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Abstract: With the introduction of the working principle of coupled resonators, the coupled bulk
acoustic wave (BAW) Micro-Electro-Mechanical System (MEMS) resonators have been attracting
much attention. In this paper, coupled BAW MEMS resonators are discussed, including the coupling
theory, the actuation and sensing theory, the transduction mechanism, and the applications. BAW
MEMS resonators normally exhibit two types of vibration modes: lateral (in-plane) modes and
flexural (out-of-plane) modes. Compared to flexural modes, lateral modes exhibit a higher stiffness
with a higher operating frequency, resulting in a lower internal loss. Also, the lateral mode has a
higher Q factor, as the fluid damping imposes less influence on the in-plane motion. The coupled BAW
MEMS resonators in these two vibration modes are investigated in this work and their applications
for sensing, timing, and frequency reference are also presented.

Keywords: Micro-Electro-Mechanical System (MEMS); bulk acoustic wave (BAW); coupled
resonators; sensing theory; transduction mechanism

1. Introduction

Micro-Electro-Mechanical System (MEMS) is a research field that uses mechanical
structures often fabricated in the bulk of a wafer [1]. Making use of the concept of relating
their mechanical and electrical components enables them to be capable of sense, control and
actuate on the micro-scale. A sub-class that has recently received increasing attention and
has become one of the most important building blocks of MEMS devices, is micromachined
resonant devices, i.e., their mechanically resonating micro-structures are electrically brought
into resonance [2,3].

Among all resonant devices, a specific type of MEMS resonator is the acoustic wave
resonator, which is the device exploiting acoustic wave propagation and is naturally
vibrating at a resonance frequency related to their dimension and mechanical material
properties [4]. There are two main types of acoustic wave resonators: surface acoustic wave
(SAW) resonators [4–6], in which the propagation of acoustic waves is on the surface of
the substrate, and bulk acoustic wave (BAW) resonators [4,7,8], where the acoustic waves
propagate through the bulk of the substrate. BAW resonators normally feature high bulk
moduli [9], high operating frequencies, as well as high quality (Q) factors [10] and thus are
widely used as filters [3,11–15], oscillators [3,13,16–18] as well as sensors [3,15,19–22].

In terms of the ways of acoustic wave propagation, BAW resonators mainly have two
kinds of modes, i.e., out-of-plane [23] and in-plane modes [24,25]. Out-of-plane modes,
also named flexural modes [4], include the longitudinal [4] and anti-symmetric lamb
modes [25]. In-plane modes, also termed lateral modes [4,26], include transverse/shear [4]
and symmetric lamb modes [25]. Compared to BAW resonators with flexural modes, those
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with lateral vibration modes can exhibit a higher stiffness, resulting in a higher resonance
frequency. Since the relatively high stiffness of the lateral modes typically let a BAW
resonator undergo small deformations, the internal mechanical loss, such as thermoelastic
damping (TED) [27], can be reduced [28]. Moreover, a BAW resonator working in the
lateral vibration mode has only in-plane deformation, hence, in a fluid environment such
as liquid, the influence of the viscous fluid damping on a BAW resonator can be reduced,
and so does the acoustic energy loss. Combining these distinctive advantages, BAW
resonators operating at lateral modes can achieve a high Q factor in air or liquid. Thus,
BAW resonators have significant potential to be applied to chemical and biological sensing
applications [29–35].

Combining the approach of coupled resonators with BAW resonators has recently led
to achieving better performance and new functionalities. In particular, coupled BAW
resonators based on lateral vibration modes are studied due to the advantages men-
tioned above.

The two main lateral vibration modes, the extensional/breathing mode [26] and the
wine-glass (WG) mode [26], gain tremendous attention due to the potential to achieve rela-
tively high Q factors. Their applications range from coupled resonators based filters [14,36]
to oscillators [37,38] and sensors [39–42]. To characterize their sensitivity in the sensing
applications, both the conventional frequency shift and, more recently, amplitude ratio
shift based on mode localization are evaluated [43–47]. Devices using mode localization
can show a considerably higher sensitivity compared to those using frequency shift as an
output metric. Typically, the sensitivity is improved by two to four orders of magnitude,
as demonstrated in the work on coupled resonators with different vibrational modes pre-
sented in [41,42,48–51]. Therefore, sensors based on coupled BAW resonators have been
increasingly investigated as a promising approach for a range of sensing applications.

Here, we mainly focus on the theoretical and practical studies on coupled BAW MEMS
resonators as sensors, oscillators, and filters. This paper consists of six sections: Section 2
introduces the fundamentals of coupled BAW MEMS resonators and their sensing mecha-
nisms as sensors; Section 3 discusses the different transduction configurations applied to
coupled BAW MEMS resonators; Section 4 reviews the previously reported work about
coupled BAW MEMS resonators for different applications; Section 5 presents the conclusion
and an outlook of coupled BAW MEMS resonators.

2. Fundamentals of BAW Resonators
2.1. BAW Resonators
2.1.1. BAW Propagation

There are two basic types of acoustic waves: SAW and BAW [4]. When the acoustic
wave is confined and travels at the interface between the substrate and the air, it is called a
surface acoustic wave (SAW), like the ripples observed on the water surface hit by a stone.
In contrast, a wave that propagates in the bulk of the material of the medium and exists in
most of the volume of the media, is called a bulk acoustic wave (BAW), like a sound wave
that travels through the air.

BAWs mainly refer to elastic waves that propagate in the solid medium and are
mainly categorized into the following types: longitudinal waves [4], transverse (shear)
waves [4], Rayleigh waves [4], and lamb waves [4,25]. The Rayleigh wave is a combination
of longitudinal and shear waves. In Rayleigh waves, surface particles of the isotropic solid
move in ellipses in the plane normal to the surface and parallel to the wave direction [4].
Table 1 shows a description of the other three BAW wave types.

BAW resonators are a type of MEMS device experiencing acoustic wave propagation
through the bulk of the medium. Currently, there are two main types of BAW resonators
applied in the industry: thin-film BAW resonators (FBARs) [52–54] and solidly mounted
resonators (SMRs) [54–56]. These two types of resonators have the same working principles
but different fabrication technologies.
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Table 1. Description of several classic BAWs.

Type of Waves Characteristics Schematic of Wave Propagation

Longitudinal wave
Propagation through the medium in the same or

opposite direction of particle vibration or oscillation. It
is also called pressure waves.

Adapted with permission from Ref. [25].

Transverse wave
Propagation through the medium in the direction

perpendicular to particle oscillation direction. It is also
called shear-mode waves.

Adapted with permission from Ref. [4].

Lamb wave

It exists in thin plates, also called the plate wave, and the
particle motion lies in the plane that is perpendicular to
the plate and the propagation direction of the wave [25].
It is divided into symmetric waves and antisymmetric

waves [24].

Adapted with permission from Ref. [24].

2.1.2. Bulk Vibration Modes

Based on the different acoustic wave propagation, BAW resonators vibrate with two
types of motion: the in-plane motion and the out-of-plane motion. The in-plane vibrational
modes mainly include the longitudinal mode and the anti-symmetric lamb mode, also called
the flexural or bending mode [4], while the out-of-plane vibrational mode includes the
transverse mode and the symmetric lamb mode, also known as the lateral bulk mode [26].

Note that the resonance frequency in BAW devices operating at the flexural (out-of-
plane) mode is related and limited to the thickness of the device similar to the FBARs
operating in the longitudinal mode [4]. Compared to flexural-mode devices, bulk-mode
devices utilizing lateral in-plane vibration modes have a higher stiffness because of their
higher bulk moduli [9]. Therefore, they vibrate at higher operational frequencies and
are consequently less prone to internal mechanical losses, such as thermoelastic damping
(TED), thereby achieving larger Q factors.

