations (14)–(16). The binarization
threshold γ is set to 0.8. The values in the predicted segmentation mask ŷ are very close
to one when that pixel contains a signal and close to zero otherwise. Therefore, unlike
traditional threshold-based signal detection methods, the detection results are not sensitive
to the choice of the binarization threshold.

f̂ lower
i = f0 ∗ Îstart

i (14)

f̂ upper
i = f0 ∗ Îend

i (15)

f0 = Fs/K f f t (16)

where f̂ lower
i and f̂ upper

i represent the lower and upper frequency bounds of the i-th detected
signal, respectively; f0 corresponds to the frequency resolution selected. The f̂ lower

i and
f̂ upper
i of the signal are equivalent to the estimation of carrier frequency and bandwidth,

defined as
f̂i =

1
2
( f̂ lower

i + f̂ upper
i ) (17)

B̂i = f̂ upper
i − f̂ lower

i (18)

4. Experiment

In this section, evaluation metrics and datasets applied in the subsequent experiments
are presented. Then, several experiments are conducted to evaluate the performance of the
proposed method.
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4.1. Evaluation Metrics and Datasets
4.1.1. Evaluation Metrics

The intersection-over-unit (IoU) is used to measure the correctness of individual signal
detection result. The IoU measures the percentage of overlap between a predicted spectrum
position and a true position in a dataset, which is defined as follow:

IoU =
Loverlap

i
Lunion

i
(19)

where Loverlap
i and Lunion

i describe the length of overlap and length of union between the
true spectrum position and the estimated spectrum position of the i-th signal, as exhibited
in Figure 7.

Figure 7. The length of overlap and union between the true signal spectrum position and estimated
signal spectrum position.

Typically, an IoU threshold η is applied to IoU to label a given prediction as true
positive (TP) or false positive (FP). If the IoU between the true spectrum position and
the estimated spectrum position (related to the carrier frequency and bandwidth of each
signal) is greater than the IoU threshold η, the signal is considered to be detected. The
IoU threshold η is set to 0.9 (unless otherwise specified). In this way, we can calculate the
detection probability Pd and false alarm probability Pf to quantify the performance of the
detection results. The Pd and Pf are computed by the following equations:

Pd =
NTP
Nsig

(20)

Pf =
NFP

N̂sig
(21)

where NTP denotes the number of signals which is correctly detected; NFP denotes the
number of false alarm signals; Nsig is the total number of signals in the true result; N̂sig is
the total number of signals in the detection result.

In addition, the mean absolute error Eavg is also used to measure the estimation
performance of carrier frequency f i

c and signal bandwidth Bi, which is defined as:

Eavg =
1

2N̂sig

N̂sig

∑
i=1

(

∣∣∣ fi − f̂i

∣∣∣
Bi

+

∣∣Bi − B̂i
∣∣

Bi
) (22)

where f̂i and fi represent the predicted and true carrier frequency of the i-th signal, respec-
tively; B̂i and Bi denote the predicted and true bandwidth of the i-th signal, respectively.
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4.1.2. Datasets

Figure 8 shows a block diagram of our simulation framework used to generate a
random single signal. Modulations used in simulation include 2ASK, BPSK, QPSK, 2FSK,
and MSK. The root-raised cosine filter is used for pulse shaping (except 2FSK and MSK).
The time duration range of each narrowband signal is [20 ms, 200 ms]; the carrier frequency
range of each narrowband signal is [100 kHz, 3200 kHz]; the bandwidth range of each
narrowband signal is [4 kHz, 110 kHz]. Each wideband RF capture consists of multiple nar-
rowband signals, where the modulation type, duration, carrier frequency, and bandwidth
of each narrowband signal are randomly selected from the ranges defined above. The
number of narrowband signals contained in each wideband RF capture in the simulation
is randomly chosen from [5,49]. Each generated RF capture is sampled at a sampling
frequency of 6.4 MHz and a sampling duration of 200 ms. For different SNRs, the generated
dataset is composed of 500 wideband RF captures, 80% of which are used for training and
20% for testing (validation).

Figure 8. Single signal generation block.

