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Abstract: Based on the transparency theory, this study investigates the appropriate amount of
transparency information expressed by the in-vehicle robot under two channels of voice and visual in
a proactive interaction scenario. The experiments are to test and evaluate different transparency levels
and combinations of information in different channels of the in-vehicle robot, based on a driving
simulator to collect subjective and objective data, which focuses on users’ safety, usability, trust,
and emotion dimensions under driving conditions. The results show that appropriate transparency
expression is able to improve drivers’ driving control and subjective evaluation and that drivers need
a different amount of transparency information in different types of tasks.
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1. Introduction

With the rapid development of intelligent vehicles, drivers’ requirements of more
intelligent assistances from the cockpit have increased. More vehicles are equipped with
virtual image voice assistants or vehicle robots with a physical entity, etc. These in-vehicle
intelligent assistants enhance the intelligence level of the cockpit and can execute diverse
tasks. The interaction between human and in-vehicle robots is considered as an integration
of a complex social and technical system [1], which needs an advanced model to improve
safety and trust in autonomous vehicles [2].

Anthropomorphism and proactivity have been widely studied for the future in-vehicle
robots. A study by Waytz et al. [3] showed that a more anthropomorphic cockpit can
increase human trust and is perceived to have more human-like mental abilities. It also
showed that an anthropomorphic robot’s voice response can increase trust, pleasure, and
dominance of the situation compared to mechanical voice response [4]. However, there are
still concerns about communication barriers for such robots. The accuracy and validity of
the output produced by intelligent systems can be problematic because it is difficult for
the operator to interpret the output [5]. Part of the reason is that humans have limits to
understand the proactivity of robots [6]. The study showed that people are more receptive
to the support provided by robots with moderate proactivity than those with high or
low proactivity [7]. Another reason is that the robot interaction design does not match
human cognition.

An important condition for a robot to be able to interact fluently with humans is that
the two can share a common cognitive framework [8] and form a coherent mental expecta-
tion during the interaction without adding additional learning costs. Therefore, in order
to promote a common mental model between human operators and automated systems,
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in-vehicle robots should be designed according to human cognition to improve communica-
tion efficiency and trust. Human cognitive architectures have also been increasingly applied
to the intelligent architecture of robots in recent years [9]. Some studies have highlighted
system transparency as a potential barrier to trust and technology acceptance [10]. Lee and
See [11] also suggested that autonomous systems should communicate their capabilities
and limitations as much as possible in order for humans to develop appropriate trust and
dependence. It is important to make the state of the autonomous system transparent to
humans under conditions consistent with human cognition. Chen and colleagues [12]
proposed the situation awareness-based agent transparency theory (SAT) to help establish
a common mental model between human and machine, which further generates assistance
to the human decision-making process and enhances task performance.

Using cognitive theory to design in-vehicle robots to provide appropriate expression
to humans has not been widely studied. This paper applies situation awareness-based
agent transparency theory to design in-vehicle robots. The objective of this paper is to
explore the appropriate amount of transparency information that can assist human decision
making by conducting experiments. Because the inappropriate amount of information
while driving, especially in critical situations can affect safety, usability, workload, and
trust, the following hypotheses are made.

1. The expressed in-vehicle robot’s information to drivers needs to be selective.
2. The appropriate amount of transparency information for different driving situations

needs to be determined.

In order to test these hypotheses, in-vehicle robot transparency design has been
made at three levels of perception, comprehension and projection based on SAT theory,
including channels of voice and visual in the design. Then, experimental evaluation of the
transparency design hypothesis has been carried out in selected driving scenarios. After
analyzing the experimental results, conclusions of transparency design of in-vehicle robot
proactive interaction in different scenarios have been made.

The contribution of this paper is that it gives results on how an appropriate level of
transparency expression affects drivers’ driving control and subjective measurement. It
also identifies that drivers need a different amount of transparency information in different
types of scenarios. Results can provide guidance to help design in-vehicle robot interface
with appropriate transparency.

2. Related Work

As human–robot interaction (HRI) becomes more complex, many guidelines and
design criteria have been developed depending on the specific applied scenarios [13].
A shared mental model can lead to higher levels of performance [14]; hence, effective
team member communication needs to be considered in the design process of proactive
robot interaction. Transparency plays an important role in building an understanding of
human–robot interaction and can contribute to the interaction design of in-vehicle robots.