Over the past decades, two types of lateral bulk vibration modes have been mainly
investigated for BAW resonators, with applications as oscillators, sensors, and filters:
(i) the extensional (breathing) mode and the (ii) the WG mode of square-plate or disk
structures [26,57–64]. Figures 1 and 2 show a square plate and a disk BAW resonator,
respectively, both exhibiting these two modes. Taking a square-plate BAW resonator as an
example, the plate compresses and extends asymmetrically on the opposite sides in the WG
mode, while it compresses and extends symmetrically on all four sides in the extensional
mode [26].
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Figure 1. Finite element model (FEM) simulation of a BAW resonator with square plate structure in
COMSOL. (a) WG mode; (b) Extensional mode.

Figure 2. FEM simulation of a BAW resonator with disk structure in COMSOL. (a) WG mode;
(b) Extensional mode.

It has been shown that the fundamental WG mode (WG1) can achieve a higher Q
factor than the extensional mode [26]. A BAW resonator in air and even in liquid operating
in higher-order WG modes (e.g., 2nd order WG mode [65] or the 3rd order WG mode [66])
usually has a higher Q factor than those working in the WG1 mode. Besides, for a disk
resonator working in higher-order radial modes [67], the anchor loss is no longer the
dominant source of energy dissipation. Other modes are also possible; Figure 3 shows
some other bulk modes, such as the button-like (BL) [65], face-shear [68], and butterfly
modes [69].

Figure 3. Other FEM simulated bulk modes in COMSOL. (a) BL mode (Adapted with permission
from Ref. [63]); (b) Face-shear mode; (c) Butterfly mode.

2.1.3. BAW Resonators with Different Suspension Structures

The Q factor of a resonator is a dimensionless parameter to describe the loss of the
vibration energy, defined by the ratio of the total energy stored with respect to the energy
dissipated per cycle [26]. The energy losses can originate from different sources of energy
dissipation. The clamping loss at anchors, also known simply as anchor loss, is a significant
source of the energy loss mechanism, in particular when the anchors are stressed at the
clamping points due to the displacement of the resonator during vibration. A fraction of
the vibration energy stored is transferred to the substrate through the suspension stems
and anchors [70,71].

The suspension structure also has a strong influence on the Q factor and also on the
choice of the fabrication process. Two commonly used side-clamped suspensions, the
simple straight-beam [26] and T-shaped suspensions [26,72] have already been widely
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employed in BAW resonators, as illustrated in Figure 4. The strain energy stored in the
straight-beam suspension is related to the whole stem part. The strain energy stored
in the T-shaped suspension is mostly associated with the cap because the stem part is
decoupled from the anchor via the cap [26]. The ratio of the strain energy stored in the
vibrating structure over the strain energy stored in the suspension part can be regarded as
an indicator of anchor loss. The higher this ratio, the lower Q deduction induced by the
anchor loss, especially when the anchor loss is the dominant energy dissipation mechanism
in the system [26]. A method of calculating the strain distribution in the suspension part
and resonator body using ANSYS FEA is proposed in [26,72], which could be helpful to
design proper suspension structures.

Figure 4. Schematic diagrams of suspensions. (a) Straight-beam suspension; (b) T-shaped suspension.
Adapted with permission from Ref. [26].

Besides, the structure of the device can be clamped at different positions, such as the
center (for surface micromachined structures) [73], the sides [68], and the corners [26,74]
of the structure, as illustrated in Figure 5). How to choose the proper positions of the
suspensions mainly depends on the minimum motion of working modes (to reduce the
clamping loss as much as possible) and the fabrication possibility. Due to the manufacturing
constraints, the sides and corners of the vibrating structure are commonly used locations
for suspensions connected to the anchor, especially for designs with the backside substrate
etched off for the releasing purpose. As for the devices with suspensions at the center,
it is difficult to manage to fabricate devices with perfect suspension alignment. Perfect
suspension alignment cannot guarantee high Q factors, for the suspension with finite
dimensions will also restrict the motion outside the center part, which results in further
energy losses [73]. Besides, Q factors are deduced with the mode number increasing since
the device center is closer to the high-velocity points at higher modes. The misaligned
suspension will couple the resonator vibration to the substrate, then the energy is lost to
the substrate, thus the overall Q factor is degraded [73].

Figure 5. Suspensions at different positions: (a) On sides; (b) At corners; (c) At the center.

A study on the resonators with a different number of suspensions [75], indicates
that a BAW resonator can vibrate in the expected modes even with a minimum of two
suspensions. The anchor losses generally are lower with a low number of suspensions.
However, the resonance frequency also decreases with a small number of suspensions, as
fewer suspensions result in a decrease in the effective stiffness.
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2.2. Multi Degrees-of-Freedom (Multi-DoF) Coupled BAW Resonators
2.2.1. Mass-Spring-Damper System for a Single Degree of Freedom (1-DoF)
BAW Resonator

A single MEMS resonator can be modeled as a mechanical mass-spring-damper system
with 1-DoF. As shown in Figure 6. M, K, and c represent the mass, the supporting spring
stiffness, and the damping coefficient of the resonator, respectively.

Figure 6. Mass-spring-damper model of a single resonator.

Assuming F = 0 and c = 0, the natural frequency of this system can be obtained,
expressed as [48]:

f0 =
1

2π

√
K
M

(1)

For a BAW resonator with a square plate structure using lateral vibration mode, the
effective mass can be expressed as:

Me f f = ρhL2 (2)

The effective stiffness is given by:

Ke f f= π2Eh (3)

Therefore, the resonant frequency of the lateral modes like SE and WG modes can be
approximately obtained by:

f0 =
1

2L

√
E
ρ

(4)

where L is the length of the square plate, h is the thickness, ρ denotes the density of the
material of the plate, and E represents Young’s modulus.

2.2.2. Coupling Mechanisms

For multi-DoF BAW resonators, mechanical coupling in form of a mechanical spring
or electrostatic coupling in form of an electrostatic spring can be used as a coupling
mechanism [48,76], and this is illustrated in Figure 7. Both approaches can be regarded as
equivalent in theoretical calculations and achieve the same level of effective coupling spring
stiffness. When the coupling stiffness is much smaller than the stiffness of the suspension
of the resonators, a weakly coupled system is formed. As for the strongly coupled system,
if the coupling beam is set to be an integer number of half-wavelengths and the coupled
system is operated at high frequencies, a very strong coupling element is achieved between
the two resonators [77].

However, the strong coupling does not apply to the VLF-MF flexural mode resonators,
for at those high frequencies, the length of the coupling beam should reach hundreds of
microns to be equal to the half-wavelengths, which is impractical for the real dimension
design [77]. So far, there is less relevant work on the strongly coupled BAW resonators,
and there is still no systematic theoretical model built. Therefore, in this review, the
theory of the weakly coupled system will be mainly discussed. For the weakly coupled
resonators, due to the fabrication tolerance, the structure likely becomes asymmetric, thus
a pre-mode localization (discussed in Section 2.3) will occur. This caused a non-uniform
energy distribution, but the structure symmetry still can be adjusted [77]. Moreover, a
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weakly coupled system will lead to a significant increase in sensitivity when coupled BAW
resonators are used as sensors, and this will be mainly discussed in Section 2.3.

Figure 7. 2-DoF coupled BAW resonators with different coupling methods. (a) Fixed-fixed straight
coupling beam; (b) Folded coupling beam; (c) Electrostatic coupling. Note: d is the lateral transduction
gap between the resonator R1 and resonator R2, and the dotted arrow lines indicate the electric
field direction.

Two conventional designs of a mechanical coupling spring are the fixed-fixed guided
beam and the folded coupling beam [76], as shown in Figure 7a and b respectively. The
geometric parameters of the mechanical beams can be chosen to achieve different coupling
strengths. The higher the ratio between length and width of a mechanical coupling spring,
the weaker the coupling strength. Besides, the position of the coupling spring also has an
obvious impact on the coupling strength, as shown in Figure 8.