To further demonstrate the effectiveness of our proposed method, a competition
dataset provided by the “Smart Eye Cup” competition (https://www.landinn.cn/project/
detail/1629978822137 (In Chinese), accessed on 10 February 2022) is also utilized. The goal
of the competition is to achieve wideband signal detection in complex electromagnetic
environments. The data samples are generated in a manner similar to the actual envi-
ronment. Two signal styles are included in the dataset: constant signal and burst signal.
The observation bandwidth is 3.2 MHz and the observation time is 200 ms or 2000 ms.
Modulation types include BPSK, 2FSK, and GMSK. The SNR range is [4 dB, 25 dB].

4.2. Experimental Design and Baseline Methods

Three comprehensive experiments are conducted to verify the superiority of the
proposed method for multi-signal detection. In the first experiment, the effect of parameter
settings on the performance of the proposed method is investigated, including frequency
resolution and the number of downsampling layers in the encoder network. In the second
experiment, the performance of the proposed method is compared with existing methods.
Furthermore, the validity of the Dice loss and PPM module is verified. To be fair, all
methods perform the same pre-processing steps as described in Section 3 of the article. In
the last experiment, a competition dataset is utilized to further demonstrate the effectiveness
of the proposed method.

The training process is as follows: the network is trained for 100 epochs, the initial
learning rate is 0.01 (dropped to 0.001 after 45 epochs for better learning convergence), and
the mini-batch size is 20. During the learning process, the root mean square prop (RMSProp)
algorithm is used to optimize the network. The proposed network is implemented by using
the Pytorch framework and trained on a machine equipped with Nvidia Quadro RTX 4000
GPU and AMD R5-3600 CPU.

To demonstrate the effectiveness of the proposed method, the performance of the
proposed SigdetNet is compared with two baselines: the LAD method in [26], and the FCN
method in [36]. The parameter settings of these methods are based on the works in [26]
and [36]. In [26], the localization of narrowband signals in the frequency domain is based
on two thresholds. The lower and upper thresholds are set by two false alarm probabilities,
respectively. The false alarm probability were Plower,FA = 7 · 10−2 and Pupper,FA = 10−6. For
the LAD method, no training is required, and the same testset as the proposed method is
used for verification. For the FCN method, another deep learning-based method, the same
dataset as the proposed method is used for training and testing.

https://www.landinn.cn/project/detail/1629978822137
https://www.landinn.cn/project/detail/1629978822137
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5. Results and Discussion
5.1. Design Choices

In this section, the effects of various hyper-parameter choices on the performance of
the proposed SigdetNet are discussed, including the number of FFT points K f f t and the
number of downsampling layers Ndown.

Number of FFT points K f f t: Figure 9 illustrates the variation of the detection probabil-
ity Pd, false alarm probability Pf , and the mean absolute error Eavg of parameter estimation
under different FFT points K f f t, where K f f t is set to 1024, 2048, 4096, 8192 and 10,000.
As can be seen from Figure 9, the performance of the algorithm improves as the number
of FFT points increases. However, when K f f t is 1024, the performance declines sharply.
Even with an SNR of 12dB, the Pd, Pf , and Eavg are 80.89%, 18.73%, and 2.17% respectively,
which are much lower than the performance with 10,000 FFT points. Firstly, fewer FFT
points cause insufficient information provided by the input spectrum for network training,
resulting in the network cannot capture more spectrum details. Secondly, the decrease of
FFT points will lead to the reduction of frequency resolution f0, while the estimation of
signal bandwidth and carrier frequency is closely related to the frequency resolution, as
shown in Equations (14)–(18), thus reducing the accuracy of parameter estimation. How-
ever, this does not mean that we need to increase the number of FFT points indefinitely in
pursuit of optimal performance. It can be seen from Figure 9, the performance difference
caused by K f f t gradually decreases as the number of FFT points increases to a certain extent.
Consequently, considering the trade-off between complexity and precision, the number of
FFT points is set to 8192 in the following experiments.

(a) (b) (c)

Figure 9. Performance variations with different numbers of FFT points. (a) detection probability;
(b) false alarm probability; (c) mean absolute error of parameter estimation.

