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Abstract: One of the most important strategies for preventative factory maintenance is anomaly
detection without the need for dedicated sensors for each industrial unit. The implementation
of sound-data-based anomaly detection is an unduly complicated process since factory-collected
sound data are frequently corrupted and affected by ordinary production noises. The use of acoustic
methods to detect the irregularities in systems has a long history. Unfortunately, limited reference
to the implementation of the acoustic approach could be found in the failure detection of industrial
machines. This paper presents a systematic review of acoustic approaches in mechanical failure
detection in terms of recent implementations and structural extensions. The 52 articles are selected
from IEEEXplore, Science Direct and Springer Link databases following the PRISMA methodology for
performing systematic literature reviews. The study identifies the research gaps while considering the
potential in responding to the challenges of the mechanical failure detection of industrial machines.
The results of this study reveal that the use of acoustic emission is still dominant in the research
community. In addition, based on the 52 selected articles, research that discusses failure detection in
noisy conditions is still very limited and shows that it will still be a challenge in the future.

Keywords: acoustic recognition; mechanical failure; industrial machines; systematic review

1. Introduction

During collection, compression, and transmission, all collected signals and acquired
images are unavoidably polluted by noise, resulting in distortion and loss of information.
The quality of any signal processing activities is harmed by the presence of noise. As a
result, signal denoising is critical in today’s signal processing systems, such as related to
image processing [1], speech recognition [2], or biomedical signal processing for medical
diagnostics [3]. In telecommunication, noise reduces the bandwidth of communication
channels and leads to signal jitter and information loss [4]. In urban environments, noise
affects negatively the health of citizens and leads to noise pollution [5]. Noise is also
harmful in many industrial applications and construction engineering [6]. Industrial noise
is acoustic noise that occurs at workplaces and enterprises as a result of the production
process, during the operation of machines, equipment, and tools [7]. The result of industrial
noise leads to a reduced lifetime of industrial machinery and/or industrial accidents.
Structural vibration, which is conceptually similar to noise, can cause many noise-related
problems: it can cause structural fatigue failure [8], cause discomfort to people using
the product or bystanders [9], disrupt sensitive equipment, and so on [10]. The crucial
initial stage in the actual engineering application of unit condition monitoring and fault
diagnosis is to analyze vibration data in order to extract the most representative problem
characteristics and increase the accuracy of diagnosis and analysis. As a result, efficient
noise analysis of the gathered vibration signals is critical for properly judging the unit’s
defective function.
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In the large-scale industries, where plentiful industrial machines are involved, not
every occurrence of mechanical failure on every single machine could be directly detected
by commonly used sensors [11–13]. One of the causes of this disability is triggered by the
high level of noise in the environment in which the machines are operated. In a very noisy
condition, whether caused by light or sound pollution, the commonly used sensors, e.g.,
ultrasonic and infra-red sensors, will experience a large amount of distortion and encounter
difficulties in disturbance or failure detection.

Several studies have been conducted to detect failures in industrial machines [14]. For
example, deep-learning-based anomaly detection, a new detection method in another area
of signal processing [15,16], can be used to detect such failures. In addition, one method that
is also commonly used to detect mechanical damage to machines is the acoustic method.
This method is used because it has a higher level of security compared to other methods,
because measurements do not have to be performed via direct contact with the monitored
equipment [17]. The use of acoustic methods to detect the irregularities in systems has a
long history [18,19]. In general, the abnormal conditions that occur at the measured device
or location can be detected by changes in the characteristics of the acoustic signal generated,
such as frequencies and amplitude [20,21]. The advantage of using the acoustic method
compared to other methods is that the features of the acoustic signal can be extracted and
used for deeper failure detection [22]. Moreover, the use of acoustic methods is also applied
to detect changes in the behavior of living creatures [23]. Considering the growing interest
of the research community in the detection of failures by acoustic methods in general, and,
in particular, failures in high-noise environments, a large number of relevant methods and
equipment have emerged over the last few years. Several secondary studies have provided
scope for this solution, but systematic studies in this research domain are still very limited.

The main contribution of this research is the systematic literature review (SLR) that
was used to analyze and synthesize the relevant studies on failure detection by acoustic
methods, and the technology that has been used and will be used for failure detection
by acoustic methods. This research also aims to investigate the primary techniques and
algorithms for acoustic-based failure detection, as well as to identify several methods that
demonstrate the potential for using these techniques. This study also discusses several
taxonomies. This study used an evidence-based systematic review methodology to cover
the most recent literature and to follow a systematic and impartial selection and evaluation
process as a form of transparency and to ensure the inclusion of all related studies.

The main purposes of this study are:

1. Classifying acoustic mechanical failure analysis approaches and techniques;
2. Analyzing the existing work conducted in this area of research;
3. Recognizing the main issues that need to be handled;
4. Identifying the potential areas of research in the future.