2.1. Proactive Interaction

As intelligent systems become complex, researchers have begun to focus on proactivity.
There is some consensus in the research field regarding the definition of proactivity, mostly
in terms of the role and state of the initiator of the interaction. Keith et al. [15] argued that a
proactive system should be a representative of the user and able to initiate behavior without
user commands. In proactive interaction, human operators can achieve more supervisory
control rather than active control [16]. However, the change in control mode does not
mean that the human’s job becomes easier. Highly proactive robots also have a greater
influence on human decision making [17]. More cognitive factors need to be considered in
the design. The appropriateness of the quality and quantity of information transfer have to
be considered.

Multimodal interaction is also widely used in proactive interaction scenarios. For an
anthropomorphic robot, dual-channel interaction between speech and vision is crucial [18]
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and can significantly affect the mutual understanding between human and robot. In the
context of Industry 4.0, the development of multimodality in the driving environment is
also reflected in the research of many different devices, including VR, AR, and robotics [19].
Experiments by Williams et al. [20] also demonstrated that multimodal interaction can
be more effective than separate channel interaction in reducing driving workload and
distractions as well as in enhancing emotional experience. The importance of multimodal
interaction for proactive interaction has also been shown in previous studies [21].

The core of contemporary research on proactive interaction focuses on the technology
domain. Most of them are based on the decision making of artificial intelligence models to
enhance situation awareness, consciousness perception, and emotion perception. Specif-
ically, in the in-vehicle scenario, proactive interaction can help users collect and process
information in the environment, therefore reducing the user’s information processing
burden. A further study [22] proposed human–autonomous team cooperation based on
robot initiative to monitor and receive feedback from each other.

Proactive interaction is of high importance due to the development of intelligent
interface. However, the current work on proactive interaction is focused on the related
HRI system in the technical field [23], which is dedicated to finding solutions from the
perspective of AI. The explorations of proactive interaction design from the perspective of
cognitive theory are sparse.

2.2. Transparency

Understanding the reasoning process behind the output of an intelligent system in
a dynamic environment is of great importance [8]. Van Dongen et al. [24] found that the
perceptibility process of participants to the reasoning process of a decision aid system has a
significant impact on their reliance on its recommendations.

In the context of automation, an understanding of the behavior of technical agents is
important to ensure good interactions between human and technical agents. This under-
standing is often referred to as “transparency”. Lyons [14] argues that transparency can
facilitate optimal calibration between humans and autonomous systems. The design of the
appropriate amount of information on different display devices in the driving environment
has also been explored [25].

In terms of information content, clearer and more accurate information delivery can
enhance human trust [26]. It has been mentioned [27] that the information provided
by the proactive party, the machine, should be highly transparent to the user to allow
the user to identify and understand it quickly. Russell et al. [28] mentioned that the
characteristics of autonomy that intelligent agents should possess include observation
of the environment, action on the environment, and guidance of the activity. Lee [29]
suggested that in order to increase the transparency of automation to the operator, system
designers should make the 3Ps (purpose, process, and performance) of the system and its
history visible to the operator.

Endsley’s situation awareness (SA) theory [30] proposes three levels including SA
Level 1, perception of elements in the environment, SA Level 2, comprehension of these
elements, and SA Level 3, projection of their state in the near future. Based on SA theory,
Chen et al. proposed the situation awareness-based agent transparency theory (SAT) [12]
for explaining what information contributes to transparency. The SAT model argues
that as the agent is involved in the execution of the human task, the human needs to be
situationally aware of the agent and the environment, which can be achieved through the
agent’s transparency. Situation awareness-based agent transparency theory defines agent
transparency as a descriptive quality of an interface, where the operator understands the
intention, reasoning process, and future plans of an intelligent agent.

The SAT model also consists of three levels. At the SAT Level 1, the perception
level, the operator should be provided with the agent’s goals and its perception of the
environmental situation. At the SAT level 2, the comprehension level, the operator should
be provided with the agent’s understanding of the situation and the reasoning process of
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the action. At the SAT level 3, the projection level, the operator should be provided with
the agent’s projection of the future outcome. All three levels of the SAT model describe
the information that the agent needs to convey to maintain transparent interactions with
humans. The operator is, therefore, able to understand the agent’s intentions, reasoning
process, and predicted outcomes, which leads to better information sharing and a common
mental model of their communication.

The presence or absence of each level of information in the SAT determines whether
the user is able to understand the perception, comprehension and projection of the cur-
rent information expressed by robots. The design needs to consider that each level of
information can be combined to obtain an appropriate transparency that promotes mutual
human–robot understanding without increasing the workload. Conducting phase analysis
through an SAT model is a way to contribute to transparency between humans and robots.
The usability of the intelligent system, the emotional experience of humans, and the level of
trust can be measured. Related studies have also applied the SAT model for interface design
to conduct explorations, including robot action interfaces and UxV action interfaces [31,32].