Figure 8. WG modes of a 2-DoF coupled BAW square plate resonator system with the same me-
chanical coupling beam located at different positions (represented by y) simulated in COMSOL.
(a) Out-of-phase WG mode, y = 0 µm; (b) In-phase WG mode, y = 0 µm; (c) Out-of-phase WG mode,
y = −100 µm; (d) In-phase WG mode, y = −100 µm; (e) Out-of-phase WG mode, y = −200 µm;
(f) In-phase WG mode, y = −200 µm; (g) Out-of-phase WG mode, y = −300 µm; (h) In-phase WG
mode, y = −300 µm. Note: y represents the y-axis value of the center location of the coupling beam,
and the origin is at the center of the first square-plate proof mass. Note: There is a coordinate system
in (a) with the original point set at the center of the left resonator. The y-axis value shows the position
of the coupling beam. When the coupling beam is in the center position of both two resonators,
y = 0. Then the beam moves down to the edge part, the y axis value is −100 µm, −200 µm, and
−300 µm, respectively.

Figure 8 shows FEM simulated WG modes of a 2-DoF coupled BAW resonator system
with a mechanical coupling beam of the same dimensions but located at different positions.
The dimensions and material selection are listed in Table 2. The devices have different
resonant frequencies of the in-phase and out-of-phase WG modes [78]. The coupling
strength has an important influence on the frequency difference between the in-phase
and out-of-phase modes of the 2-DoF resonator. A small coupling strength results in a
small frequency difference between in-phase and out-of-phase modes as summarized in
Table 1. As shown in Table 3, if the coupling beam is closer to the top or bottom sides of the
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proof mass, i.e., the square plate shown in Figure 8, the former in-phase mode frequency
increases while the latter out-of-mode frequency decreases, and this means the frequency
difference between these two modes decreases, and so does the coupling strength. The
relationship between the frequency difference and the coupling strength for the 2-DoF
coupled resonators can be calculated by Equations (4) and (5) (see Section 2.2.3). Therefore,
weak coupling can be achieved by adjusting the position of coupling beams without the
need for changing the dimensions of the beams.

Table 2. Dimensions and materials of a 2-DoF coupled BAW square plate resonator system modeled
in COMSOL (Adapted with permission from Ref. [26]).

Parameters Value

Length of the square plate (µm) 800
Thickness of the device (µm) 25

Length and width of the stem (µm) 67.2 and 14.1
Length and width of the cap (µm) 70.7 and 10.6

Length and width of the coupling beam (µm) 400 and 14
Materials selection for FEM simulation Single crystal silicon (SCS)

Table 3. The in-phase and out-of-phase mode resonant frequencies of a 2-DoF coupled BAW square
plate resonator system with the same mechanical coupling beam located at different positions
obtained by FEM simulation in COMSOL.

Location of Coupling Beam In-Phase Mode (Hz) Out-of-Phase Mode (Hz) Frequency Difference

y = 0 µm 4,702,389 4,769,160.74 1.42%
y = −100 µm 4,704,931.73 4,762,091 1.21%
y = −200 µm 4,711,448.66 4,746,444.54 0.74%
y = −300 µm 4,717,826.99 4,730,406.99 0.27%

A detailed study on 2-DoF weakly coupled square-plate BAW resonators [41,42]
indicated that with a short mechanical coupling beam that is designed away from the center
position of the proof mass, weak coupling can be achieved. For the coupled BAW resonators,
different pairs of in-phase and out-of-phase modes exhibit different coupling stiffness.
Optimal in-phase and out-of-phase modes should have enough frequency difference to
distinguish them from each other to avoid mode aliasing [50] (this will be discussed further
in Section 2.2.5). Therefore, there is a trade-off between weak coupling strength and
frequency spacing.

The electrostatic coupling (shown in Figure 7c) is achieved by applying a direct
current (DC) voltage across a capacitive gap located between the two resonators [76]. The
displacement-dependent component of the generated electrostatic force between the two
resonators results in a spring-like behavior. The extension or compression direction of the
electrostatic spring is aligned to the movement direction of the resonators, resulting in an
elastic spring with negative effective spring stiffness. Note that the coupling strength can
be easily tuned and controlled by changing the applied DC voltage. A very weak coupling
can be achieved by applying a small DC voltage, which is much more convenient compared
to mechanical coupling. However, the electrostatic coupling can be well applied to those
coupled resonators with a low suspension spring, such as with the coupled double-ended
tuning fork (DETF) resonators [49–51], where the mode aliasing effect can be avoided
within a realistic range of DC voltages. Compared to DETF resonators [49–51], coupled
BAW resonators using the lateral bulk mode (e.g., WG mode) have much higher effective
stiffness, and thus a higher resonant frequency can be achieved. The electrostatic coupling
strength (even the coupling voltage difference is under 300 V) is too small compared with
the suspension spring stiffness of BAW resonators. That makes the electrostatically coupled
BAW resonators prone to have the mode aliasing effect even with a high Q factor, as the
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generated frequency difference between in-phase and out-of-phase modes is too small to
be told apart, within the working DC voltages.

Compared with the electrostatic coupling, the mechanical coupling has a higher
stiffness (still smaller but not negligible compared with the suspension stiffness) and can
be designed to avoid the mode aliasing and fulfill the requirement of the weak coupling
at the same time. That is the reason why there is still no relevant research about the
electrostatically coupled BAW resonators using the lateral vibration modes (the WG mode
and extensional mode).

Figure 9 shows different vibration modes of a 2-DoF electrostatically coupled disk
BAW resonator system. The dimensions and material selection are listed in Table 4. Each
resonator has a short convex plate parallel to that of the other resonator to achieve electro-
static coupling, and a small potential difference of 100 V is applied to these two resonators.
Two vibration modes are studied: Mode 1 with lower resonant frequencies and mode 2
(WG mode) with higher resonant frequencies. Table 5 summarizes their frequencies and
shows that the frequency difference of WG mode 2 is about three orders of magnitude
lower than that of mode 1. In conclusion, the mode with higher frequencies is more prone
to mode aliasing than that operated at lower frequencies.

Figure 9. A 2-DoF electrostatically coupled BAW disk resonator system operating in different modes
simulated in COMSOL. (a) Out-of-phase mode 1; (b) In-phase mode 1; (c) Out-of-phase mode 2 (WG
mode); (d) In-phase mode 2 (WG mode). The deformation of resonators is magnified. In reality, the
frequencies of the two modes are prone to be aliased due to the limited Q factor.

Table 4. Dimensions and materials of a 2-DoF electrostatically coupled BAW square resonator system
modeled in COMSOL.

Parameters Value

Diameter of the disk plate (µm) 1500
Thickness of the device (µm) 30

Lateral transduction gap (µm) 2
Length and width of the stem (µm) 225 and 37.5

Length and width of the convex plate (µm) 5.5 and 450
Materials selection for FEM simulation Single crystal silicon (SCS)

Table 5. Differences in resonant frequencies of a 2-DoF electrostatically coupled BAW disk resonator
system operated at different vibrational modes obtained by FEM simulation in COMSOL.

Vibration Modes Out-of-Phase Mode (Hz) In-Phase Mode (Hz) Frequency Difference

Mode 1 365,455.475 365,537.439 0.02%
Mode 2 (WG mode) 2,654,149.09 2,654,150.75 0.00006%
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2.2.3. Mass-Spring-Damper System for 2-DoF Weakly Coupled BAW Resonators

As shown in Figure 10, a 2-DoF weakly coupled BAW resonator system is modeled as
a mass-spring-damper system [48], where M1 and M2 are the mass of two resonators, K1
and K2 are the suspension spring stiffness, Kc is the stiffness of the coupling spring, c1 and
c2 are the damping coefficient. Similarly, the displacements of the two resonators are X1
and X2, and the external forces applied to the two resonators are F1 and F2.

Figure 10. The lumped parameter model of a 2-DoF resonator.

Assuming F1 = F2 = 0 and c = 0, the resonant frequency of this system can be obtained,
expressed as [48]:

f1 =
1

2π

√
K
M

(5)

f2 =
1

2π

√
K + 2Kc

M
(6)

2.2.4. Mass-Spring-Damper System for 3-DoF Weakly Coupled BAW Resonators

Figure 11 shows a 3-DoF weakly coupled BAW resonator system [48], M3 is the mass
of resonator 3, K3 is the supporting spring stiffness, Kc1 and Kc2 are the stiffness of the
coupling spring, and c3 is the damping. Similarly, the displacement of resonator 3 is X3,
and the force applied to the three resonators is F1, F2, and F3, respectively.