2. Related Work

This section presents a brief discussion of the relevant literature review and research
on the detection of mechanical failures using acoustic methods. Table 1 shows a comparison
of reviews and surveys on it. Delvecchio et al. [24] wrote a critical review of the use of the
vibro-acoustic method to monitor internal combustion engines (ICM). Leaman et al. [25]
wrote a review on using acoustic emission technology to detect failures in planetary gear-
boxes (PG). Lukonge and Cao [26] wrote a review on the utilization of acoustic emissions
technology to detect offshore and onshore pipeline leaks. Raghav and Sharma [27] pre-
sented a review on condition monitoring techniques and fault and failure diagnosis on a
gearbox based on the acoustic emission (AE) method.

Reviews were conducted and reported using the guidelines for systematic literature
reviews and the systematic mapping study process and the Preferred Report Items for
Systematic Reviews and Meta-Analysis statements (PRISMA). This systematic review is
based on a well-designed research process that ensures the comprehensive and impartial
selection of all peer-reviewed publications related to published research material. This
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protocol is used to collect relevant papers from credible scientific sources, which are then
classified and mapped into several categories to reveal the true state of the ongoing research
in the application of failure detection technology. This research map will be very useful
for practitioners and researchers in determining state-of-the-art domains and topics for
future research.

Table 1. Comparison of related reviews.

References Research
Method Year Citations Timeline Focus of Study

Delvecchio et al. [24] Traditional
Review 2017 179 No

The state-of-the-art strategies and
techniques based on vibroacoustic signals

that can monitor and diagnose
malfunctions in internal combustion

engines (ICEs) under both test bench and
vehicle operating conditions.

Leaman et al. [25] Traditional
Review 2021 34 No The use of acoustic emission technology to

detect failures in planetary gearboxes

Lukonge and Cao [26] Traditional
Review 2020 77 No

Utilization of acoustic emissions
technology to detect offshore and onshore

pipeline leaks

Raghav and Sharma [27] Traditional
Review 2020 99 No

The techniques for the condition
monitoring and fault diagnosis of

gearboxes based on acoustic emissions (AE)

Consequently, it is important to note that the aim of this review is not only to identify
use cases or applications of acoustic methods to detect failures, but also to understand the
limitations and challenges of using such methods. In addition, we examine the latest trends
in terms of technical approaches, methodologies, and concepts used in the implementation
of these methods.

3. Research Methodology

The goal of using an SLR is to distinguish, evaluate, and examine previous and related
works that are relevant to the purpose of this paper. Reviewing studies with a logical
and impartial research approach can result in SLR writing. The research strategy must
be capable of ensuring the completion of the evaluation procedure as soon as possible,
according to Kitchenham. Nonetheless, the primary goal of running an SLR is to fill in
the gaps that exist in each area. Furthermore, the unique nature of this systematic review
necessitates similar research to serve as a guide.

3.1. Research Design

In this subsection, the current research requirements are described by identifying the
results of the preliminary research based on the research question and keywords related to
the research question.

3.1.1. Literature Review Questions

It has taken a long time to develop methods for identifying and illustrating failure
detection methods using acoustic methods. Various processes, methodologies, and tech-
niques have been developed over the years to describe the elements involved in acoustical
failure detection. As a result, the following questions will be addressed in this study:

1. What types of failures in industrial machines can be detected by acoustic methods?
2. What are the existing solutions and possible technologies for the detection of mechan-

ical failures by acoustic methods?
3. What are the challenges faced by acoustical failure detection?
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4. What are the future research trends and directions in mechanical failure detection
using acoustic methods?

3.1.2. Research Process

Rather than resources drawn from scientific articles, this literature review process
focuses on finding accredited main study articles. Furthermore, scientific conference
proceedings are regarded as research sources. To continue the process of extracting SLR
review articles, the following resources were used.

3.1.3. Search Terms

Several online database sources were involved to search for and collect papers related
to this study. These sources were selected based on the establishment they have achieved
to date. The sources of the papers used as references in this study can be seen in Table 2.
This database can provide the highest impact and full text of the most important journals
and conferences relevant to acoustical failure detection.

Table 2. Online databases.

No Database URL

1 IEEE Xplore https://ieeexplore.ieee.org/, (accessed on 24 December 2021)
2 Science Direct https://sciencedirect.com/, (accessed on 24 December 2021)
3 Springer Link https://link.springer.com/, (accessed on 24 December 2021)

After performing the first search step by entering keywords in this database, an
additional scanning step was performed to ensure the accuracy of the research process and
that the selection of studies relevant to the current research question and work met the
criteria. In this study, search engines were also involved to assist the search process for
related research.

1. “Acoustic Mechanical Failure Detection Industrial Machine” OR “Acoustic Mechanical
Fault Detection Industrial Machine”

2. “Acoustic Mechanical Failure”
3. “Acoustic Detection”
4. “Acoustic”
5. “Mechanic Failure”
6. Detection
7. Failure
8. Machine

The search terms were then aggregated into a search query using conjunction (AND)
and disjunction (OR) operators.

(((((“Industrial Machine”) AND “mechanical”) AND “Failure” OR “Fault”) AND
“Acoustic”) AND “Detection”)

3.2. Review Conduction

This section describes the approaches involved in carrying out the systematic literature
review process. The SLR search process depends on the rules and frameworks involved in
producing this review article.