3. Transparency Design of Proactive Interaction

According to the theory of situation awareness, the human cognitive process includes
three levels: perception, comprehension, and projection [30]. In the human–robot inter-
action process, the necessity of transparency in the three levels is reflected in the human
in robot. At the same time, anthropomorphism and proactivity require robots to present
multiple channels such as voice and visual.

In the design of in-vehicle human–robot interaction, it is necessary to consider the
appropriateness of the amount of information in different channels and different SAT levels.
The impact on several aspects needs to be examined such as driving safety, usability, and
emotion. The research framework is shown in Figure 1. We apply SAT theory to conduct
analysis to determine which SAT level the information is in. Combined with human–robot
interface levels [14], the transparency design assumptions for the in-vehicle robot were
carried out based on the proactive interaction scenario of the in-vehicle robot. The design
assumptions are then evaluated through experiments, using a driving simulator.
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3.1. Human–Robot Interface Levels

In order to promote appropriate transparency, Lyons argues that an opportunity to
foster transparency between the human and the robot is from the human–robot inter-
face. The human–robot interface includes three levels: informational, communicative,
and physical [14]. Each level covers a portion of what transparency design needs to con-
sider. The levels in SAT theory are distinct from the levels of the human–robot interface.
The SAT levels focus on the interaction process, where the human–computer interaction
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process can be well divided into three stages. Meanwhile, human–robot interface levels
function as a guidance on the specific design to determine the existence and the amount of
specific information.

For specific designs, interface features at the informational level need to be considered
to avoid too much information or non-intuitive displays, which may confuse and frustrate
the user of the robotic system. Interface features at the communication level need to
be considered to avoid the robot’s inappropriate responses, which affects user trust and
performance. Interface features at the physical level may include the robot’s emotional
expression, effectively describing the robot’s emotional state.

In transparency design assumptions, the amount of information and information
intuitiveness should be considered at the informational level. At the communication level,
communication smoothness and response timeliness should be considered. At the physical
level, emotional expressions should be considered.

3.2. Transparency Design Assumptions

Human–robot transparency design requires identifying certain interaction timing.
The identification enables the design of in-vehicle robots to present the driver with the
appropriate level of transparency to facilitate the driver’s understanding. The in-vehicle
robots give appropriate information that conforms with driver’s cognition, thus resulting
in transparency of the entire interaction process. We have explored the possible design
combination and excluded the designs that were clearly unreasonable for each interaction
timing in a given scenario. For example, considering communication smoothness and
response timeliness, the information can be neither too much or too little. Then, the design
pattern for each transparency level emerged, forming the transparency design assumption.

Transparency was first analyzed from the perspective of information intuitiveness.
From design exploration we conducted before the experiment, we found that when users
were given information at the comprehension and perception levels, they can accurately
identify the existence of the projection level. However, when the information at the projec-
tion level existed alone, users defaulted to the existence of perception and comprehension
levels of information. It showed that subjects were unable to cognitively recognize low-level
transparency information in the presence of high-level transparency information. When
analyzed at the physical level, emotional expression providing information at the percep-
tion and comprehension levels may affect subjects’ emotions. Therefore, perception and
comprehension levels of information should still be taken into account in the transparency
design assumptions.

In the proactive interaction condition of the in-vehicle robot, it has more information
that needs to be shared with people, and therefore, it requires a higher transparency of ex-
pression. At the perception level, considering emotional expression from the physical level,
voice cues can increase the robot’s anthropomorphism and enhance human emotions in the
corresponding scenarios. At the comprehension level, considering the informational level
aspect, the robot needs to covey the information it perceived to people, and how it com-
prehends the information needs to be transparent in the voice channel. At the perception
and comprehension levels, information in the visual channel, the information intuitiveness,
and task fluency are considered, and the comprehension level information is chosen to be
retained. At the projection level, considering information intuitiveness, the voice channel
gives easier understanding compared to the visual channel, so that the projection infor-
mation is designed to be expressed through the voice channel. Therefore, the design of
the projection level is assumed to include the voice channel information. It is expected
that the visual channel projection level information can play an auxiliary role to the voice
channel information to strengthen the robot’s expressiveness. Incorporating the communi-
cation smoothness into the comprehensive consideration, the presence or absence of visual
channel SAT3 level information can be examined. The design assumptions are listed in
Table 1 below, where the question mark represents its inability to analyze the necessity of
its existence from the design perspective and the need for experimental verification.
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Table 1. Transparency design assumptions in proactive interaction condition of the in-vehicle robot.