Figure 11. The lumped parameter model of a 3-DoF resonator.

Assuming F1 = F2 = F3 = 0 and c = 0, the resonant frequency of this system can be
obtained, expressed as [79]:

f1 =
1

2π

√
K
M

(7)

f2 =
1

2π

√
K + Kc

M
(8)

f3 =
1

2π

√
K + 3Kc

M
(9)

2.2.5. Mode Aliasing

Unlike 1-DoF resonators, coupled resonators can exhibit multiple modes: 2-DoF cou-
pled resonators normally exhibit two modes: in-phase and out-of-phase modes, and 3-DoF
coupled resonators can exhibit three different in-phase and out-of-phase modes [48–51].
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Different modes have different resonant frequencies as well as different working perfor-
mances, such as the sensitivity performance when resonators serve as sensors.

However, due to the finite bandwidth of each mode, if the frequency difference
between the adjacent two modes is too small, the two modes will interfere and merge,
which results in only one observable resonant peak, and is called mode aliasing [50].
Therefore, once mode aliasing happens, the multiple modes of coupled resonators cannot
be told apart and let along to use the characteristic of two modes for the sensing purpose.
To reduce and avoid mode aliasing, the structure of resonators (especially the coupling
strength) should be designed to achieve a large enough frequency difference between two
adjacent modes, satisfying [50]:

( f2 − f1) ≥ 2 f3dB (10)

where f 3dB is the 3 dB bandwidth of each mode, f 1 and f 2 are the resonant frequency of two
adjacent modes.

Additionally, different pairs of in-phase and out-of-phase vibration modes have differ-
ent frequency differences. The WG mode with a relatively high frequency described above
is more prone to the effect of mode aliasing than the mode with a lower frequency [48–51],
as mentioned in Section 2.2.2, and the frequency differences of the mechanically coupled
resonators operated in two modes (the same as the modes shown in Figure 9) are listed
in Table 6. The data show that the frequency difference of mode 1 is much larger (more
than 100 times larger) than that of WG mode, and this should be taken into consideration
when you choose the proper working mode for your design of coupled BAW resonators,
but currently, there is still no relevant study about this.

Table 6. Differences in resonant frequencies of a 2-DoF mechanically coupled BAW square resonator
system operated at different vibrational modes obtained by FEM simulation in COMSOL.

Vibrational Modes In-Phase Mode (Hz) Out-of-Phase Mode (Hz) Frequency Difference

Mode 1 381,093.019 411,584.939 8%
Mode 2 (WG mode) 4,711,448.66 4,746,444.54 0.74%

2.3. Weakly Coupled BAW Resonators
2.3.1. Mode Localization

Weakly coupled BAW resonators normally indicate a situation where the coupling
strength is far less than the supporting spring stiffness [48,80]. For the weakly coupled BAW
resonators where two resonators are the same and there is no perturbation present, then
the system is in balance, and the two resonators normally exhibit the same displacement.
However, when a small external perturbation is introduced, the system will be imbalanced,
and the vibrational energy will be mainly confined to only one resonator, the so-called mode
localization phenomenon [43]. It has been proven that the sensitivity of weakly coupled
resonators using the amplitude ratio |X1/X2| of two resonators as an output metric is
several orders of magnitude higher than that using the conventional frequency shift as
an output metric, which provides a new sensing mechanism with high sensitivity. As a
result of the increase of the parametric sensitivity, the resolution limit of the mode-localized
sensors can also be improved by orders of magnitude especially when more than 2-DoF
resonators are coupled together, which has first been theoretically validated in [81].

Figure 12 shows two disk resonators that are weakly coupled together by a mechanical
beam. The dimensions and material selection are listed in Table 7. For such a system,
there are two types of vibration modes: the out-of-phase mode and the in-phase mode.
Once a small mass perturbation is introduced into one of the resonators, the vibration
amplitude [48] of the two resonators changes at the same time. The ratio |X1/X2| of the
resonator amplitude at the same resonant frequency is then utilized for sensing applications.
In Figure 13, the relationship between the relative mass change on resonator 2 and the
amplitude ratio |X1/X2| is presented. When there is no mass perturbation in this system,
the amplitude ratio is equal to 1, indicating both resonators have the same deformation. in
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the presence of a mass perturbation, the amplitude ratio is no longer equal to 1. Besides, the
in-phase and out-of-phase modes have different mode shape changes with the same mass
perturbation, which could be used to detect the position of the perturbation (for details
see Section 2.3.4).

Figure 12. A 2-DoF weakly coupled BAW disk resonator system with mode localization simulated in
COMSOL. (a) Out-of-phase mode without perturbation; (b) Out-of-phase mode with a small mass
perturbation on the right resonator; (c) In-phase mode without perturbation; (d) In-phase mode with
a small mass perturbation on the right resonator.

Table 7. Dimensions and materials of a 2-DoF weakly coupled BAW disk resonator system modeled
in COMSOL.

Parameters Value

Diameter of the disk plate (µm) 200
Thickness of the device (µm) 30

Lateral transduction gap (µm) 2
Length and width of the stem (µm) 50 and 10

Length and width of coupling beams (µm) 125 and 10
Materials selection for FEM simulation Single crystal silicon (SCS)

Figure 13. Relationship between the amplitude ratio change and the relative mass change on res-
onator 2.

2.3.2. Sensitivity Characterization

When there is a change in mass or stiffness in the resonator system, i.e., ∆M or ∆K, the
resonant frequency will change. Conventionally, the resonant frequency shift with respect
to the stiffness and mass perturbation of the system is utilized to indicate the sensitivity of
a resonator.
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For the 1-DoF BAW resonators, when ∆M is far less than M, i.e., ∆M � M, which
is the same as ∆K� K, the normalized sensitivity [82] based on the frequency shift with
respect to a small ∆M or ∆K (M = M + ∆M or K = K + ∆K) is obtained as [48]:∣∣∣S1DoF, f

M

∣∣∣ = ∣∣∣S1DoF, f
K

∣∣∣ = ∣∣∣∣ ∂ω0

∂M(K)
/

ω0

M(K)

∣∣∣∣ ≈ 1
2

(11)

Above all, when a 1-DoF system is exposed to a small perturbation, i.e., the stiffness
or mass perturbation, there will be a 50% variation in the output frequency.

For the 2-DoF BAW resonator, the frequency shift with respect to a small ∆M or ∆K on
resonator 2 (M2 = M + ∆M or K2 = K + ∆K) is used to characterize the normalized sensitivity
which is obtained as: ∣∣∣S2DoF, f

M

∣∣∣ = ∣∣∣S2DoF, f
K

∣∣∣ ≈ 1
2

(12)

For the 2-DoF BAW resonator based on the mode localization effect, the normalized
sensitivity with respect to a small ∆M or ∆K on resonator 2 (M2 = M + ∆M or K2 = K + ∆K)
represented by the amplitude change (X) is obtained as [48]:∣∣∣S2DoF, X

M

∣∣∣ = ∣∣∣S2DoF, X
K

∣∣∣ = ∣∣∣∣∂|∆X/X|
∂M(K)

/
|∆X/X|

M(K)

∣∣∣∣ ≈ K
4Kc

(13)

Therefore, in terms of the amplitude change, the normalized sensitivity of the 2-DoF
resonator is K/(2Kc) times larger than that of the 1-DoF resonator. However, when the
amplitude ratio (AR) of the two resonators is adopted as an index to characterize the
normalized sensitivity, the normalized sensitivity represented by the AR is obtained as:∣∣∣S2DoF, AR

M

∣∣∣ = ∣∣∣S2DoF, AR
K

∣∣∣ = ∣∣∣∣ ∂AR
∂(∆M(K)/M(K))

∣∣∣∣ ≈ K
2Kc

(14)

where AR = |X1/X2|.
Compared to the normalized sensitivity obtained by the amplitude change, the nor-

malized sensitivity is improved by 2 times with the usage of AR as the output metric. Thus,
AR is widely taken as the output metric when the weakly coupled resonators based on
mode localization are used as sensors, i.e., the mode-localized sensors.