3.2.1. Selection of Relevant Papers

Following the acquisition of preliminary research studies related to the research
objectives, the discovered papers should be evaluated for relevance. As a result, a second
assessment was carried out in order to determine the relevance of the chosen initial study
through an evaluation. In addition, after the initial screening, a systematic review of
the selected studies was performed at random to ensure the consistency of the inclusion

https://ieeexplore.ieee.org/
https://sciencedirect.com/
https://link.springer.com/
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and exclusion criteria. Figure 1 depicts the study selection procedure for the current
systematic review.

Figure 1. Procedure of research selection for the present schematic review.

The following steps were taken to identify relevant research studies:

1. Find the database and identify previous works related to the study using the de-
fined terms.

2. Ignore papers that are not related to the given search criteria.
3. Exclude papers that have no clear relationship between title or abstract.
4. Evaluate the papers by reading the full context.
5. Evaluate the bibliography
6. Perform the initial study.

3.2.2. Inclusion and Exclusion Criteria

Exclusion criteria included research articles that were not related to an acoustic ap-
proach to detecting mechanical failure and were therefore outside the scope of this research
paper. This research focused on SLR research articles that were relevant to this topic. Fur-
thermore, similar studies on the same topic were not included in the study. As a result,
Table 3 shows the inclusion and exclusion criteria used in writing the SLR. Figure 2 depicts
the proportions of initial and final article selections from each online source listed in Table 3.
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Table 3. Inclusion and exclusion criteria.

Inclusion Criteria

1 Peer-reviewed original articles
2 Articles proposing an acoustical method for mechanical failure detection
3 Articles that utilize acoustical method for failure detection
4 Recency of articles in case of multiple repeated studies

Exclusion Criteria

1 Articles that are not written in English
2 Studies with unvalidated techniques and algorithms
3 Articles that utilize acoustical approach for other purposes
4 Articles that do not utilize acoustical methods
5 Articles that do not clearly mention acoustic/sound/noise approaches in the title
6 Articles providing unclear results or findings
7 Duplicated studies

3.2.3. Data Extraction

Relevant information was extracted from the articles during the data extraction process
and placed into a database. This database consisted of the items listed in Table 4.

Table 4. Data extraction.

Data Item Description

Title Article title
Year Year of publication

Author(s) The article author(s)
Publication type Journal, proceeding, etc.

Publication medium The medium via which the article is published
Country Researchers’ affiliation country

Contribution The major contribution of the article
Summary Summary of the article from our perspective

3.3. Demographic Data and Overview

The results of the systematic review are reported in this section. As shown in Figure 1,
2251 documents were extracted from the scientific database using a search methodology.
In total, 2032 papers were eliminated after the initial screening, which was based on the
article title and keywords, leaving 233 for additional screening. The publication did not
commit to discussing the use of acoustic methods to detect failures; however, the content of
the abstract, considered to be related to the method, led to the search protocol used to be
included in the list of related publications. After reading the abstracts of the selected articles,
as well as the introduction and conclusions in some cases, in the following screening stage,
we screened the papers further using the criteria stated in Table 3. A total of 101 papers
were selected as a consequence of this process. Another 49 articles were eliminated after
reading all selected papers because they did not focus on detecting failures in industrial
machines. After the screening procedure, 52 publications were selected for inclusion in the
study. Table 5 contains a complete list of the selected publications, as well as some of the
data elements retrieved.



Sensors 2022, 22, 3888 7 of 20

Table 5. List of selected papers.