Voice Visual

SAT1 ? /
SAT2

√ √

SAT3
√

?
The symbol “

√
” means the information is needed; the symbol “?” means it cannot be determined whether the

information is needed and needs proving; the symbol “/” means the information is not needed.

To summarize the above research approach, the transparency design assumes that
the human–robot communication can be more understood by each other and interaction
can be more efficient. What kind of design pattern can reach the above goal needs to be
determined. Our research approach is first to use the SAT model to analyze the stages,
splitting the entire human–robot interaction process into three stages. After the stages were
analyzed, we adopt the human–robot interface levels of informational, communicative, and
physical guidance. We then further expand human–robot interface levels into the amount
of information, information intuitiveness, communication smoothness, response timeliness,
and emotional expression for each stage to analyze the information under voice and visual
channels and SAT levels.

4. Experiment
4.1. Participants

Thirty subjects (25 males and 5 females), with the age ranging from 22 to 40 years
(M = 28.2, SD = 5.83), were selected for the experiment. All subjects had proficient
driving experiences, and 16 of them drove 2–3 days per week and 14 subjects drove 4 days
per week and above. Subjects were recruited through an online screening process, and their
driving experience ranged from 1 to 10 years (M = 5.8, SD = 2.9). Of these, 21 subjects
had never used an in-vehicle robot before, nine participants had experienced one once
before, and there were no existing in-vehicle robot users. Therefore, the participants were
all regarded as novice in-vehicle robot users. The independent variable of the experiment
was the degree of transparency, and between-group experiments were designed. The age
and gender distribution of subjects were adjusted according to the number of experimental
groups in the task so that the demographic attributes of the subjects were as balanced
as possible.

4.2. Design of Experiment

The experiment focuses on the proactive interaction scenarios of in-vehicle robots.
After conducting real car research and interviews, we collected the scenarios which were
used frequently and more representative. The final experimental tasks for proactive inter-
action with the in-vehicle robot were identified as telephone and speeding. The telephone
task required the driver and the in-vehicle robot to complete a non-driving task together.
The speeding task required the driver and the in-vehicle robot to complete a critical task
together. The experiment used between-subjects design. The aim of the experiment is
to explore the relationship between the change in transparency levels, the information
quantity inside each level and the driving behavior. Two tasks with different scenarios also
enable a comparative exploration of the optimal information quantity design for different
scenarios. In the two tasks, the SAT Level 1 was a perception to speeding or incoming call.
The SAT Level 2 was a comprehension of the situation mentioned above. The SAT Level 3
was a projection on the driver’s nearest action, expressing as a suggestion or question.

In the telephone task, the experimenter simulated a phone call from the subject’s friend
Wang. Then, the robot took the initiative to alert and ask the person whether to answer it.
The specific experimental group design is as follows:

1. Group 1 contained SAT Level 2 and SAT Level 3 messages. The robot told the driver
‘Wang is calling you’, with a pleasant expression. Then, the robot asked the driver
‘Would you like to answer’, with a phoning expression.
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2. Group 2 contained SAT Level 1, SAT Level 2 and SAT Level 3 messages. SAT Level 1
voice channel message ‘Ring’ was added.

The set up for the telephone task is shown in Figure 2. In total, 12 males and 3 females
were assigned to experimental group 1; 13 males and 2 females were assigned to experi-
mental group 2.
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In the speeding task, the subject was asked to drive in the left lane at a speed of
30 km/h and then accelerated to 70 km/h. Once the speed was above 60 km/h, the robot
took the initiative to remind the driver of the speed limit. The specific experimental group
design is as follows:

1. Group 1 contained SAT Level 2 and SAT Level 3 messages. The robot told the driver
‘The speed limit ahead is 60 km/h, you have exceeded the speed limit’, with a fear
expression. Then, the robot suggested the driver ‘Slow down please’.

2. Group 2 also contained SAT Level 2 and SAT Level 3 messages. Based on having all
the information in the experimental group 1, a speed limit expression, containing an
SAT Level 3 visual channel message, was added.

3. Group 3 contained SAT Level 1, SAT Level 2, and SAT Level 3 messages. Based on
having all the information in the experimental group 1, an SAT Level 1 voice channel
message ‘Oops’, which expressed robot perception to the driver, was added.