For the 3-DoF mode localized BAW resonator as sensors, the normalized sensitivity
with respect to a small ∆M or ∆K on resonator 3 (M3 = M + ∆M or K3 = K + ∆K) is obtained
as [48–51]: ∣∣∣S3DoF, AR

M

∣∣∣ ≈ K
Kc

+ 1 (15)∣∣∣S3DoF, AR
M

∣∣∣ ≈ K
Kc

(16)

where AR = |X1/X3|.
The normalized sensitivity of the mode localized 3-DoF sensor is about two times

higher than that of the 2-DoF resonator mode localized sensor, but if the stiffness K2 is
designed to be two times or larger than K (Kc < K/10 < K2/20, K1 = K3 = K) [48–51], the
normalized sensitivity can be expressed as:∣∣∣S3DoF, AR

M

∣∣∣ ≈ (K + Kc)(K2 − K + Kc)

K2
c

(17)

∣∣∣S3DoF, AR
K

∣∣∣ ≈ K(K2 − K + Kc)

K2
c

(18)

The 3-DoF mode localized sensor has a sensitivity with the AR output which is at
least 48 times higher than that of the 2-DoF resonator based on mode localization. Thus,
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there is plenty of room for adjusting the parameters of the coupled resonators to improve
their sensitivity.

2.3.3. Common Mode Rejection

As for coupled BAW resonators with two identical resonators, any change in the
ambient condition like a temperature fluctuation or a pressure fluctuation, causes a change
in both resonators simultaneously, which is called the common-mode change [83,84]. The
theoretical model of the temperature characteristics of the amplitude ratio and frequency of
the mode-localized sensors under the influence of Young’s modulus has been established
to reveal the common more-rejection property of the mode-localized sensors [85].

For example, in a 2-DoF weakly coupled resonator system with two identical res-
onators, the temperature (T) introduced stiffness change is ∆KT, which is applied to both
resonators as a common-mode signal. Now let’s consider a situation in which a small exter-
nal stiffness perturbation (∆K) is applied to only one of the two resonators (e.g., resonator 2
here) in the presence of ∆KT:

K1 = K + ∆KT (19)

K2 = (K + ∆KT) + ∆K (20)

Therefore, the sensitivity based on the frequency shift or the AR of the coupled
resonators with two identical resonators is only related to the added stiffness perturbation
(∆K) and the influence of ∆KT on the sensitivity is canceled out as a common-mode signal.
However, in reality, the two resonators are not fully identical due to fabrication errors,
and the influence of ∆KT on the sensitivity (the frequency shift or the AR) can be reduced
dramatically but not completely [83], as shown in Figure 14.

Figure 14. Effect of temperature change on the normalized sensitivity of resonators(Reprinted with
permission from Ref. [83]). (a) 1-DoF resonators; (b) 2-DoF resonators.

Note that in the system of the 1-DoF resonator, there is only one resonator. Thus, when
∆KT and ∆K are both introduced to the resonator at the same time, the system stiffness
Ks is:

KS = K + ∆K + ∆KT (21)

The frequency shift is:

∆ f
∣∣∆K+∆KT ≈ −π

∆K + ∆KT
K

× f0 (22)

In this case, it is hardly clear whether the frequency shift is caused by the ∆KT or caused
by the ∆K, making the sensors based on the 1-DoF resonator vulnerable to temperature
fluctuation if no extra temperature compensation method is used.

2.3.4. Detection of the Position of Perturbations

For the coupled resonator, as mentioned above, the 2-DoF resonators normally have
two different modes: in-phase and out-of-phase modes, and the 3-DoF coupled resonators
can exhibit three different modes. Taking a 2-DoF weakly coupled BAW resonator system
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as an example, the relationship between the AR and mass perturbations on the resonator 2
is different when the resonator works in the in-phase or out-of-phase mode, as shown in
Figures 12 and 13. That is the case for the 3-DoF weakly coupled resonators as well. To
conclude, to verify the position of the perturbation, the weakly coupled resonators can
be driven selectively at their in-phase or out-of-phase mode, and then the corresponding
ARs can be measured to locate the position of the perturbation accurately. Alternatively, re-
searchers can employ the anti-resonances in the amplitude-frequency responses to identify
which resonator is applied with a mass perturbation [86].

3. Coupled BAW Resonators with Different Transduction Methods

Actuators and sensing elements are vital components of MEMS resonators. For
coupled BAW resonators, capacitive actuation and sensing elements, piezoresistive sensing
elements, and piezoelectric actuation and sensing elements are commonly adopted. Table 8
provides an overview of these several transduction methods including a summary of their
theoretical calculation expressions of actuation force and sensed motional current, and a
comparison among them to show their pros and cons.

3.1. Capacitive Actuation and Sensing

Parallel plates like comb fingers are normally utilized to implement the capacitive
actuation [1,87–91]. In the capacitive actuation, two parallel plates are loaded with an
actuation voltage to form an electric field and generate an electrostatic force.

In terms of capacitive sensing [89–91], the displacement of the moving plate causes
a change in the capacitance, leading to the charge flow of the capacitor, resulting in a
motional current.

Capacitive transduction is a popular method for actuation and sensing of a MEMS
device due to its low-cost and flexible design, simplicity of fabrication and implementation,
and the capability to integrate with interface electronics systems [76,92,93]. However, it
also has some drawbacks such as nonlinearity [91], pull-in instability [94], and an AC force
that could appear at the double frequency, the feedthrough signal.

Table 8. Description of several classic transduction mechanisms applied to coupled BAW
MEMS resonators.

Transduction Methods Capacitive Actuation
and Sensing Piezoresistive Sensing Piezoelectric Actuation

and Sensing

Actuation force
(F)

F ≈
(

1
2 V2

d + 2|Vac|Vd

)
dC
dx

[76]
Not applicable yet

F = e33 A3Vac
h − Longitudinal

F = e31 A1Vac
h - Transverse

[92]

Sensed motional current
(imot)

imot = Vd
∂C
∂x

∂x
∂t

[76]
imot ≈ Vd

R

(
∆Rr
Rr

)
[95]

|imot| = |ω · e33 A3S3| Longitudinal
|imot| = |ω · e31 A3S1| Transverse

[92]

Cons

Parasitic capacitance;
Nonlinearity; complex circuit

design; thin film damping;
limitation in liquids [96]

Temperature dependency;
high power consumption with

using high DC voltages;
noisy

Processing difficulty in
piezoelectric materials;

not possible static measurement

Pros
Low power consumption;

good noise performance; easy
to fabricate

Simple setup;
inherent shielding;

applicable to liquids [97]

Eliminating frequency drifts
caused by DC voltage variations

due to no DC voltages
needed here [13];

Applicable to liquids [98–101]

3.1.1. One-Port Configuration

In the one-port configuration [95] as shown in Figure 15, each resonator has four
capacitive electrodes all serving as actuation electrodes, and the motional current is picked
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up from the anchors of the resonators. For the one-port configuration, the motional current
can be increased by increasing the electrode overlap area and decreasing the gap between
the electrode and the resonator body. However, the feedthrough current [102–104] can also
be increased by shrinking the gap.

Figure 15. Schematic of a one-port configuration for a 2-DoF square-plate BAW resonator.

3.1.2. Two-Port Configuration

As illustrated in Figure 16, in a two-port configuration [95,104], each resonator has one
group of electrodes for actuation and the other group of electrodes for sensing. Compared to
the one-port configuration, under the same actuation voltage, the actuation force decreases
but the feedthrough signal decreases in the two-port configuration as the sensing and
driving electrodes are separated and cross-talk capacitance is reduced.