No Authors Year Publication Type Case

1 Al-Obaidi et al. [28] 2017 Journal Valve
2 Altaf et al. [29] 2019 Journal Rotating machine
3 Cruz et al. [30] 2020 Journal Gas pipeline
4 Daraz et al. [31] 2018 Conference Centrifugal Pump
5 Delgado-Prieto and Zurita Millan [32] 2017 Journal Gear
6 Eftekharnejad and Mba [33] 2009 Journal Gear
7 Fezari et al. [34] 2014 Conference Rotating machine
8 Firmino et al. [35] 2021 Journal ICE
9 Gao et al. [36] 2019 Journal Grinder
10 Gil et al. [37] 2019 Conference Bearing
11 Glowacz and Glowacz [38] 2017 Journal Induction Motor
12 Glowacz et al. [39] 2021 Journal Grinder
13 Griffin et al. [40] 2021 Journal Metal Stamping
14 Gu et al. [41] 2011 Journal Gearbox
15 Heydarzadeh et al. [42] 2017 Conference Gearbox
16 Ibarra et al. [43] 2019 Journal Bearing
17 Jian et al. [44] 2013 Journal Bearing
18 Jo et al. [45] 2020 Journal Turbine blade
19 Karabacak and Ozmen [46] 2021 Journal Gear
20 Kothuru et al. [47] 2018 Journal End Milling
21 Liu et al. [48] 2020 Journal Gearbox
22 Liu et al. [49] 2020 Journal Belt conveyor
23 Liu et al. [50] 2021 Journal Turbine blade
24 Lu et al. [51] 2021 Journal Gearbox
25 Mad Juhani and Ibrahim [52] 2016 Conference Control valve
26 Medina et al. [53] 2019 Conference Gear
27 Merizio et al. [54] 2021 Journal Pipe
28 Motahari Nezad and Jafari [55] 2020 Journal Bearing
29 Nirwan and Ramani [56] 2021 Journal Bearing
30 Oh et al. [57] 2019 Conference Gear Reducer
31 Omoregbee and Heyns [58] 2019 Journal Bearing
32 Ono et al. [59] 2013 Conference Motor
33 Orman et al. [60] 2015 Conference Bearing
34 Pandya et al. [61] 2013 Journal Bearing
35 Pan et al. [62] 2019 Journal Motor
36 Park et al. [63] 2017 Journal Insulator
37 Qiao et al. [64] 2020 Journal Bearing
38 Qu et al. [65] 2013 Conference Gearbox
39 Ramteke et al. [66] 2019 Journal Diesel engine
40 Rzeszucinski et al. [67] 2015 Conference Bearing
41 Seemuang et al. [68] 2018 Conference Shaft
42 Shang et al. [69] 2017 Conference Switchgear
43 Shukri et al. [70] 2011 Conference Control valve
44 Sun et al. [71] 2020 Journal Mill
45 Taha and Widiyati [72] 2010 Journal Bearing
46 Tang et al. [73] 2021 Journal Bearing
47 Toutountzakis et al. [74] 2005 Journal Gear
48 Volkovas and Dulevicius [75] 2006 Journal Turbine pump
49 Wu and Meng [76] 2006 Journal Rotor
50 Yao et al. [77] 2021 Journal Gear
51 Yun et al. [78] 2021 Journal Robot arm
52 Zhang et al. [79] 2019 Journal Bearing
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The time span of the articles used is from 2006 to 2021. Figure 3 shows the distribution
of the included articles, with most of the articles (11 articles) published in 2021. Of the
52 included papers, 37 were published in the last five years (2017–2021). This implies that
research in the field of acoustical methods for detecting failures is still very new and interest
in this area is growing rapidly as the number of publications continues to increase.
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The location (country) of the institutions associated with the authors of the selected
publications was also used to obtain an overview of the geographical distribution of
members of the research community interested in research on acoustic methods for failure
detection. The institution of origin of the author of the correspondence, or the first author
if the author of the correspondence is unknown, is determined as the country of origin
of the selected article. The geographical distribution of the article authors is shown in
Figure 4. Based on the 52 articles reviewed, China was the largest contributor, with
11 articles, followed by South Korea and the United Kingdom with five articles. Malaysia,
Poland, and the United States followed in the next position, with each contributing four
articles. Meanwhile, Brazil and India contributed three articles, and 13 different countries
contributed one article each.

Figure 4. Article distribution by country of origin.

The type of publication determines whether the paper will be published in journals
and conferences. The publishing categories of the publications collected are depicted in
Figure 5. In this study, 73% or 38 of the selected articles came from publications in the
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form of scientific journals. The rest, 27% or 14 of the selected articles, came from scientific
conferences. The list of journals and conferences that become publication media can be
seen in Table 6.

Version May 16, 2022 submitted to Sensors 8 of 19

The location (country) of the institutions associated with the authors of the selected publications 186

was also used to obtain an overview of the geographic distribution of members of the research 187

community interested in research on acoustic methods for failure detection. The institution of origin 188

of the author of the correspondence, or the first author if the author of the correspondence is unknown, 189

is determined as the country of origin of the selected article. The geographical distribution of the 190

article authors is shown in Figure 4. Based on 52 articles reviewed, China was the largest contributor 191

with 11 articles, followed by South Korea and the United Kingdom with 5 articles. Malaysia, Poland, 192

and the United States followed in the next position with each contributing 4 articles. Meanwhile, 193

Brazil and India contributed 3 articles, and 13 different countries contributed 1 article each. 194

Figure 4. Article distribution by country of origin

The type of publication determines whether the paper will be published in journals and 195

conferences. The publishing categories of the publications collected are depicted in Figure 5. In this 196

study, 73% or 38 selected articles came from publications in the form of scientific journals. The rest, 197

27% or 14 selected articles came from scientific conferences. The list of journals and conferences 198

that become publication media can be seen in Table 7.

27%

73%

Conference
Journal

Figure 5. Categories of publication
199

Figure 5. Categories of publication.

Table 6. Medium of publication.