The experimental group setup for the speeding task is shown in Figure 3. In total,
8 males and 2 females were assigned to experimental group 1 and experimental group 2;
9 males and 1 female were assigned to experimental group 3.
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4.3. Measurement

The behavior of the in-vehicle robots will draw the attention of the drivers, even if
robots perform decisions that conform with the drivers’ cognition and give them more
helpful information. Appropriate design of human–robot interaction strategies based on
human cognitive factors can help compensate for human limitations to achieve safety [27].
Therefore, it is necessary to examine the multi-channel transparency design assumptions
of in-vehicle robots to ensure driving safety, to improve task execution efficiency, and to
enhance drivers’ trust in the robot.

Harbluk et al. [33] showed that the driver’s visual behavior and vehicle control
changed when performing tasks with different cognitive requirements. The driver’s visual
behavior data and vehicle data were collected while participants were performing tasks.
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The visual behavior data included the total saccades time (times) and total fixation time (sec-
onds), which were extracted from recorded videos. The vehicle data included vehicle speed
(km/h) and driveway offset (dm), which measured subjects’ driving control in the vertical
and horizontal directions, respectively. In terms of subjective data, post-task questionnaires
were used to make subjects score subjectively on the usability, trust, workload and affective
dimensions using a Likert scale. Usability was measured using the After-Scenario Scale
(ASQ) [34], which combined three dimensions of ease of task completion, the time required
to complete tasks, and satisfaction with support information to produce an evaluation. The
trust scores in the study were based on the model of trust in vehicle automation proposed
by Muir [35], using a post-task trust scale with a comprehensive analysis of three trust
dimensions: predictability, dependability, and faith. It was found that human reliance on
automation was influenced by workload [36]. We used the Driving Activity Load Index
(DALI) scale [37], which is a scale that concerns multi-channel information and includes
the effort of attention, visual demand, auditory demand, temporal demand, interference,
and situational stress. The DALI scale is more fit for dynamic driving conditions. The
SAM scale [38] designed by Bradley et al. was used to measure the emotional state of the
person in terms of pleasure, arousal, and dominance. In the comparison of the analysis of
the result between specific experimental groups, priority was given to safety, followed by
usability, trust, and workload ratings. Emotional ratings were also taken into account as a
secondary evaluation.

4.4. Apparatus and Materials

The experimental environment was built based on the driving simulator system
independently developed by the Car Interaction Design Lab of Tongji University. The
simulator was used as the main equipment of the experiment. The scene was developed
using Unity software to simulate the real driving environment. The scene used in the
experiment was a two-lane straight road with a large number of oncoming cars in the
opposite lane. The simulator was equipped with monitoring equipment that automatically
collected vehicle data during each simulation. The robot was fixed in a suitable position
(see Figure 4). The location of the robot is determined by three factors: first, previous
work by Williams [24] and others showed that in-vehicle robots were fixed in a position
above the center screen. Second, we conducted a real vehicle study on nomi, the in-vehicle
robot of Nio, measuring the relative position of the in-vehicle robot to the center of the
steering wheel in three-dimensional space. Third, we placed the robot on our simulator and
conducted a small test on the pre-fixed robot to adjust its position to make it closer to the
real driving environment (see Figure 5). The vehicle robot had three degrees of freedom and
was controlled by servos that can raise and lower its head and rotate toward the driver. The
robot’s face screen displayed features and colorful auxiliary graphics to express expressions,
which was in-depth explored and designed in our previous research [39]. The expression
design was shown in Figure 6, in which the color and brush strokes were adjusted due
to the confidentiality of company cooperation. The in-vehicle robot was accompanied by
an interactive simulation program to control the robot’s movements and expressions. The
interactive simulation program can record the robot’s behavioral data. Since the program
requires the control of the experimenter, factors such as the experimenter’s reaction time
may pose a threat to the validity of the experiment. The subject’s basic information form
and scale were used to collect subjective data. Two cameras were used to record the visual
behavior of the subjects. After the videos were recorded, the user’s saccades of the robot
were manually checked frame by frame. The number of saccades time and fixation time
were recorded with a minimum frequency unit of 0.042 s (1/24 s per frame). Similar
simulator construction and data acquisition methods also appeared in other contemporary
studies [40].
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4.5. Procedure

The experimental consent forms were signed before the experiment, and the subject
was registered for basic information including driving frequency as well as in-vehicle
robot understanding and experience. Before conducting the experiment, the subject was
introduced with the purpose of the experiment and the main tasks. The subject started
with a driving in the simulator for about five minutes to learn and became familiar with
the simulator. Then, the subject interacted with the in-vehicle robot in a simulation. After
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the subject was familiar with the simulator and the in-vehicle robot, the experiment started,
and the experimenter began data recordings.