Figure 16. Schematic of a two-port configuration for a 2-DoF square-plate resonator system.

3.2. Capacitive Actuation and Piezoresisitive Sensing

The piezoresistive effect can occur in all materials, which refers to the change of resis-
tance resulting from mechanical stress. This effect has been applied to many commercial
devices such as pressure sensors and accelerometers [1]. For the pressure sensor, integrated
piezo resistors are used to measure the deformation of the pressure-sensing membrane.
For the piezoresistive accelerometer, the resistance of piezo resistors embedded in the
supporting springs changes with the stress variation due to the input acceleration, which
is utilized to measure the input acceleration. The resistance measurement is also easy to
be implemented and the piezo resistors are inherently shielded structures, which make
it feasible and popular for the application of microsensors. As shown in Figure 17, a DC
voltage (Vd) is applied to the resonator at the anchors to detect the change of resistance,
and then the motional current can be obtained [39,40].

In piezoresistive sensing configurations [105–109], all surrounding electrodes can be
used for capacitive actuation because the motional current is picked up from the body of
the resonator. Besides this, the motion signal can be increased by tuning Vd rather than
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shrinking the transduction gap or increasing the applied actuation voltage, but it is limited
to the piezoresistive coefficient of the single crystal silicon and the dissipation of the electric
power of the resonator.

Figure 17. Measurement setup for a coupled BAW resonator system using capacitive actuation and
piezoresistive sensing (Reprinted with permission from Ref. [40]).

For BAW resonators vibrating at the extensional mode, the motional current is larger
with the piezoresistive sensing configuration than with the capacitive sensing configu-
ration [95]. Figure 18 shows the frequency responses for a square-plate BAW resonator
operated in the extensional mode with different sensing methods but the same actuation.
In contrast to the device with capacitive sensing, the device with piezoresistive sensing
improves the output signal from 0.02 dB to 0.5 dB, and the signal distortion caused by the
feedthrough signal is eliminated [39,40].

Figure 18. The frequency response measured for a BAW resonator with square extensional (SE) mode
in the air (Adapted with permission from Ref. [95]). (a) One-port capacitive actuation and sensing
method; (b) One-port capacitive actuation and piezoresistive sensing method.

In another study, Iqbal et al. investigated the 2-DoF and 3-DoF square-plate and
2-DoF disk BAW resonators in the extensional mode [37,38]. In this work, the total output
current was enhanced by summing the currents of all resonators and the piezoresistive and
capacitive sensing methods were both adopted to be compared with each other. In [38],
the insertion loss and the Q factor of a 2-DoF resonator using the piezoresistive sensing
were compared with that of a 1-DoF resonator using capacitive sensing. There was a
10 dB reduction in the insertion loss and an increase of 3400 in the Q factor for the device
using piezoresistive sensing proposed in [38]. Therefore, the results show that with the
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piezoresistive sensing configuration (shown in Figures 19 and 20), the overall transduction
efficiency was improved, thereby obtaining a higher Q factor.

Figure 19. SEM image of the fabricated BAW rectangular-plate resonators with capacitive actuation
and piezoresistive sensing setup (Adapted with permission from Ref. [37]). (a) A 2-DoF coupled
BAW resonator device; (b) A 3-DoF coupled BAW resonator device.

Figure 20. (a) FEM simulation of 2-DoF BAW disk resonators with in-phase extensional mode
shown; (b) SEM image of the fabricated 2-DoF BAW disk resonators with capacitive actuation and
piezoresistive sensing. Reprinted with permission from Ref. [38].

3.3. Piezoelectric Actuation and Piezoelectric Sensing

The piezoelectric effect refers to the ability of certain materials which can generate
the electric charge in response to the applied mechanical stress and vice versa (mechanical
stress can result from an applied electrical field) [1]. There are two common piezoelectric
transduction configurations [1,92]: the longitudinal configuration (shown in Figure 21a),
where the force (F) is in the direction of the electric field (ε3), and the transverse actuation
configuration (see Figure 21b), where the force (F) is perpendicular to the applied electric
field (ε3). The electrodes (marked in grey in Figure 21) on the top and bottom surface of the
piezoelectric material form a capacitor and the current through the capacitor will have a
piezoelectric component in addition to the regular capacitance current.

The commonly used piezoelectric materials are PZT, ZnO, and AlN. Among these
three materials, PZT has the highest piezoelectric coefficient but the lowest acoustic velocity
which will result in more inner mechanical energy loss, thereby deducting the Q factor [96].
ZnO is chemically unstable, and this will lead to non-consistent measurement results. AlN
has a lower piezoelectric coefficient but the highest acoustic energy, so there will be less
inner mechanical loss [96]. The AlN thin film is insulated. Moreover, the compatibility
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with CMOS of AlN also makes it potentially applicable to chip-level integration [96]. The
devices presented below are all fabricated using AlN as the piezoelectric material.

Figure 21. Piezoelectric transduction configuration. (a) Longitudinal configuration; (b) Transverse
configuration. Note: t is the thickness of the piezoelectric layer, A1 is the cross-sectional area of
the piezoelectric layer, A3 is the electrode area, ε3 is the intensity of the electric field, and F is the
generated force.

As an example, Chellasivalingam et al. designed two identical square-plate resonators
weakly coupled by a short beam, and resonators were operated at the WG mode [41,42],
as shown in Figure 22. The reverse piezoelectric effect was used for the actuation of
the resonator while the piezoelectric effect was used for the pick-up of the motion. The
piezoelectrically induced strain was converted back to an electrical output voltage. The
mode localization was adopted in the weakly coupled BAW resonators to characterize its
mass sensitivity. The normalized sensitivity based on the AR was 148.22, and the Q factor
of 1773.8 was achieved in a vacuum. The fabrication of these two devices followed the
PiezoMUMPs process [110]. The silicon device layer was directly utilized as the ground
layer, then a sputtered AlN film on the Si layer served as the piezoelectric layer. Finally, a
thin film of Al was deposited on the AlN layer as the top electrode, and thus the thin-film
piezoelectric-on-silicon resonator (TPOS) was developed [111–113].

Figure 22. Schematic of the piezoelectric transduction mechanism applied to a 2-DoF weakly coupled
BAW square-plate resonator device vibrating at in-phase and out-of-phase WG modes. The mass
perturbation is conducted by applying particles onto the bottom surface of the resonators. Reprinted
with permission from Ref. [42].

As piezoelectric resonant devices like FBARs exhibit high electromechanical coupling
efficiencies without DC voltages, there will be a low signal transmission loss, thereby
achieving a relatively small motional resistance, which is beneficial to the design of the
setup for the measurement. Additionally, the DC voltage is not required for the operation
of piezoelectric devices, which makes it more suitable for resonators operated in liquids
than resonators with capacitive transduction. This is due to the DC voltage used for
capacitive transduction in liquid being limited to several volts to avoid the electrolysis
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phenomenon in liquid. The electrolysis phenomenon will lead to a low transduction factor
for capacitive sensing.

Therefore, combined with the advantages of the piezoelectric transduction and in-
plane vibration modes, weakly coupled BAW resonators exhibit a high potential to be
applied as sensors for chemical and biological applications. So far, the coupled BAW
resonators based on mode localization have not been explored extensively.

3.4. Capacitive-Piezo Transduction

For the piezoelectric resonators shown in Figure 23a, both the top and bottom elec-
trodes are directly in contact with the piezoelectric layer, and the interfacial strain loss nor-
mally occurs in the interface between the electrode and piezoelectric layers [1,28,42,92]. For
the capacitive resonators indicated in Figure 23b, the transduction gaps are designed to sep-
arate the resonator body and electrodes, so there will be no interfacial strain loss [1,87–91].
Combining the main features of piezoelectric and capacitive resonators, a capacitive-piezo
transduction configuration [109] where a resonator made of pure piezoelectric material
(AlN) is separated from the electrodes by a small transduction gap is developed, as shown
in Figure 23c. The piezoelectric component is used for achieving high coupling, and
the non-contacting capacitive transduction component is used for achieving a high Q
factor [109].