Medium of Publication Reference

1st International Conference on Electrical Materials and Power Equipment [69]
2nd International Conference on Engineering Innovation [68]
3rd International Conference on Computer Research and Development [70]
4th International Conference on Intelligent and Automation Systems [52]
10th IEEE International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives [67]
10th International Conference on Information and Communication Technology Convergence [57]
16th International Power Electronics and Motion Control Conference and Exposition [34]
24th International Conference on Automation & Computing [31]
42nd IEEE International Conference on Acoustics, Speech and Signal Processing [42]
2013 IEEE International Conference on Prognostics and Health Management [65]
2nd International Conference on Condition Assessment Techniques in Electrical Systems [60]
2019 Signal Processing Algorithms, Architectures, Arrangements, and Applications [37]
2019 Prognostics and System Health Management Conference [53]
Acoustics, Speech, and Signal Processing [59]
Acoustic Australia [29]
Advance Powder Technology [49]
Alexandria Engineering Journal [28]
Applied Acoustic [33,38,39,73]
Chinese Journal of Mechanical Engineering [36,51]
Clean Technologies and Environmental Policy [30]
Expert Systems with Application [61]
IEEE Access [64]
IEEE Sensors Journal [48]
IEEE Transactions on Industrial Electronics [32,63]
IEEE Transactions on Industry Applications [50]
IEEE Transactions on Instrumentation and Measurement [77]
International Journal of Advanced Manufacturing Technology [76]
International Journal of Precision Engineering and Manufacturing [44]
Journal of Intelligent Manufacturing [78]
Journal of Mechanical Science and Technology [41,45,62,79]
Journal of the Brazilian Society of Mechanical Sciences and Engineering [35]
Journal of The Institution of Engineers (India): Series C [54]
Journal of Vibration Engineering & Technologies [58,66]
Material Today: Proceedings [56]
Measurement [46,55]
NDT & E International [74]
Russian Journal of Nondestructive Testing [75]
The International Journal of Advanced Manufacturing Technology [40,43,47,71,72]
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4. Results and Discussion
4.1. Results Obtained from Answering the Research Questions

In this section, the results obtained are the answers to the research questions given in
Section 3.1.1. These questions were asked to determine the extent of research developments
in the field of using acoustic methods to detect failures in industrial machines. The answers
to these questions are compiled based on the description of the results of the selected
scientific articles.

4.1.1. What Types of Failures in Industrial Machines Can Be Detected by
Acoustic Methods?

Table 7 shows the types of damage to industrial machines that can be detected by
the acoustic method. The table shows that, based on the collected references, mechanical
failures that can be found by the acoustic method include defects, wear, fractures, leaks, and
others. Grinding burn is caused by excessive heat generated during the grinding process.
Gao et al. [36] designed a grinding burn monitoring system using acoustic emission
signals and wavelet coherence analysis. Breakage is another example of a failure that
can be detected by acoustic methods, as shown in research performed by Sun et al. [71]
involving mechanical breakage analysis on milling machines. Other failure types that can
also be found by the acoustic method, based on the selected articles, are corrosion [28],
cracks [57,72], leakage [30,52], wear [46,55], rubbing [62], pitting [53], etc. Table 7 also
shows that most of the detected failures were in bearings (17 articles) and gears (12 articles).
This shows that the detection of failures with the acoustic method is very suitable for use
on components that have a high level of movement.

In general, mechanical failure is a failure type that causes disruption or cessation of the
work of a device. This failure can be caused by cracks [75], deformation, wear [46,47], leak-
age [30], bending, etc. Mechanical failure can be recognized by the increase in temperature
or the appearance of an unusual sound when the engine is operating [80].

Table 7. Types of failure detected by acoustic method.

Failure Location Accuracy Reference

Burn Grinder ≤100% [36]

Breakage Milling Machine 91.18% [71]

Corrosion Valve 98% [28]

Crack

Bearing 80–100% [72]
- [44]

Gear 97% [57]
- [48]

Propeller - [75]

Shaft - [68]

Fracture Gear ≥90% [77]
72% [32]

Leakage Pipeline 99.6% [30]

Control Valve - [52]

Misfire Combustion Engine 98.7–99.3% [35]

Pitting Gear 97.0–99.9% [53]

Rubbing Motor 80% [62]
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Table 7. Cont.

Failure Location Accuracy Reference

Wear

Bearing 56.3–100% [55]
- [43]

Gear 48.4–99.9% [46]
- [51,65]

Metal Stamping 96% [40]

Other 97% [47]

Seeded
Bearing 96.67% [61]

- [60]

Gear - [33,74]

Spall Bearing - [67]

Another Failure

Bearing
89.33–100% [39]
87.2–99.48% [64]
- [29,37,50,56,58,73,76,79]

Pipe 100% [54]

Turbine Blade - [45]

Insulator 96.7–100% [63]

Belt Conveyor 94.53% [49]

Diesel Engine - [66]

Centrifugal Pump - [31]

Control Valve - [70]

Motor 82–100% [59]
- [38]

Robot Arm 85% [78]

Rotataing Machine 91.5–94.5% [34]

Gear 97% [42]
- [41]

Switchgear - [69]

4.1.2. What Are the Existing Solutions and Possible Technologies for the Detection of
Mechanical Failures by Acoustic Methods?

In the field of acoustics, mechanical failure can be recognized by the appearance
of an unusual signal when the engine is operating. This damage signal generally has a
frequency and amplitude that are not the same as the frequency and amplitude under
normal conditions. According to Tagawa et al. [22], acoustic data are easier to collect at the
factory due to the relatively low cost of installing microphones in existing facilities.