The tester described the driving task requirements and subtask requirements to the
subject. After the subject confirmed, the tester issued the command to start the task. Subjects
completed the telephone task first and the speeding task second. In each task, subjects were
assigned to one of the groups. In the telephone task, the subject was asked to keep driving
in the left lane at a speed of 30 km/h. After the subject kept driving stable, the experimenter
simulated a phone call from the subject’s friend Wang. Then, the robot took the initiative
to alert and ask the person whether to answer it. In the speeding task, the subject was
asked to drive in the left lane at a speed of 30 km/h and then accelerated to 70 km/h. Once
the speed reached 70 km/h, the robot took the initiative to remind the speed limit. After
each task was completed, the subject completed the subjective questionnaires and scales.
Then, the tester conducted the interview regarding the task. Each task lasted approximately
five to ten minutes. After tasks were completed, subjects were interviewed by the tester
regarding the in-vehicle robot generally.

5. Results

T-tests were conducted in the telephone task and one-way analysis of variance
(ANOVA) with post hoc pairwise comparison was conducted in the speeding task. A
summary of the experimental results in separate tasks can be seen in the following sections.

5.1. Telephone Task Results

As shown in Figure 7, the mean value of the standard deviation of driveway offset for
experimental group 1 was 0.18, and the mean value of the standard deviation of driveway
offset for experimental group 2 was 0.77. There was a significant difference between the
two experimental groups (p = 0.00 < 0.01).

Sensors 2022, 22, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 7. Standard deviation of driveway offset in telephone task. ** indicates significant differ-
ence (p < 0.01). 

As shown in Figure 8, the mean saccades time was 3 s for experimental group 1 and 
5 s for experimental group 2. There was a significant difference between the two experi-
mental groups (𝑝 = 0.02 < 0.05). The mean fixation time was 1.671 s for experimental 
group 1 and 3.893 s for experimental group 2. There was a highly significant difference 
between the two experimental groups (𝑝 = 0.00 < 0.01). Subjects in experimental group 
1 had significantly fewer saccades time and fixation time than subjects in experimental 
group 2. 

 
Figure 8. Saccades time and fixation time in telephone task. * indicates significant difference  
(p < 0.05). ** indicates significant difference (p < 0.01). 

As shown in Figure 9, it can be concluded from the usability scores that the experi-
mental group 2 subjects rated the usability of the robot lower (𝑝 = 0.049). In terms of 
details, the time required to complete tasks was significantly different between experi-
mental groups (𝑝 = 0.01), while ease of task completion (𝑝 = 0.374) and satisfaction 
with support information (𝑝 = 0.262) was not significantly different. 

Figure 7. Standard deviation of driveway offset in telephone task. ** indicates significant difference
(p < 0.01).

As shown in Figure 8, the mean saccades time was 3 s for experimental group 1 and 5 s
for experimental group 2. There was a significant difference between the two experimental
groups (p = 0.02 < 0.05). The mean fixation time was 1.671 s for experimental group 1
and 3.893 s for experimental group 2. There was a highly significant difference between
the two experimental groups (p = 0.00 < 0.01). Subjects in experimental group 1 had
significantly fewer saccades time and fixation time than subjects in experimental group 2.

As shown in Figure 9, it can be concluded from the usability scores that the exper-
imental group 2 subjects rated the usability of the robot lower (p = 0.049). In terms of
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details, the time required to complete tasks was significantly different between experi-
mental groups (p = 0.01), while ease of task completion (p = 0.374) and satisfaction with
support information (p = 0.262) was not significantly different.
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As shown in Figure 10, it was concluded from the PAD scores that experimental
group 2 enabled subjects to obtain more positive emotions. The subjects were more pleasant
(p = 0.001) and aroused (p = 0.001) than experimental group 1. There was no significant
difference in dominance (p = 0.202).

As shown in Figure 11, it can be concluded from the workload scores that in experi-
mental group 2, subjects had a lower workload than in experimental group 1 (p = 0.002).
Judging from the DALI detail scores, the main reasons were lower interference (p = 0.003)
and lower situational stress (p = 0.002).
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5.2. Speeding Task Results

As shown in Figure 12, the mean value of the standard deviation of driveway offset
was 0.95 for experimental group 1, 1.54 for experimental group 2, and 1.55 for experimental
group 3. The results of the one-way ANOVA performed on the data from the three groups
indicated that there was a significant difference in the standard deviation of driveway offset
among the three experimental groups (F(2, 32) = 6.906, p = 0.00 < 0.01); post hoc tests re-
vealed that the standard deviation of driveway offset was significantly lower in experimen-
tal group 1 (M = 0.97, SD = 0.51) than in experimental group 2 (M = 1.60, SD = 0.58)
and experimental group 3 (M = 1.55, SD = 0.28), with no significant differences between
experimental group 2 and group 3.