Figure 23. Working principle of a conventional piezoelectric resonator, capacitive resonator and novel
capacitive-piezo resonator (Reprinted with permission from Ref. [114]).

Figure 24 shows a 1-DoF and 2-DoF capacitive-piezo BAW disk resonant device with
different working modes and anchors. In these two devices, a small transduction gap is
designed to reduce the strain loss from the resonator body to the electrode and to eliminate
the energy loss from the metal layer-to-piezoelectric layer interface. This gap should be
small enough to make full use of the strong electromechanical coupling efficiency of the
piezoelectric transduction, so a nano-scale gap is adopted here. For the 1-DoF resonator
device developed by Robert et al. [115], a new self-switching resonator was achieved with a
high Q of 9000 at 300 MHz enabling the device to act as a switchable AlN filter for RF front
ends. Another study based on the 2-DoF resonator device [114], showed a higher Q factor
of 12,748 which is more than 2.2 times higher than that of the conventional piezoelectric
resonators with contacting electrodes.
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Figure 24. (a) Schematic of a 1-DoF capacitive-piezo disk resonator operated at the radial contour
mode with the anchor at the center (Reprinted with permission from Ref. [115]); (b) Schematic of a
2-DoF capacitive-piezo disk resonator device operated at the WG mode with the anchor connected to
the resonator body by a suspension beam (Reprinted with permission from Ref. [114]).

4. Applications of Coupled BAW Resonators
4.1. Sensors Based on Weakly Coupled BAW Resonators

In the sensors based on the weakly coupled resonators, that are using the amplitude
change or the AR change to measure the physical quantity change in the environment,
the sensitivity will be largely enhanced compared to a sensor using resonant frequency
changes as an output metric as illustrated in Section 2.3. The group of Professor Ashwin
A. Seshia of Microsystems Technology in the Department of Engineering at Cambridge
University focuses on the relevant study, and the related work is represented below.

Lin et al. developed a mass sensor based on the coupled BAW resonators [39,40] where
the two square-plate BAW resonators were coupled together by a long and thin beam and
operated in the extensional mode shown in Figure 25. In this device, one resonator was
used for transduction while the other one was used for mass perturbation. A Cr film [39]
was deposited on the surface of the resonator as a small mass perturbation on the system,
and then a frequency shift (about 34 Hz/ng in air and 32 Hz/ng in vacuum for the in-phase
mode; about 36.7 Hz/ng in air and 37.3 Hz/ng in vacuum for the out-of-phase mode) was
observed due to the thin film deposition. Then to explore the feasibility of the coupled
BAW resonators for biochemical sensing application, the streptavidin-coated polystyrene
microbeads (SCPM) [40] and High Five insect cells [40] were subsequently applied to the
functionalized surface of one resonator as a mass perturbation, shown in Figure 26.

Figure 25. (a) Optical micrograph of the 2-DoF BAW resonator system; (b) Comparison between
the analytical frequency shift and the measured one with respect to the deposited Cr film thickness.
Reprinted with permission from Ref. [39].
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Figure 26. Optical micrograph of attached analytes. (a) SCPMs with diameters of 5.61 µm and
15.68 µm; (b) High Five insect cells. Reprinted with permission from Ref. [40].

Figure 27 shows the relationship between the frequency shift and the number of
analytes attached to the resonator. Figure 27a shows a good match between the theory
and the measurement result based on the analytes of SPCMs. In Figure 27b the frequency
shift caused by the attached insect cells, −12 Hz/cell (−3.89 ppm/cell), is illustrated [40],
indicating the potential of this device to serve as a biochemical sensor.

Figure 27. Relationship between the frequency shift and the number of analytes attached to the
resonator from. (a) SCPMs; (b) High Five insect cells. Reprinted with permission from Ref. [40].

However, compared to the detection limit of the BAW resonators operated in liquid
(i.e., SMR (0.01 ng/cm2) [116] and C-FBARs (1.78 ng/cm2) [117]), the detection limit of
this device operating in the air (1.46 ng/cm2 or 36 ng/cm2) is not superior. To improve
the sensitivity, further miniaturization of the proof mass or a secondary label of mass may
be needed.

The conventional frequency shift is used to characterize the sensitivity in the work
shown above, but for now, there have already been two studies from one group on the
weakly coupled BAW resonators utilizing mode localization as the sensing mechanism.
Chellasivalingam et al. [41,42] coupled two identical square-plate resonators by a short
beam which are both operated in the WG mode (see Figure 24). The piezoelectric actuation
and sensing mechanisms were adopted here.

The device proposed in [41] was used as a mass sensor to detect the Polystyrene Latex
(PSL) particles with a diameter of about 296 nm. The results showed that the normalized
sensitivity based on the AR shift (422) was much larger than that based on the conventional
frequency shift (−0.17) in a vacuum as shown in Figure 28a. For the device proposed
in [42], it was used for aerosol detection, and the soot particles of 100 nm in diameter were
applied to the surface of one resonator as a mass perturbation. The normalized sensitivity
obtained in a vacuum (0.0735 for frequency shift; 148.22 for amplitude ratio shift) is shown
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in Figure 28b. The minimum mass it can detect based on the AR and frequency shift is
367.8 pg and 2.16 pg, respectively.

Figure 28. (a) Normalized sensitivity based on frequency shift and amplitude ratio shift (Reprinted
with permission from Ref. [41]); (b) Normalized sensitivity based on frequency shift and amplitude
ratio shift from (Reprinted with permission from Ref. [42]).

Unlike the device described in [39,40], the sensitivity of the BAW resonators based on
mode localization was improved considerably. However, as for the device proposed in the
work [40], the minimum detection limit based on mode localization was much larger than
that based on frequency shift which should be further researched.

To summarize, both frequency shift and mode localization have been proposed for
characterizing the sensitivity of weakly coupled BAW resonators, and Table 9 shows a
performance comparison of these reported works. The coupled BAW resonators based on
mode localization showed great potential for enhanced sensitivity proved in theory and
practical work shown above and worth further investigation.

Table 9. Performance comparison of the reported 2-DoF coupled BAW MEMS resonators as mass sensors.

References [39] [40] [41,42]

Vibration mode Extensional mode Extensional mode WG mode

Actuation way Capacitive Capacitive Piezoelectric

Sensing way Piezoresistive Piezoresistive Piezoelectric

Frequency (MHz) 5.492, 5.423 5.492; 3.145 ~2.5

Q factors 5139, 8505 5139; 8676 1773.8

Mass perturbation Cr film Microbeads and cells Particles

Characterize sensitivity Frequency shift Frequency shift Frequency shift; AR shift

Sensitivity 34 Hz/ng −12 Hz/cell 0.0735; 148.22

Detection limit Not mentioned 1.46/36 ng/cm2;
~1.68 dried cells

Not mentioned

4.2. Oscillators Based on Coupled BAW Resonators

The group of Professor Joshua E.-Y. Lee of the Department of Electronic Engineering
at the City University of Hong Kong is carrying out the relevant study, and so is the group
of Professor Clark T.-C. Nguyen in the Department of Electrical Engineering and Computer
Sciences at the University of California at Berkeley. The related work is indicated below.
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Iqbal et al. focused on the weakly coupled square-plate BAW resonators as oscillators,
including 2-DoF and 3-DoF resonators, and resonators were diagonally coupled by a
mechanical beam to make the piezoresistive sensing work the best [37], as shown in
Figure 19. The 1-DoF, 2-DoF and 3-DoF resonators were demonstrated to work at the same
resonant frequencies with the in-phase extensional mode, and the synchronized oscillation
was realized via a coupling beam with a half-wavelength. Besides, with the introduction of
the coupling mechanism, a higher Q up to 120,000 (3-DoF) was achieved compared to the
Q of the single resonator (60,000), as illustrated in Figure 29a.