Broadly speaking, the use of acoustic methods to detect mechanical failures in ma-
chines can be divided into two categories, namely the utilization of acoustic emission and
the others (see Table 8). The acoustic emission method is the most commonly used acoustic
analysis method in detecting mechanical failure. On the other hand, the other methods
harvest the acoustic signal by utilizing a common sound sensor such as a microphone.
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Table 8. Approach methods used to detect failures based on acoustic signals.

Detection Method Analysis Reference

Acoustic Emission Adaptive Neuro-Fuzzy Inference System [55]
Akaike Information Criterion [73]
Cepstrum [43,44]
Chromatic monitoring [32]
Envelope [41]
Frequency [52]
Machine Learning [28,34,40,42,53,58,61,71,72]
Root Mean Square [33,56,68,74]
Sparse Augmented Lagrangian [50]
Statistic [62,66,70,75]
Time Synchronous Average [65]
Variational Mode Decomposition [48]
Wavelet [36]

Microphone Envelope [31]
Modulation Signal Bispectrum [51]

Machine Learning [29,30,35,37,38,46,47,49,54,57,
63,64,77,78]

Reverse Spectrum [69]
Shortened Method of Frequency Selection
Nearest Frequency Components [39]

Special Kurtosis [60,67]
Statistic [59]
Stochastic Resonance [79]
Time-frequency [76]

Ultrasonic Quantitative [45]

• Acoustic Emission-Based
Acoustic emission (AE) is the term given to describe a physical phenomenon that
occurs when a small amount of elastic energy is released into a structure through a
mechanical process [20]. In simple terms, the acoustic emission signal is a combination
of the deterministic signal and the failure signal. A deterministic signal is a signal
that appears when the engine is running normally. Meanwhile, the failure signal is
a signal that appears when there is an abnormality or disturbance when the engine
is operating. Assuming that the deterministic signal and the failure signal are unre-
lated, Liu et al. [50] write the acoustic emission signal as Equation (1), where y(n),
d(n), and ξ(n) are, respectively, acoustic emission signals, deterministic signals, and
fault signals.

y(n) = d(n) + ξ(n) for n = 1, 2, . . . , M + N (1)

• Microphone-Based
Apart from the acoustic emission approach, there are various other ways to retrieve the
acoustic signal from the component to be inspected. In general, acoustic signal retrieval
involves using a microphone to pick up the signal. The microphone used can stand
alone [22,47], with additional equipment involvement (such as a stethoscope) [78], or a
microphone may be used that is installed on certain devices (such as cellphones) [60,67].
The use of a microphone is intended to take sound samples from the device under
test when the equipment is working in accordance with its function. The frequency
of the sound picked up by the microphone can be in the range of 10 Hz–10 kHz (the
range of sound that can be heard by humans) [59], as well as the signals picked up
by the microphone on a mobile phone sampling frequency of 44.1 kHz [47,67]. The
advantage of using a microphone over other methods is the ease of installation and
data collection [22]. However, careless placement of the microphone will affect the
measurement results.
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• Ultrasonic-Based
Another method used to detect faults is to utilize ultrasonic signals. Jo et al. [45]
conducted research on failure detection on turbine blades by the ultrasonic method
at a frequency of 300 kHz. They found that partially lost and distorted blades can be
detected by acoustic diagnosis during the turbine’s operation.

Table 8 also shows that analysis using machine learning is the most preferred choice
in determining failures with acoustic methods, both in acoustic emission-based studies and
with microphones. Artificial neural networks, k-Nearest Neighbors, and SVM are the most
common types of machine learning used in these studies. The use of these methods results
in a detection system with an accuracy rate ranging from 80% to 100% [30,34,47,64,72].

Table 9 shows a list of examples of intelligent and classic methods used to determine
failure in machines. On the other hand, Table 10 presents selected studies employing
machine learning to perform machine failure detection. Both tables show that artificial
intelligence in acoustic systems is still an attractive option for researchers.

Table 9. Algorithm or analysis method used to define failure.

Intelligent Clasical

Adaptive Neuro-Fuzzy Inference System High-Order Statistics
Support Vector Machine (SVM) Akaike Information Criterion

Decision Tree Mel-Frequency Cepstral Coefficients
Classification and Regression Tree Sparse Augmented Lagrangian

Genetic Algorithm Variational Mode Decomposition
k-Nearest Neighbors (KNN) Cepstrum Pre-Whitening

Kernel Liner Discriminant Analysis Special Kurtosis
Negative Selection Algorithm Envelope Analysis
Recursive Denoising Learning Time-Frequency Analysis

Random Forest (RF) Modulation Signal Bispectrum
Neural Network

Sparse Discriminant Analysis

Table 10. Summary of the technical implementation of artificial intelligence aspect in mechanical
failure detection.