As shown in Figure 13, the mean saccades time was 3.7 s for experimental group 1,
1.3 s for experimental group 2, and 1.4 s for experimental group 3. One-way ANOVA results
of the data from the three groups showed that there was a significant difference in the
saccades time in the three experimental groups, (F(2, 18) = 9.479, p = 0.00 < 0.01); post
hoc tests revealed that the saccades time in experimental group 1 (M = 3.67, SD = 1.73)
was significantly higher than that in experimental group 2 (M = 1.25, SD = 0.50) and
experimental group 3 (M = 1.38, SD = 0.52), with no significant difference between ex-
perimental group 2 and experimental group 3. The mean fixation time of experimental
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group 1 was 2.389 s, the mean fixation time of experimental group 2 was 0.540 s, and
the mean fixation time of experimental group 3 was 0.834 s. A one-way ANOVA of the
data from the three groups showed that there was a significant difference in the fixation
time of the three experimental groups, (F(2, 20) = 7.245, p = 0.00 < 0.01); post hoc
tests revealed that the fixation time of experimental group 1 (M = 2.39, SD = 1.41) was
significantly higher than those of experimental group 2 (M = 0.54, SD = 0.30) and exper-
imental group 3 (M = 0.83, SD = 0.50), and there was no significant difference between
experimental group 2 and experimental group 3.
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The results of the behavior data showed that the subjects in experimental group 1
were significantly higher than those in experimental group 2 and experimental group 3 in
terms of saccades time and fixation time.

As shown in Figure 14, significant differences were shown between experimental
groups in terms of workload score means (F(2, 55) = 10.408, p = 0.000 < 0.001) and also
in terms of each detailed dimension. Post hoc test analysis yielded that the workload
of experimental group 2 was significantly higher than those of experimental group 1
(p = 0.000 < 0.001) and experimental group 3 (p = 0.002 < 0.01), while experimental
group 1 and experimental group 3 did not show significant differences in both workload
score means and workload score details.
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As shown in Figure 15, it can be concluded from the PAD scores that there were
significant differences among three experimental groups in the arousal (F(2, 38) = 3.430,
p = 0.043 < 0.05) and dominance (F(2, 42) = 5.945, p = 0.005 < 0.01) dimensions. Post
hoc test analysis yielded significantly higher arousal (p = 0.036 < 0.05) and significantly
higher dominance (p = 0.004 < 0.01) in experimental group 1 than in experimental
group 2.
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6. Discussion

In the telephone task, the design with SAT1 perception level, the voice channel infor-
mation (hereafter referred to as the ringing group) in group 2 enabled subjects to obtain
more positive emotions and reduced the workload of the subjects. This was probably
because the added information enhanced the anthropomorphism of the robot. However,
subjects had significantly worse horizontal control of the vehicle, and the saccades time and
fixation time increased significantly. This suggests that the subjects were overly distracted
by the robot and had reduced concentration on the driving task, which may cause danger.
As for the subjective data, subjects rated the usability of the ringing group lower, and
significant differences were found mainly in the aspect of time required to complete tasks.
It can be obtained that task disfluency due to lengthy speech triggered subjects’ lower
usability ratings of the robot. In addition, the increased information at the expense of time
spent did not improve usability ratings in terms of ease of task completion and satisfaction
of support information. Overall, the existence of SAT1 perception level provide higher
transparency. However, it does not suggest better cooperation between human and robot.

In the speeding task, the design with SAT2 comprehension level presenting voice
and visual channel information as well as SAT3 projection level showing voice channel
information had better information transparency. In terms of safety, group 1 had the best
data performance in terms of vehicle horizontal control. Adding the SAT3 projection
level visual channel information or SAT1 level voice channel information would make the



Sensors 2022, 22, 3875 15 of 18

driver’s horizontal control of the vehicle worse. From the subjective data, having SAT3 level
visual channel information resulted in significantly higher workload and lower arousal
and dominance. The speed limit expression at the projection level caused subjects’ greater
workload and did not help in driving, indicating that it was an unnecessary distraction for
the driver. The presence or absence of SAT1 level with voice channel information (‘oops’)
did not significantly affect workload. Therefore, in the speeding task, the design of the
in-vehicle robot can omit the SAT1 stage information, which is not very helpful for the task,
and the complicated SAT3 level visual information can be similarly excluded to increase
safety and reduce the workload.