Figure 29. (a) Comparison of Q factors among the single, 2-DoF and 3-DoF square-plate BAW
resonators as the drain current (Reprinted with permission from Ref. [37]); (b) Comparison of Q
factors between the single and 2-DoF disk BAW resonators with bias current increasing (Reprinted
with permission from Ref. [38]).

Iqbal et al. then studied a 2-DoF disk BAW resonator device as oscillators [38], and
the synchronization was also achieved by a coupling beam at half of the wavelength (see
Figure 20). The Q factor achieved here was about 184,000, two times higher Q factor than
the Q of 1-DoF disk resonators, as illustrated in Figure 29b.

These two studies with similar results demonstrated the possibility of using weakly
coupled BAW resonators with the extensional mode to work as an oscillator with an
enhanced Q factor compared to single resonators. Based on this work, the weakly cou-
pled BAW resonators operated at other lateral bulk vibration modes or using different
transduction methods can be further researched to achieve a novel filter with a higher
Q factor.

Besides, the device developed by Demirci et al. [73] has the potential to be an oscillator.
As shown in Figure 30, there are two devices: a 3-DoF strongly coupled BAW resonator
system with anchors at the center and a 7-DoF strongly coupled BAW resonator system
with anchors connecting to the resonator body by a suspension beam, and they are operated
in the out-of-plane transverse mode at 70 MHz.

By mechanically coupling resonators together, the total output current is boosted by
combining the output current from each resonator in the coupled system, as shown in
Figure 30c. The work in [73] indeed achieved a Q factor of more than 9000 and a reduction in
the motional resistance (480 Ω, more than 5.9 times smaller than that of a 1-DoF resonator
device) by mechanically coupling several resonators together, instead of shrinking the
transduction gap between the electrode and the resonator body or increasing DC bias. In
this way, the power handling capability was enhanced, the linearity of the system was
maintained, and the motional resistance versus the dynamic range tradeoff often occurs
when scaling was broken. Lin et al. designed several multi-DoF strongly coupled disk
filters operating at the first in-phase WG mode [118], and taking a 3-DoF system as an
example, Figure 31a shows the disk resonators were strongly coupled by a mechanical
beam with half-wavelength. Figure 31b indicates the operating frequencies were all around
61 MHz and the Q factors for 3-DoF, 5-DoF, and 9-DoF resonators were all about 120,000
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(pretty high) although the single resonator could achieve a higher Q factor of 161,000. When
the oscillator was divided down to 10 MHz, the phase noise of −138 dBc/Hz at 1 kHz
offset and −151 dBc/Hz at far from carrier offset were achieved here, and there was a
13 dB and 4 dB improvement over the previously reported work on the single resonator-
based oscillators [118], as shown in Figure 31c. That well verified the utility of coupled
resonator-based filters which deserved to be further explored.

Figure 30. (a) SEM image of a 7-DoF strongly coupled BAW resonator system with anchors at the
center; (b) FEM simulated out-of-plane motion of the coupled resonator systems; (c) Frequency
response of several multi-DoF coupled resonators. Reprinted with permission from Ref. [37].

Figure 31. (a) Schematic of a 3-DoF strongly coupled disk resonator system with the equivalent
electric circuit; (b) Measured frequency response for several multi-DoF disk resonator systems;
(c) Relationship between the offset frequency and phase noise. Adapted with permission from
Ref. [118].

4.3. Filters Based on Coupled BAW Resonators

There is one study on the coupled BAW resonators based filters and the group of
Professor Clark T.-C. Nguyen in the Department of Electrical Engineering and Computer
Sciences at the University of California at Berkeley is carrying out the relevant research,
and the related work is illustrated below.

Figure 32 shows a 2-DoF coupled BAW resonator system with anchors at the center of
the resonator body, and the radial contour mode is chosen as the operation mode, consisting
of out-of-phase and in-phase modes. Ozgurluk et al. studied the 2-DoF BAW resonator
system as a filter, and to increase the output motional current, more resonators were
then coupled and operated at the in-phase radial contour mode [80], shown in Figure 32.
There were 96 disks strongly coupled by 110 mechanical beams, and the coupling beam is
designed to equal half-wavelength [77]. Due to the possibility of structural asymmetry in
weakly coupled structures, strong coupling is adopted here to ensure that all resonators



Sensors 2022, 22, 3857 26 of 32

vibrate uniformly at one mode frequency, hence the output currents of each resonator in the
coupled system can sum constructively [80]. Besides, strong coupling can also eliminate
non-uniform reductions in the motional resistance which normally occurs in the weakly
coupled system [77]. Finally, a 0.1% bandwidth 223.4 MHz MEMS filter was achieved with
a 2.7 dB insertion loss of the passband and a 50 dB stopband rejection.

Figure 32. (a) Schematic and SEM image of a 2-DoF and 96-DoF coupled BAW disk resonator filter
system; (b) Revised schematic of the out-of-phase radial contour mode shape; (c) Revised schematic
of the in-phase radial contour mode shape. Adapted with permission from Ref. [80].

Compared with the single disk resonator, the coupled disk resonators achieve a lower
motional resistance. Figure 33 shows a comparison of frequency spectra between a 30-
DoF disk system and a single disk system. The Q factor obtained for the 30-DoF disk
resonator here was 8815, and the motional resistance (1180 Ω) was about 9 times lower
than that of a filter based on a single disk resonator. That verified the feasibility of using
coupled-resonator design.

Figure 33. A comparison of frequency spectra between a 30-DoF disk system and a single disk system.
Adapted with permission from Ref. [80].

A small transduction gap of 39 nm (even reach to below 10 nm) was adopted in this
work to reduce the motional resistance, thereby improving the electromechanical efficiency,
which was a landmark for the capacitively transduced MEMS resonators. Besides, the
weakly coupled MEMS BAW resonator devices in [37,38,73] illustrated in Section 4.3 can
also be further studied as filters with the needs of the actual RF channel-selecting receiver
front-ends [80].

5. Conclusions and Outlook

The distinctive advantages of the BAW MEMS resonator over its counterparts include
its small size, high stiffness, relatively high operating frequencies, large ratio of surface
to volume, high Q factors, and high sensitivity as sensors, making it more suitable for
some applications such as sensing, timing reference, and filtering applications. Moreover,
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BAW resonators with different operating modes, coupling methods, and transduction
configurations can exhibit distinct work performances, and their respective advantages can
be utilized to achieve different application purposes.

This review mainly presents the relevant studies on coupled BAW resonators used
as oscillators, sensors as well as filters. Especially, the coupled BAW resonators with
lateral vibrational modes using piezoelectric transduction are a good choice for chemical
and biological applications (detecting some analytes such as proteins, DNA, and cells
in liquid), since they are less prone to fluid damping. Furthermore, the piezoelectric
configuration should be a good choice for the coupled BAW resonators, for it does not
require DC voltages for operation. DC voltages are needed in the capacitive configuration
to enhance the transduction factor but should be limited to only several volts in liquid to
avoid electrolysis, limiting the electromechanical transduction efficiency.

However, there are still several issues that should be considered while designing
devices based on coupled BAW resonators: (1) if serving as filters and oscillators, it is
necessary to achieve low motional resistance, which requires achieving high Q factors
and effective electromechanical transduction [1]; (2) if serving as sensors, there should be
a compromise between the sensitivity and mode aliasing effect. The coupling strength
should be designed reasonably, and the optimized structure to achieve a high Q factor is also
significant. Besides, fabrication constraints should also be considered for designing your
structure. Therefore, there is still lots of work to be done on the coupled BAW resonators.
As different types of BAW resonators have their respective advantages, they can be further
explored to improve their working performances for a wide range of applications in the
following aspects: (1) coupled BAW resonators with other vibrational modes; (2) coupled
BAW resonators using different coupling elements; (3) coupled BAW resonators utilizing
different transduction methods to reduce the feedthrough current; (4) different piezoelectric
materials chosen for the coupled BAW resonators using piezoelectric transduction with the
TPOS structure; (5) structural optimization of the coupled BAW resonators to eliminate the
effect of mode aliasing.
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