Author Failure Location Algorithm Dataset Environment

Al-Obaidi et al. [28] Valve SVM 142,035 samples of AE signal
statistical parameters Laboratory

Altaf et al. [29] Rotating Machine
SVM, kernel liner
discriminant analysis, KNN,
sparse discriminant analysis

Audible sound frequency ranges
from 20 Hz to 20 KHz Laboratory

Cruz et al. [30] Gas Pipeline

Logistic regression, KNN,
SVM with linear kernel,
SVM with radial basis kernel,
random forest, adaptive
boosting, extreme
gradient boosting

1680 samples (120 samples for
each of the 14 experiments) and
for regression of 840 samples
(120 samples for each of the
leakage experiments) in
7 orifices

Laboratory

Fezari et al. [34] Rotating Machine K-Nearest Neighbors
10 recordings of 5 s duration
with frequency sampling Fs =
10,000 Hz

Laboratory

Firmino et al. [35]
Internal
Combustion
Engine

Artificial neural network
Frequencies, amplitudes, and
energy data gathered using
acoustic acquisition system

Laboratory

Griffin et al. [40] Metal Stamping Classification and
regression tree

A reduced short-time Fourier
transform of top 10 absolute
maximum component AE
feature sets that correlates to
wear measurement data

Laboratory
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Table 10. Cont.

Author Failure Location Algorithm Dataset Environment

Heydarzadeh et al. [42] Gearbox SVM

Recording of gearbox acoustic
emissions using an open field
microphone at the rate of 5 KHz
for 5 load conditions and four
classes corresponding to
fault-free, pinion, wheel, and
simultaneous faults

Laboratory

Karabacak and
Ozmeri [46] Gear Artificial neural network

Artificially produced acoustic
signal samples on machines that
have failures caused by wear,
pitting, and breakage

Laboratory

Kothuru et al. [47] End Milling SVM Audio signal related to
wear level Laboratory

Liu et al. [49] Belt Conveyor Decision tree

42 sets of acoustic data acquired
from experiments with a belt
velocity of 1 m/s, which is
equivalent to 2.9 rpm for the
idler rolls

Laboratory

Medina et al. [53] Gear Long short-term memory Acoustic emission
signal datasets Laboratory

Merizio et al. [54] Pipe Negative selection algorithm
Collection of sound pressure
data in positions inside the tube
using ISO10534-1(1996) standard

Laboratory

Motahari Nezad and
Jafari [55] Bearing Adaptive neuro-fuzzy

inference system Acoustic emission signals Laboratory

Oh et al. [57] Gear Reducer SVM

A balanced data set of
300 acoustic signals to
accommodate four cases of
60 signals and 60 signals each in
normal operation

Laboratory

Omoregbee and
Heyns [58] Bearing SVM, and genetic algorithm

A GA-based feature extractor
from a raw acoustic
emission dataset

Laboratory

Pandya et al. [61] Bearing Asymmetric proximity
function KNN

180 data samples of the five
bearing conditions Laboratory

Park et al. [63] Insulator Neural network Samples of noise measurement
results on insulators Laboratory

Qiao et al. [64] Bearing CNN, long
short-term memory

Data of 10 different fault levels,
including inner race, outer race,
ball, and normal. Each fault type
collects 800 samples, and
1200 signal points make a group
of samples

Noisy

Sun et al. [71] Mill SVM
Acoustic signal samples from
the engine during operation for
normal and abnormal conditions

Laboratory

Taha and Widiyati [72] Bearing Artificial neural network Acoustic signal samples from
five bearing defect conditions Laboratory

Yao et al. [77] Gear Recursive denoising learning
The collection of clean acoustic
signal and noise-disturbed
acoustic signal

Laboratory
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Table 10. Cont.

Author Failure Location Algorithm Dataset Environment

Yun et al. [78] Robot Arm Neural network A collection of acoustic signal
samples measured at each joint Laboratory

4.1.3. What Are the Challenges Faced by Acoustical Failure Detection?

At first, determining the failure that occurs in industrial machines without stopping
the process is difficult. However, with the development of sensor technology, measurement,
and computing, these problems have been overcome.

Industrial machine failures can occur in any machine or machine part. Failures can
occur in bearings, gears, actuators, distributors, and others. With acoustic technology,
failures can be measured even without the need for industrial process shutdowns, if
needed, affordably and efficiently. This technology is very useful, especially for detecting
early failures so that problems that occur can be handled immediately. However, behind
these advantages, there are several challenges that must be faced in the application of
the acoustic method. Table 11 aims to describe some of the problems encountered in the
application of the acoustic method to detect failures.

Table 11. Challenges in acoustic-based detection.

Challenges Explanation

Environmental noise

The type of noise is very influential on the measurement results.
Noise dominated by impulse signals will certainly make failure
analysis difficult because the spectrum of the signal will be
present and affect all observed frequencies.

Fragility

Failure is very likely to occur in components that are already
fragile. Failures such as defects or leaks can be detected, but
because there is a tendency to change the size of the defect level
in a short time, the measurement results will vary.

Multivariate failures

Failures that occur in a machine can come from several points
and occur at the same time. In addition, the type of failure that
occurs can also be a mixture of defects, cracks, leaks, wear, and
others. Each failure will affect the measurement signal received
and will affect the failure analysis method used.