In summary, we analyzed the appropriate amount of transparency information for
in-vehicle robots in a proactive interaction scenario. The experimental groups with SAT1
performed poorly in both scenarios. In order to improve the effectiveness of message
delivery and help drivers concentrate, designers should carefully consider increasing voice
channel information at the SAT1 perception level. The design that performs better in
telephone tasks has SAT2 comprehension and SAT3 projection levels of both voice and
visual channel information, which is different from the better design for speeding tasks. In
the speeding task, the SAT3 projection level and visual information make the workload
of subjects significantly higher, and the driving safety is compromised. Analyzing the
task characteristics, we can conclude that the telephone task belongs to function, while the
speeding task belongs to critical scenarios. The driver’s concentration level on driving tasks
in the two scenarios is different; therefore, the driver needs different robot transparency.

The advantage of higher transparency for the in-vehicle robot is that it can help drivers
judge the situation, reduce drivers’ need to reprocess the information provided by the robot,
and increase the drivers’ decision-making confidence. However, higher transparency also
has its own disadvantage. In the case of insufficient attention and mental resources, too
much information is not only not fully received by the human but also affects the driver’s
driving performance, especially when implicit information such as robot expressions that
require extra mental resources from the driver appears. These results suggest that the
‘highly transparent’ assumption made by previous work needs careful consideration. In
critical scenarios, it is recommended to design more direct voice information without
adding extra workload. In non-critical driving scenarios, designers can consider giving
robots a more transparent response to drivers while maintaining task fluency.

The experiments were based on transparency design assumptions, and they yielded
preliminary results for the exploration of suitable transparency. We are able to draw
enlightening conclusions from different measurements, and the purposes of the experiments
are essentially achieved. However, due to the experimental limitations, it was not possible to
exhaust the possible design assumptions, and there may be more appropriate transparency
designs for specific scenarios.

The relationship between saccades time and driving safety was also noted in both
scenarios. In the non-critical scenario, an increase in saccades time and fixation time on
the robot undermines driving safety. In the critical scenario, on the contrary, an increase in
saccades time and fixation time of the robot improves driving control. The reason for this
result derives from the difference in the type of tasks that the driver and the in-vehicle robot
achieve together in the two scenarios. Taking workload into comprehensive analysis, in the
case of joint driving tasks such as the speeding task, the robot’s information alerts can share
the workload for the driver and obtain better driving performance. However, when the
robot is completing non-driving tasks such as picking up the phone, the increase in saccades
time and fixation time indicates that the driver is more involved in non-driving tasks and
does not concentrate on driving tasks, so the driver tends to have poor control of the vehicle.
Further analysis revealed a tendency for the reduced self-reported workload when drivers
were more involved in non-driving tasks. This may be due to the higher workload of
the driving task compared to the non-driving task, which is also able to corroborate with
the multi-resource prediction of dual-task interference in the multi-resource theory (MRT)
proposed by Wickens [41].
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7. Conclusions and Future Work

In this paper, we migrate SAT theory into an in-vehicle robot design method and
conduct a proactive interaction design of in-vehicle robots based on transparency design
assumptions. The results of the experiment show that the driver’s driving control, behavior,
and self-reporting results produce differences under different in-vehicle robot transparency.
Overall, anthropomorphic information of perception level, though bringing a better emo-
tional experience to the driver, can cause poorer driving performance. In the critical
scenario, because of the need to ensure timely and effective information, the driver can ac-
cept lower information transparency of the in-vehicle robot than in the non-critical scenario,
retaining only key information. The conclusions can be distilled into design guidance: in
the in-vehicle scenario, information transparency design assumptions can be made for
both voice and visual channels based on SAT theory to help designers arrive at interaction
solutions with more appropriate transparency. The guidance can also give a methodology
to solve the transparency challenge that lies in future research of human-centered shared
control [42]. Following the guidance, this paper verifies that in the proactive interaction
scenario of in-vehicle robots, non-critical scenarios require comprehension and projection
level information, while the projection level information can be reduced in critical scenarios.

At this stage, the multi-channel interaction design is not separated from transparency.
The multi-channel content is only used as an independent variable of transparency change
to serve the transparency design. In terms of future work, we will go further to establish
the design model integrating multimodal and transparency, concerning input and output
modalities [43], and then add subsequent experiments to validate it. A study shows that
EEG-based measurements can be a powerful tool for studying driver behavior [44]. It is
also able to measure the effect of multimodal information on cognition very accurately [45].
Psychological precision measurement instruments such as EEG, ECG, or eye movements
have not been included in the scope of measurement methods in this paper, and further
work needs to consider bringing such measurement tools methods into the experiment.
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