Number of downsampling layers Ndown: Previous studies [56] have shown that the
downsampling layers have an impact on the performance of segmentation tasks. Thus, an
evaluation of the number of downsampling layers Ndown is performed. The max-pooling
with 1× 2 window and stride equal to 1 is used for downsampling the feature map by
a factor of 2. Figure 10 illustrates the performance of the proposed SigdetNet with a
different number of downsampling layers. Ndown is the number of downsampling layers,
where Ndown is set to 3, 4, and 5, respectively, to reduce the size of the feature map to 1/8,
1/16, and 1/32 of the input. From Figure 10, it can be found that the SigdetNet performs
best when the number of downsampling layers is 4. Although increasing the number of
downsampling layers can improve the receptive field and reduce the network parameters,
it also loses the origin information of the input power spectrum. Thus, four downsampling
layers are utilized in our proposed SigdetNet to achieve the best performance in the
following experiments.
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(a) (b) (c)

Figure 10. Performance variations with different numbers of downsampling layers. (a) detection
probability; (b) false alarm probability; (c) mean absolute error of parameter estimation.

5.2. Performance Comparison to Existing Methods

To demonstrate the superiority of the proposed method, comparisons with several
representative signal detection methods, including the LAD method and the FCN method,
are carried out. In addition, the impact of different loss functions on performance is
investigated, including cross-entropy (CE) loss, Focal loss, and Dice loss. Furthermore, to
verify the validity of PPM module, the performance of the network with PPM and without
PPM is also compared.

Figure 11a–c, respectively shows the detection probability Pd, false alarm probability
Pf and the mean absolute error Eavg of parameter estimation under different SNRs. In terms
of the loss function, better performance can be obtained with the Dice loss, while Focal loss
has the worst performance. For the reason that the Dice loss can deal with situations where
there is an imbalance between the number of signal and background pixels.

(a) (b)

(c)

Figure 11. Performance comparison with existing methods. (a) detection probability comparison
results; (b) false alarm probability comparison results; (c) comparison results of mean absolute error
of parameter estimation.
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Compared with the LAD method, the proposed SigdetNet and the FCN method are
significantly superior. The superior performance of the deep learning-based method may
be attributed to the sophisticated feature extraction procedure and the superior learning
ability of the deep neural networks. With the increase of SNR, the detection probability of
the LAD method can reach more than 80%, but its false alarm probability is also higher.
The LAD method is a threshold-based detection method, which is difficult to set thresholds
due to the ubiquitous noise and fluctuation. When the threshold is set lower, the detection
probability increases, but the false alarm probability also increases. Furthermore, the LAD
method is difficult to accurately detect the frequency boundaries of signals due to noise
fluctuation, so it also performs poorly in parameter estimation.

Compared with the FCN method which also adopts deep learning, the proposed
method achieves better performance. The proposed SigdetNet can reach over 90% detection
probability when the SNR is larger than 0 dB, and can achieve over 95% detection probability
when the SNR is at 4 dB. However, the best detection probability of FCN is 94.5% when
the SNR is at 12 dB. When SNR is higher than −4 dB, the false alarm probability of the
proposed method can maintain below 20%, while the false alarm probability of FCN is
30% when SNR is −4 dB. The main reasons for the better performance of the proposed
method include: firstly, the SigdetNet uses ResNet as the backbone network, and residual
learning can solve the problem of vanishing gradients to train a deeper network; secondly,
the use of PPM module can fuse multi-scale feature maps to effectively extract features
with context information. On the contrary, the FCN method lack of ability to infer from the
context, which may cause false detections or unclear boundary segmentation due to noise
fluctuations. Context information is beneficial for signal detection, for example, the power
spectrum of a 2FSK signal with a large modulation index has in-band splitting. The energy
between the two spectral peaks of 2FSK is low, and if out of context information, the pixels
between the two spectral peaks may be misjudged as background, resulting in one signal
being falsely detected as multiple signals.

To further demonstrate the validity of the proposed method, the network is trained
without PPM and obtains the SigdetNet_wo_PPM curve in Figure 11. The results show
that the performance of the network with the PPM module is better than that without the
PPM module. When the SNR is below 0 dB, SigdetNet with a PPM module can achieve
a 2∼3% improvement in detection probability and false alarm probability compared to
that without PPM. Table 1 shows the complexity comparison of the SigdetNet with the
PPM module and without the PPM module in terms of floating-point operations (FLOPs)
and network parameters. It can be seen that the added PPM module does not significantly
increase the complexity.