Concurrent failure

Failure may occur on more than one machine running at the same
time. The sensor will be very easily affected by interference
signals from equipment around the measuring object that also
fails, especially for microphone-based measurements.

4.1.4. What Are the Future Research Trends and Directions in Mechanical Failure Detection
Using the Acoustic Method?

Based on the review and investigation of more than 100 articles, various research direc-
tions and possible research topics for consideration for further research have been generated.

First, the use of acoustic emission methods still dominates research in the field of
acoustic-based failure detection. This shows that there are still many opportunities to
find new methods for such detection. Furthermore, as hardware and software technology
advances, the opportunity to discover new methods will be even greater.

Second, there is still little research on the detection of mechanical failure with acoustic
methods in a certain level of environment. Most of the research conducted is research on a
laboratory scale. This shows the opportunity to conduct research for certain cases that are
still wide open. Moreover, in actual conditions, the noise level will affect the results of data
acquisition by the acoustic method.

Third, technological advances have led to increasingly sophisticated hardware spec-
ifications on devices such as mobile phones. Research initiatives in this regard are still
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very limited and can be taken as a future direction for portable failure detection devices.
Extraction results from voice signal recordings on cell phones have been widely used for
forensic purposes. Therefore, the use of mobile phones to replace existing sensors will
remain an interesting discussion in the future.

Fourth, the use of artificial intelligence as a tool to analyze mechanical failures with
acoustic methods is increasingly being selected. However, this does not rule out the
possibility of implementing and developing other artificial intelligence algorithms for the
failure detection case. Moreover, based on the reviewed papers, changes in location and
the type of failure in equipment often require different analysis patterns.

Fifth, research on mechanical failure in industrial machines basically cannot be sepa-
rated from research on work safety. Whenever there is an acoustically detected failure of an
industrial machine, the control system must be able to set off an alarm with a certain level
of vigilance. Therefore, it is necessary to conduct research that combines failure detection,
severity, and decision making regarding the attitude that must be taken when the failure
occurs in real time and centrally.

Lastly, the studies that have been done previously are generally only for detecting
failures on individual machines. Research towards the detection of cumulative machine
failures needs to be done. This is caused by the placement of machines in bulk in a
room. Therefore, the design of a failure detection system for multi-device cases will be an
interesting topic in the future.

4.2. Threats to Validity

Bias in the publication or selection process, errors in data extraction, and underestima-
tion can undermine any systematic mapping research process.

The tendency of researchers to publish more positive results than negative results is
known as publication bias. Positive results are more likely to be approved for publication
and referred to by others. From a reviewer’s point of view, it is difficult to overcome
publication bias. However, an attempt to overcome this has been made by scanning
various respected scientific databases to find as many relevant papers as possible. As
a result, several articles with positive results were eliminated and several studies with
unsatisfactory results were published. However, by limiting the search of articles according
to this method, there is a risk of neglecting important articles, such as reports from industry
authorities. However, limiting the use of publications from selected databases is expected
to increase the chances of finding high-quality scientific publications.

Selection bias, on the other hand, is more influenced by reviewers as it involves a
tendency to leave certain relevant articles out of the analysis due to faulty search techniques.
In this study, an attempt to create a search strategy was carried out and the results showed
that it was able to find every relevant document. When determining the inclusion and
exclusion criteria, efforts were made to ensure that the articles selected were a fair repre-
sentation of all publications relevant to the research undertaken. However, because this
research focused solely on peer-reviewed papers, material published on company websites,
discussion forums, and other similar places could not be obtained, as previously discussed.

Failure of reviewers to extract information and data accurately and effectively from
selected papers may result in data extraction errors and miscalculations. To address
this issue, a combination of bibtex and JabRef, a reference management program, was
used to organize and manage all the publications that we obtained for this study. The
researchgate.net site is used to generate publication data in bibtex format. In addition,
Microsoft Excel is also used to record and organize the extracted data items, as well as
perform statistical analysis on the data.

5. Conclusions

Failure detection techniques on industrial machines using acoustic methods are very
beneficial for the development of failure detection systems. Acoustic methods have emerged
as the main means of detecting failures because of their low cost and ease of implementation.
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Given the plethora of techniques, enabling technologies, and applications, it is critical
to thoroughly review and analyze existing solutions to determine the degree of novelty.
This SLR is an attempt to conduct a thorough review of the most recent studies on industrial
engine failure detection techniques using the acoustic method. A systematic and unbiased
selection process was used in 53 studies that met specific criteria for inclusion and quality
of candidate studies. The findings of this study show that in a broader spectrum of acoustic
failure detection methods, the use of acoustic emission remains dominant in the research
community. Wear, cracks, and seeded failures continue to be the primary research topics in
the context of the types of failure detected. On the other hand, the use of machine learning
methods, such as SVM, k-Nearest Neighbors, artificial neural networks, and others is still
the dominant choice for researchers. However, there are still challenges, such as fragility
and concomitant failure, to be faced in research in this area.

According to the findings of this systematic review, several potential future research
directions were also identified, including a much-needed emphasis on failure detection
through the use of devices such as cell phones to process information, leading to fail-
ure recognition.
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