Table 1. The comparison of complexity.

Model FLOPs Parameters

SigdetNet 335.2928 M 0.3624 M
SigdetNet without PPM 334.1107 M 0.3618 M

5.3. Performance on the Competition Dataset

In order to further verify the effectiveness and applicability of the proposed method,
a competition dataset is utilized. The dataset includes 500 wideband RF captures, each
RF capture containing multiple narrowband signals, where each narrowband signal has a
different modulation type and signal-to-noise ratio. The narrowband signals in a wideband
RF capture include constant and burst signals. In previous experiments, the performance of
the proposed method was evaluated when the IoU threshold was fixed at 0.9. In this section,
the performance under different IoU threshold η is analyzed, where η ∈ [0.6, 0.7, 0.8, 0.9],
as shown in Figure 12. The proposed SigdetNet maintains a satisfactory detection per-
formance, which is similar to the previous results. Naturally, when the IoU threshold
increases, the detection probability and false alarm probability deteriorate because most
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predictions are discarded. Two prediction examples are shown in Figures 13 and 14 respec-
tively, and there are detailed results for the two subbands below each prediction example.
The results show the proposed method achieves good effectiveness in different types of
power spectrums, almost all signals in the spectrum can be detected, and their lower and
upper frequency positions can be obtained at the same time. In practice, the number and
bandwidth of signals in each wideband RF capture are time-varying, with some signal
bandwidths spanning a wide range, while others are very narrow. In Figures 13 and 14, the
results show that the proposed method can also deal with these problems well. Although
the detection results demonstrate the practicability of the proposed method, there are still
some problems. For example, as shown in Figure 14c, spectral boundaries cannot be exactly
estimated for weak signals.

(a) (b) (c)

Figure 12. Performance results on the competition dataset. (a) detection probability; (b) false alarm
probability; (c) mean absolute error of parameter estimation.

(a)

(b) (c)

Figure 13. Predicted results for the first example. (a) The whole band of the first prediction example.
(b) The sub-band_1 of the first prediction example. (c) The sub-band_2 of the first prediction example.
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(a)

(b) (c)

Figure 14. Predicted results for the second example. (a) The whole band of the second prediction
example. (b) The sub-band_1 of the second prediction example. (c) The sub-band_2 of the second
prediction example.

6. Conclusions

In this paper, the deep learning technology is applied to solve the non-cooperative
multi-signal detection problem, that is, to jointly detect the presence of signals as well
as estimate their center frequencies and bandwidths. The proposed framework, named
SigdetNet, includes signal pre-processing, signal enhancement, feature extraction using
NN, and post-processing. In the signal pre-processing stage, Welch’s method is utilized
to reduce the variance of the PSD estimation. Then, a logarithmic transformation is also
applied for signal enhancement. In particular, a convolutional encoder-decoder network
with the embedding pyramid pooling module is constructed to extract informative features
related to signal detection from multi-scale. Extensive simulation results demonstrated
that our proposed method is superior to other benchmark schemes, e.g., the LAD method
and the FCN method. Interesting avenues for the future include (i) conducting detailed
studies to determine the most suited network structure for signal detection applications,
and (ii) building custom-made denoisers to improve performance under low SNR.
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Abbreviations

The following abbreviations are used in this manuscript:

CR Cognitive radio
PSD Power spectral density
IoT Internet of Things
ED Energy detection
LAD Double-thresholding
FCME Forward consecutive mean excision
SNR Signal to noise ratio
NN Neural network
NLP Natural language processing
CNN Convolutional neural network
GRU Gate recurrent unit
SSD Single shot multibox detector
Faster-RCNN Faster region-based convolutional neural network
RFI RF interference
FCN Full convolutional network
PSPNet Pyramid scene parsing network
PSD Power spectral density
PPM Pyramid pooling module
ASK Amplitude shift keying
PSK Phase shift keying
FSK Frequency shift keying
GMSK Gaussian minimum shift keying
RF Radio frequency
AWGN Additive White Gaussian Noise
FFT Fast Fourier transform
BN Batch normalized
ReLU Rectified linear unit
CE Cross-entropy
IoU Intersection-over-unit
TP True positive
FP False positive
RMSProp Root mean square prop
FLOPs Floating-point operations
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